Measurements of the mass, width and coupling CP structure of the Higgs-boson with the ATLAS detector

01 July 2022, SUSY 2022 Shigeki Hirose (U. Tsukuba)

On behalf of the ATLAS Collaboration

ATLAS experiment at Run 2

- ATLAS detector: complex of inner tracker, calorimeter and muon spectrometer
- 139 fb⁻¹ data were collected during Run 2 (2015-18) at 13 TeV
 - Equivalent to 8M Higgs bosons

Higgs boson properties

- Higgs boson couplings to other elementary particles are being established (particularly in the vector bosons & the 3rd-gen.)
- Other fundamental properties are also important

CP property

- In the SM, Higgs boson is CP-even
- Can be an admixture of CP-even and CP-odd

<u>Mass</u>

• In the SM: $m_H = \sqrt{2\lambda}v$ \rightarrow Connected to fundamental constants of the SM

Total decay width

- ~4.1 MeV in the SM
- Can be different if there is an unknown decay mode (such as $H \to \chi^0 \chi^0$ etc.)
- Any deviations from the SM expectations are the evidence of BSM

Higgs boson CP measurement

- Pure CP-odd is disfavoured by various experimental results
- However, a possibility of CP-even/odd admixture state is not completely excluded
- Should test the CP properties of all vertices because the CP-odd contribution could appear only on one / some of them

CP on HVV vertex with VBF topology Phys. Lett. B 805 (2020) 135426345

Assume the CP-odd terms have a common coupling

$$\tilde{g}_{HAA} = \tilde{g}_{HZZ} = \tilde{g}_{HWW} = \frac{g}{2m_W} \tilde{d} \rightarrow \text{Parameter of interest}$$

CP-odd contribution can be detected in O_{opt}

$$O_{\mathrm{opt}} = \frac{2\mathrm{Re}(\mathcal{M}_{\mathrm{SM}}^{*}\mathcal{M}_{\mathrm{CPodd}})}{|\mathcal{M}_{\mathrm{SM}}|^{2}} \xrightarrow{\longrightarrow} \mathcal{M}$$
 are determined using jet kinematics

- A measurement with 36.1 fb⁻¹ uses the $H \rightarrow \tau \tau$ decay
 - BDT trained using jet and τ kinematics

■ CP on HVV vertex with VBF topology

Phys. Lett. B 805 (2020) 135426345

Result

$$-0.090 < \tilde{d} < 0.035$$
 at 68% CL

- Sensitivity is statistically limited
 - Important to perform the measurement using full Run-2 dataset
- $H \to ZZ^*$ and $H \to \gamma\gamma$ can be also used to probe the CP-odd interaction in the VBF production

\blacksquare CP on $H\tau\tau$ vertex with ggF/VBF

ATLAS-CONF-2022-032

Combination of two τ decays

	$h^+ ar{ u}_{ au}$	$h^+\pi^0ar{ u}_{ au}$	$\ell^+ \nu_\ell \bar{\nu}_{\tau}$
$h^+ar{ u}_{ au}$	1.3%	6.0% Same comb. 6.7%	8.1%
$h^+\pi^0ar{ u}_{ au}$	6.0%	6.7%	18.3%
$h^+(\leq 2\pi^0)\bar{\nu}_\tau$	2.5%	5.6%	7.6%
$3h^+\bar{\nu}_{\tau}$	Not used	5.1%	6.9%

(Charge-conjugate is implied)

- Angle between the two τ decay planes in the H-rest frame is **CP-sensitive**
 - However, we cannot take this frame due to multiple neutrinos
 - → Take the rest frame using only the visible decay products
- 10 decay combinations are used ($\Sigma BR = 68.1\%$)
 - Each decay combination has different sensitivity

01-Jul-2022

\blacksquare CP on $H\tau\tau$ vertex with ggF/VBF

ATLAS-CONF-2022-032

- Very complex categorisation with 24 SRs and 10 CRs
 - A few decay mode combinations are merged into High / Middle / Low depending on sensitivities to gain statistics
- Energy and direction uncertainties on π^0 are important to define the angle ϕ_{CP}^*
 - They are controlled using fits on $m(\pi\pi^0)$

