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Introduction: M
W
 and the CDF result
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M
W
 as an Electroweak Precision Observable (EWPO)

➢ Electroweak precision observables, including
➢ W-boson mass M

W

➢ (Squared sine of) Effective leptonic weak mixing angle sin2θ
eff

lep

➢ Z-boson decay width Γ
Z

➢ Muon anomalous magnetic moment (g-2)
μ

etc.
are measured very precisely, and can also be computed to high level of accuracy in terms of       
G

F
, α(0), M

Z
 (most precisely measured EW quantities) and m

h
, m

t
, α

S
, Δα

had
, Δα

lept
, m

b
, etc. 

➢ Allow testing the SM as well as BSM models

➢ Before April, experimental world average was [PDG 2020]
M

W
exp = 80 379 ± 12 MeV

➢ SM prediction (full 1L+2L, partial 3L and 4L, see [Awramik, Czakon, Freitas, Weiglein ‘03]) 
M

W
SM = 80 353 ± 6 MeV (see e.g. discussion in [Bagnaschi, Chakraborti, Heinemeyer, Saha, Weiglein ‘22])

→ already a small discrepancy! 
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CDF measurement of M
W

➢ April 7, 2022: CDF collaboration at Fermilab Tevatron 
released a measurement of M

W
, using 8.8fb-1 of data 

taken between 2002 and 2011

M
W

CDF = 80 433.5 ± 9.4 MeV

➢ Most precise result from a single experiment, ~7σ 
away from SM prediction! 

➢ Possible issues remain to be discussed about the 
CDF measurement and its compatibility with previous 
results → central value could decrease and/or 
uncertainty could be augmented

➢ Even so, inclusion of CDF II into world average will 
most certainly increase the already existing pull 
from the SM prediction

➢ Strong motivation to investigate BSM 
contributions to W-boson mass

[Science 376, 170 (2022)]
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M
W
 calculation in the SM and beyond

➢ Base for M
W
 calculation is the decay of the muon 

➢ Extract G
F
 from muon lifetime τ

μ
 by computing τ

μ
 in the Fermi theory

➢ Relate M
W
, M

Z
, α, G

F
 by computing muon decay in full theory, and matching to Fermi theory 

result

Δr ≡ Δr(M
W
, M

Z
, m

h
, m

t
, …) denotes corrections to muon decay (w/o finite QED effects)

➢ Previous relation used to determine M
W
 as solution, via iterations, of

➢ Inclusion of known higher-order SM corrections crucial

➢ ΔrSM known to full 1L & 2L + leading 3L & 4L → see e.g. [Awramik, Czakon, Freitas, Weiglein ‘03]

(OS scheme)

(OS scheme)
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Solving the M
W
 discrepancy at loop level

M
W

CDF = 80 433.5 ± 9.4 MeV

Note 1: solutions at tree level are also possible, e.g. contribution from a triplet scalar 
(complete discussion e.g. in [Bagnaschi et al. 2204.05260] + see Prof. Ellis’ talk)

Note 2: many models have been considered at loop level (large number of papers compute the S, T, U 
parameters at 1L and check if they can reproduce the preferred values obtained by a global fit including the 
CDF result, see e.g. [Strumia, 2204.04191])

Some models work, some don’t 

e.g. singlet extension, c.f. [Sakurai, Takahashi, Yin 2204.04770] which found that ΔM
W 

≤ 5 MeV

→ in what follows, we will consider whether the 2HDM can accommodate a value M
W
 as high as the CDF result 

(future world-average will certainly be lower, hence needed BSM deviation will be smaller, and easier to 
reproduce) employing a 2L calculation of M

W
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The Two-Higgs-Doublet Model (2HDM)
➢ 2 SU(2)

L
 doublets Φ

1,2
 of hypercharge 1  

➢ CP-conserving 2HDM, with softly-broken Z
2
 symmetry Φ

1
→Φ

1
, Φ

2
→ -Φ

2
 to avoid tree-level 

FCNCs → m
12

2 and Λ
5
 real, Λ

6
=Λ

7
=0

➢ Mass eigenstates: 
• h, H: CP-even Higgs bosons (h → 125-GeV SM-like state)
• A: CP-odd Higgs boson
• H±: charged Higgs boson
• α: CP-even Higgs mixing angle