\blacksquare CP on $H\tau\tau$ vertex with ggF/VBF

ATLAS-CONF-2022-032

Result:

$$\alpha$$
 = 9 \pm 16°, pure CP-odd excluded at 3.4 σ

- Observed exclusion level of the pure CP-odd hypothesis is by 1.30 higher than expectation due to statistical fluctuation
- Uncertainties are completely dominated by statistics, while the leading systematics originates from jet calibrations

CP on Htt vertex with $t(\bar{t})H$ production Phys. Rev. Lett. 125 (2020) 061802

- $t(\bar{t})H(\to \gamma\gamma)$ allows to extract clean signal events
 - Signal significance is $>5\sigma \rightarrow$ Good statistics to measure CP!
- **Obtained result:**

 $|\alpha| > 43^{\circ}$ excluded at 95% CL, pure CP-odd excluded at 3.9 σ

Interesting to perform the CP measurement in the H-t interaction using other channels

\blacksquare CP on Htt vertex with $t(\bar{t})H$ production

ATLAS-CONF-2022-016

• $t \rightarrow bW(\rightarrow \ell\nu\nu)$ • $t \rightarrow bW(\rightarrow \ell\nu\nu)$ • $H \rightarrow bb$	
• $t \rightarrow bW(\rightarrow \ell\nu\nu)$ • $t \rightarrow bW(\rightarrow qq)$ • $H \rightarrow bb$	
Single large jet for the boosted category	

Channel	Jet selection	Fit variable
Dilepton	≥4 jets; at least 4 are b-tagged	b_4
ℓ+jets	≥6 jets; at least 4 are b-tagged	b_2
ℓ +jets (boosted)	At least one boosted Higgs cand. ≥4 jets; at least 2 are b -tagged	BDT

CP-sensitive observables

$$\begin{split} b_4 &= \frac{p_1^z p_2^z}{|\vec{p}_1| |\vec{p}_2|} \\ b_2 &= \frac{(\vec{p}_1 \times \hat{n}) \cdot (\vec{p}_2 \times \hat{n})}{|\vec{p}_1| |\vec{p}_2|} \\ \vec{p}_{1(2)} \text{: momentum of} \end{split}$$

leading (subleading) top \hat{n} : unit vector to the beamline

- Analysis designed based on the $t(\bar{t})H(\to bb)$ cross-section measurement arXiv:2111.06712 (accepted by JHEP)
 - Large statistics thanks to BR($H \rightarrow bb$) = 58%, but controlling backgrounds from $t\bar{t}$ + heavy-flavour jets is important
- Sensitivity of the variables to CP is different depending on the SRs
 - Different variables are chosen for different channels

\blacksquare CP on Htt vertex with t(t)H production

ATLAS-CONF-2022-016

Result

$$\alpha$$
 = 11⁺⁵⁵₋₇₇°, pure CP-odd excluded at 1.2 σ

The error dominated by systematics arising from the $t\bar{t}$ + HF modelling, while the statistics is also important to reduce the uncertainties

$t\bar{t}$ + \geq 1 b modelling	+40 o -55
$t\bar{t}$ + \geq 1 c modelling	+7 ° -12
Signal normalisation (through correlation to α)	+18 ° -35
Statistical error	+34 ° -51

Higgs boson mass

- Mass measurement using $H \to ZZ^*(\to 4\ell)$, where $\ell = e, \mu$)
 - Good mass resolution and low background
 - \otimes Small branching fraction: BF($H \rightarrow ZZ^* \rightarrow 4\ell$) = 0.011%
 - → 314 events observed in the SR
- Constraints of leading $m_{\ell\ell}$ to m_Z improves the resolution by 17%
- Signal shape modelled with double-sided Crystal Ball function

Higgs boson mass

Preliminary result:

124.92
$$\pm$$
 0.19 (stat) $^{+0.09}_{-0.06}$ (syst) GeV

- Precision of 0.16%!
- More data in Run 3 will allow us more precise measurement
- $H \rightarrow \gamma \gamma$ is another golden channel for mass measurement
 - The latest result with 36.1 fb⁻¹: Phys. Lett. B 784 (2018) 345

$$124.93 \pm 0.21 \text{ (stat)} \pm 0.34 \text{ (syst)}$$

- → Systematically limited
- Calo. calibration
- → Analysis with 139 fb⁻¹ is ongoing **Detector materials**