➢ BSM parameters: 3 BSM masses m
H
, m

A
, m

H±
, BSM mass scale M (defined by M2≡m

12
2/c

β
s

β
), 

angles α and β (defined by tanβ=v
2
/v

1
)

➢ We take the alignment limit α=β-π/2 → all Higgs couplings are SM-like at tree level 
→ compatible with current experimental data + no mixing of CP-even scalars!
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Calculation of M
W
 including 2L BSM effects: THDM_EWPOS

➢ Code written by Stefan Hessenberger, based on [Hessenberger, Hollik ‘16] and [Hessenberger ‘18]

➢ Computes Δρ and EWPOs in (aligned) 2HDM as well as IDM to full 1L + leading 2L BSM (+ higher SM)

➢ Specifically, the computed EWPOs are MW and observables at Z pole, namely

• Z-boson width ΓZ = Σf Γ(Z→ ff) with 

• Effective leptonic weak mixing angle

➢ Corrections to Δρ:

• 1L: SM-like top quark piece + BSM scalar piece

• 2L: (1L)^2 pieces + genuine pieces, i.e. {top+SM scalars}, {top+BSM scalars}, {BSM scalars only}, 
{SM+BSM scalars} – all computed in gaugeless limit 

➢ 2L BSM corrections to Δr, ΓZ, sin2θeff
lep can always be split between a reducible part (i.e. (1L)^2 terms) 

and an irreducible part, which is proportional to 2L BSM corrections to Δρ

➢ Higher order SM corrections to Δr, ΓZ, sin2θeff
lep included via known parametrisations

→ see details in [Hessenberger ‘18]

N
c
f: colour factor

g
V,A

f: eff. vector/axial coup. of Z 
boson to fermion f
R

V,A
f: radiation factors (final 

state QCD & QED corr.)

(assuming lepton universality)
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A parameter scan to investigate EWPOs [Bahl, JB, Weiglein 2204.05269]

➢ Here: we consider an aligned 2HDM of type-I, but similar results expected for other 2HDM types

➢ Constraints in our parameter scan (all except the last are checked with ScannerS [Mühlleitner et al. 2007.02985]) 

• SM-like Higgs measurements with HiggsSignals
• Direct searches for BSM scalars with HiggsBounds
• b-physics constraints, using results from [Gfitter group 1803.01853]            

• Vacuum stability

• Boundedness-from-below of the potential

• NLO perturbative unitarity, using results from [Grinstein et al. 1512.04567], [Cacchio et al. 1609.01290]

➢ For points passing these constraints, we compute MW, sin2θeff
lep and ΓZ using THDM_EWPOS 

• red points ≡ parameter points that reproduce CDF value for MW within 1σ, i.e. 

                                           80 424 MeV ≤ (MW
(2))2HDM ≤ 80 442 MeV

• black points ≡ all other points

ex
pe
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en

ta
l

th
eo

re
tic

al
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Results: M
W
 vs sin2θ

eff
lep

[Bahl, JB, Weiglein 2204.05269]

➢ 2HDM can explain the discrepancy in M
W
!

➢ Light tension with world average for sin2θ
eff

lep 
but good agreement with SLD result

➢ World average: using both LEP result 
(based on forward-backward asymmetry of 
bottom quarks) + SLD result (based on left-
right asymmetry) which show a 3σ 
discrepancy between each other

➢ SLD: most precise single measurement of 
sin2θ

eff
lep and only depends on leptonic 

couplings 



Page 11/16| SUSY 2022 | Johannes Braathen (DESY) | July 1st, 2022

Results: M
W
 vs Γ

Z [Bahl, JB, Weiglein 2204.05269]

➢ Result for Γ
z
 

compatible within 
1 – 1.5σ of world 
average
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Results: sin2θ
eff

lep vs Γ
Z [Bahl, JB, Weiglein 2204.05269]
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Results in the (M
H
-M

H±
, M

A
-M

H±
) plane [Bahl, JB, Weiglein 2204.05269]

➢ Mass hierarchy where m
H
=m

A
=m

H±
 

is no longer allowed because it 
cannot reproduce M

W
!

➢ The reason is that in this limit, the 
custodial symmetry is restored in the 
2HDM scalar sector 
→ scalar contributions to Δρ vanish
→ no way of getting a large enough 
contribution to M

W
!

➢ Need m
H
-m

H±
 < 0 and m

A
-m

H±
 < 0 or 

m
H
-m

H±
 > 0 and m

A
-m

H±
 > 0 to have 

a positive contribution to Δρ

➢ Needed mass splitting of ≥ 50 GeV 
translates into an upper bound on 
BSM scalar masses of O(few TeV)
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Impact of two-loop corrections to M
W [Bahl, JB, Weiglein 2204.05269]

➢ 2L corrections to M
W
 

often significant, and 
can play an important 
role in reaching the 
values of M

W
 

compatible with the 
CDF result

➢ Shows the importance 
of including 2L BSM 
effects!
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[Bahl, JB, Weiglein 2204.05269]

➢ Large scalar couplings are not necessary to reproduce the CDF value for M
W
 

(with or without large 2L effects)
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Summary
➢ M

W
 is one of the best measured EWPO, and comparison of theory prediction and 

experimental results allow stringent tests of SM as well as BSM theories

➢ Recent excitement related to CDF result, seemingly 7σ away from SM → strong 
motivation to consider BSM contributions to M

W

➢ [Bahl, JB, Weiglein 2204.05269] investigated situation in 2HDM, with calculation of M
W
 

including leading 2L BSM (+ h.o. SM) effects using THDM_EWPOS → 2HDM can accommodate 
M

W
 discrepancy while keeping satisfactory agreement for sin2θ

eff
lep and Γ

Z
 

➢ CDF result is not compatible with degenerate mass hierarchies in 2HDM → upper bound on 
BSM scalar masses

➢ Impact of 2L (BSM) corrections to M
W
 can be significant (not necessarily related to large 

couplings)
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CDF measurement of M
W

➢ April 7, 2022: CDF collaboration at Fermilab Tevatron 
released a measurement of MW, using 8.8fb-1 of data 
taken between 2002 and 2011

M
W
 = 80 433.5 ± 9.4 MeV

➢ Most precise result from a single experiment

➢ CDF value is ~7σ away from SM prediction! 

➢ Tevatron (claimed) advantages over LHC
➢ pp collisions rather than pp → processes involve 

mainly (anti)quark momentum distributions (PDFs), 
which are better known than that of gluons → lower 
uncertainty than processes at LHC 

➢ Lower centre-of-mass energy 
→ PDFs known more precisely at low √s
→ less QCD backgrounds

[Science 376, 170 (2022)]
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Some concerns raised about the CDF measurement of M
W

➢ Several points in the CDF analysis have drawn 
criticisms/skepticisms (see also colloquium by J. 
Ellis on 3/5)
➢ Measurement of lepton momenta 
➢ Version of ResBos used to model p

T
 (v1 used 

rather than v2) 
➢ Version of PDF and their uncertainties 
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Some concerns raised about the CDF measurement of M
W

➢ Several points in the CDF analysis have drawn 
criticisms/skepticisms (see also colloquium by J. 
Ellis on 3/5)
➢ Measurement of lepton momenta 
➢ Version of ResBos used to model p

T
 (v1 used 

rather than v2) → not the bigest issue, see 
[Isaacson, Fu, Yuan 2205.02788]

➢ Version of PDF and their uncertainties 
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Some concerns raised about the CDF measurement of M
W

➢ Several points in the CDF analysis have drawn 
criticisms/skepticisms (see also colloquium by J. 
Ellis on 3/5)
➢ Measurement of lepton momenta 
➢ Version of ResBos used to model p

T
 (v1 used 

rather than v2) → not the bigest issue, see 
[Isaacson, Fu, Yuan 2205.02788]

➢ Version of PDF and their uncertainties → see 
[Gao, Liu, Xie 2205.03942]
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Some concerns raised about the CDF measurement of M
W

➢ Several points in the CDF analysis have drawn 
criticisms/skepticisms (see also colloquium by J. 
Ellis on 3/5)
➢ Measurement of lepton momenta 
➢ Version of ResBos used to model p

T
 (v1 used 

rather than v2) → not the bigest issue, see 
[Isaacson, Fu, Yuan 2205.02788]

➢ Version of PDF and their uncertainties → see 
[Gao, Liu, Xie 2205.03942]