Higgs boson decay width

$$D_{\text{ME}} = \log_{10} \left(\frac{P_H}{P_{gg} + 0.1 P_{q\bar{q}}} \right)$$

P: matrix element squared for the process denoted by the subscripts

- $P_H: H^* \to ZZ$
- $P_{aa}: gg \rightarrow ZZ$
- $P_{q\bar{q}}: q\bar{q} \to ZZ$

arXiv:1610.07922

Indirect determination possible by the off-shell $H^* \to ZZ$

$$\mu_{\rm off-shell}/\mu_{\rm on-shell} = \Gamma_H/\Gamma_H^{\rm SM}$$
(With assumption that $\kappa_{\rm off-shell} = \kappa_{\rm on-shell}$)

About 4.1 MeV

Only the result with 36.1 fb⁻¹ published

 $-ZZ \rightarrow 4\ell$ and $ZZ \rightarrow 2\ell 2\nu$ are used

 Γ_H < 14.4 MeV (< 15.2 MeV expected) at 95% CL

 \rightarrow To be updated with full Run-2 dataset (139 fb⁻¹)

Summary

- In Run 2, dataset equivalent to 8M Higgs bosons has been collected with the ATLAS detector
 - Various properties such as mass, CP, width, etc. are being investigated;
 so far all consistent with the SM expectations
 - → Some more new results with 139 fb⁻¹ are foreseen
 - These complicated measurements became possible also thanks to excellent performance of the LHC accelerator and ATLAS detector!
- Many of the measurements are statistically limited = Run 3 is important!
 - Run 3 operation has begun in April 2022; physics data-taking will come in about a month
 - Aiming for taking \sim 300 fb⁻¹ by the end of 2025

Significant improvements on our understanding of the Higgs boson properties foreseen with fully exploiting the Run 2+3 data

Combined coupling measurement

- Various different measurements are statistically combined
 - So far only a part of results with full Run-2 dataset are included
 - → Will be updated soon

Per-event resolution

- Per-event mass resolution is estimated using a regression neural network
 - Inputs: lepton p_T , η , ϕ , constrained 4-momentum and uncertainties
 - Improved the total uncertainty by ~5%

BDT on mass measurement

Classification BDT is used to define SRs

01-Jul-2022

Comparison: mass resolution

Mass resolution is similar

Systematics on mass measurements

$H \rightarrow ZZ^*$ ATLAS-CONF-2020-005

Phys. Lett. B 784 (2018) 345

Systematic Uncertainty	Impact (GeV)
Muon momentum scale	+0.08,-0.06
Electron energy scale	±0.02
Muon momentum resolution	±0.01
Muon sagitta bias correction	±0.01

(Non-closure of PDF: 0.006 GeV)

Total syst: +0.09 -0.06

Statistical: \pm 0.19

Source	Systematic uncertainty in m_H [MeV]
EM calorimeter response linearity	60
Non-ID material	55
EM calorimeter layer intercalibration	55
$Z \to ee$ calibration	45
ID material	45
Lateral shower shape	40
Muon momentum scale	20
Conversion reconstruction	20
$H \to \gamma \gamma$ background modelling	20
$H \to \gamma \gamma$ vertex reconstruction	15
e/γ energy resolution	15
All other systematic uncertainties	10

Total syst: ± 0.34

Statistical: \pm 0.21

■ VBF CP measurement with $H \rightarrow \tau \tau$

Four signal categories depending on the tau decays

Decay CP $H \rightarrow \tau \tau$

- Decay planes are defined depending on decay combinations
 - For the case of 1-prong with no neutral pions ($\tau^- \to \pi^- \nu_\tau$ and $\tau^- \to \tau$ $\ell^- \overline{\nu_\ell} \nu_\tau$), IP vector is used to define the decay plane
- Sensitivity is slightly better in $\tau_{had}\tau_{had}$
 - $-\tau_{had}\tau_{had}$: 1.71 σ (expected)
 - $\tau_{lep}\tau_{had}$: 1.14 σ (expected)

■ CP measurement with $t(\bar{t})H(\rightarrow_{\underline{ATLAS-CONF-2022-016}}bb)$

4 SRs and 9 CRs in total

■ Off-shell H→ZZ