➢ CDF value is in tension with several of the earlier 
results (esp. LEP, ATLAS) → at least some of the 
experiments might have underestimated their 
uncertainties

➢ Note: pre-CDF II, measurements from LEP, 
Tevatron, and ATLAS were not yet combined, and 
investigation/evaluation of uncertainties was 
ongoing
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M
W
 calculation in the SM I

➢ Base for M
W

 calculation is the decay of the muon 
➢ Extract G

F
 from muon lifetime τ

μ
 by computing τ

μ
 in the Fermi theory

➢ Relate M
W
, M

Z
, α, G

F
 by computing muon decay in SM, and matching to Fermi theory result

Δr ≡ Δr(M
W
, M

Z
, m

h
, m

t
, …) denotes corrections to muon decay (w/o finite QED effects)

➢ Previous relation used to determine M
W
 as solution, via iterations, of 

QED corrections
(known to 1L+2L)Tree-level W propagator 

contributions (not in Fermi 
th. but numerically tiny)

See e.g. [Awramik, Czakon, Freitas, Weiglein 
‘03], [Hessenberger TUM thesis ‘18]

OS scheme

OS scheme
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M
W
 calculation in the SM II

➢ At one loop 

Σ
WW

: transverse part of the W-boson self-energy, δ(1)X: 1L counterterm to quantity X

➢ One can show that 

➢ Leading terms can be rewritten as [Sirlin ‘80] 

with Δα: contribution from light fermion loops to photon vacuum polarisation
        Δρ: corrections to the ρ parameter
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M
W
 calculation in the SM III

➢ At higher orders

             QCD (2L+3L+approx.4L)                     EW (2L)                    leading 3L corr. to Δρ                  

➢ [Awramik, Czakon, Freitas, Weiglein ‘03] gives a parametrisation as
                                                                                                        
                                                                                                          

with

➢ Note: Δr also serves to extract the Higgs VEV from G
F
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M
W
 calculation beyond the SM

➢ Idea of the calculation remains the same, but full theory calculation (that is matched with the Fermi theory one) is 
now done in the BSM model

➢ In BSM models, M
W
 (↔muon decay) can receive contributions both at tree level and at loop level. Considering a 

model with both sources (and turning to MS for simplicity just here), one can write at 1L [Athron et al. 1710.03760, 
2204.05285]

➢ In the following, we will only discuss models with ρ(0)=1, and we stay in OS scheme

➢ Some 2L corrections to Δρ known in BSM models
➢ O(αα

S
) SUSY corrections in [Djouadi et al. ‘96, ‘98]

➢ O(α
t
2,α

t
α

b
,α

b
2) in MSSM in [Heinemeyer, Weiglein ‘02], [Hastier, Heinemeyer, Stöckinger, Weiglein ‘05]

➢ BSM scalar + top quark corrections in (aligned) 2HDM and IDM [Hessenberger, Hollik ‘16]
➢ Inclusion of known higher-order SM corrections crucial
➢ Calculations of M

W
 with Δr to full BSM 1L + partial BSM 2L (from resummation and Δρ) + SM up to 4L 

➢ MSSM [Heinemeyer, Hollik, Weiglein, Zeune ‘13]
➢ NMSSM [Stål, Weiglein, Zeune ‘15]
➢ MRSSM [Diessner, Weiglein ‘19]
➢ 2HDM & IDM [Hessenberger ‘18] (TUM thesis and code THDM_EWPOS)
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Fixed vs running width
➢ OS renormalisation conditions: W- (and Z-) boson mass defined as real part of the complex pole 

of the propagator → gauge invariant definition

➢ Expanding propagator around complex pole → Breit-Wigner shape with a fixed width

➢ W- (and Z-) boson mass measured experimentally corresponds (usually) to a definition of the mass 
with a Breit-Wigner shape with running width

➢ Comparison of theory and experiment requires a conversion:

where for the W decay width one uses a result parametrised in terms of G
F
 and including 1L QCD 

corrections

➢ Resulting shift of ~27 MeV
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Custodial symmetry in the scalar sector of the 2HDM I
➢ In SM (and at 0L) the Higgs potential is invariant under global transformations of SU(2)

L
xSU(2)

R

➢ After EWSB, this invariance group is broken by the Higgs VEV down to SU(2)
L+R

 

 → custodial symmetry, which ensures ρ(0)=1 
 → quark sector breaks the custodial symmetry → Δρ

tb
SM≠0 

➢ What about the 2HDM? → let’s follow the the discussion in [Hessenberger ‘18] 
➢ Using the Higgs basis Φ

SM
, Φ

NS
  one can first rewrite the scalar potential as

➢

➢

➢

➢

➢

➢

➢                                                                                                        with 
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Custodial symmetry in the scalar sector of the 2HDM II
➢ Then one can construct bidoublets

transforming under SU(2)
L
xSU(2)

R 
as

➢ 2 custodial symmetric invariant quantities 
→ V

I
 and V

II
 respect custodial invariance!

➢ V
III
 and V

IV
 involve the non-invariant combinations                                   

→ break custodial symmetry
→ enter scalar corrections to Δρ at 1L and 2L respectively → potential contributions to Δρ and hence Δr and M

W
!

➢ Φ
SM

 and Φ
NS

 have same hypercharge Y=1 → R and R’ are related as R=X-1R’X and due to CP invariance, X=Id or 
X=-iσ

3

➢ X=Id →                                                                       is invariant → V
IV
 invariant and V

III
 invariant if m

A
=m

H±

➢ X=-iσ
3
→                                                                            is invariant → V

III
 invariant if m

H
=m

H±
 

                                                         while V
IV
 must vanish → imposes either m

H
2=m

12
2/(s

β
c

β
)=M2 or t

β
=1  

➢ E.g. at 1L, explicitly 
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Results in the (M
H
-M

H±
, M

A
-M

H±
) plane II

[Bahl, JB, Weiglein 2204.05269]

Reproducing the world average value for M
W
 

(w/o CDF)
Reproducing the CDF result for M

W

Figure from [Bahl, JB, Weiglein 
2202.03453]
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Correlation between M
W
 and κ

λ

[Bahl, JB, Weiglein 2202.03453]
➢ No apparent correlation between M

W
 and κ

λ

➢ Only few points excluded by -1.0 <  κ
λ 
< 6.6 [ATLAS-CONF-2021-052]
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Impact of two-loop corrections to M
W 

II
[Bahl, JB, Weiglein 2204.05269]

Plot from [Lu, Wu, Wu, Zhu 2204.03796] using 1L S, T, U
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Parameter scan results [Bahl, JB, Weiglein 2202.03453]

Mean value for κλ
(2) =(λhhh

(2))2HDM/(λhhh
(0))SM [left] and κλ

(2)/κλ
(1)=(λhhh

(2))2HDM/(λhhh
(1))2HDM [right] in {mH-mH±, mA-mH±} plane

➢ 2L corrections can become significant (up to ~70% of 1L)
➢ Huge enhancements (by a factor ~10) of λhhh possible for mA~mH± and mH~M

Huge deviations,
up to ~ x10 wrt SM,

possible !

Huge deviations,
up to ~ x10 wrt SM,

possible !

2L corrections
can reach

70% of 1L ones!

2L corrections
can reach

70% of 1L ones!

Upper limit
from ATLAS

Upper limit
from ATLAS



Page 34/16| SUSY 2022 | Johannes Braathen (DESY) | July 1st, 2022

A benchmark plane in the aligned 2HDM

➢ Grey area: area excluded by other constraints, 
in particular Higgs physics, boundedness-from-
below (BFB), perturbative unitarity

➢ Light red area: area excluded both by other 
constraints (BFB, perturbative unitarity) and by 
κλ

(2) > 6.6 [in region where κλ
(2) < -1.0 the 

calculation isn’t reliable]

➢ Dark red area: new area that is excluded 
ONLY by κλ

(2) > 6.6. Would otherwise not be 
excluded!

➢ Blue hatches: area excluded by κλ
(1) > 6.6 → 

impact of including 2L corrections is significant!

[Bahl, JB, Weiglein 2202.03453]
Results shown for aligned 2HDM of type-I, similar for other types (available in backup)
We take m

A
=m

H±
, M=m

H
, tanβ=2

Higgs physicsHiggs physics BFBBFB

NLO pert. unit.NLO pert. unit.
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