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Machine Learning in HEP
A flourishing area of research

https://iml-wg.github.io/HEPML-LivingReview/

Impossible to cover everything here…
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Machine Learning in HEP
Shameless self-promotion
● Generic Searches for New Physics

○ Transferability of Deep Learning Models in Searches for New Physics at 
Colliders, Phys. Rev. D 101, 035042 (2020), 1912.04220

○ Finding New Physics without learning about it: Anomaly Detection as a tool 
for Searches at Colliders, Eur.Phys.J.C 81 (2021), 2006.05432

○ [WIP various still this year]
● Grouping Events Together

○ Use of a Generalized Energy Mover's Distance in the Search for Rare 
Phenomena at Colliders, Eur. Phys. J. C 81, 192 (2021), 2004.09360

● Jet Phenomenology for Quark-Gluon Plasma Studies
○ Deep Learning for the Classification of Quenched Jets, JHEP11 (2021) 219, 

2106.08869
○ [WIP, soon w/ G. Milhano, M. van Leewuven] Data driven exploration of jet 

observables and their sensitivity to jet quenching
● Quantum Machine Learning in HEP

○ Funded exploratory project with various WIP works (hopefully out this year)
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Machine Learning in HEP
Focus of applications

The main applications and interests of ML in HEP have been very focused on the 
experimental needs
● Tagging

○ Current analyses already use Neural Net taggers
○ Possibility of using very low-level information (4-momenta, jet 

images)
● Better Analysis Sensitivity

○ Including efforts for generic New Physics discriminants
● Monitoring, Pileup Mitigation, Control, Design, Jet Phenomenology, etc
● What about Model Building and Phenomenology?
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Machine Learning in HEP
Applications to model building and pheno
● Parameter space scanning is usually computationally and time consuming
● Difficulty increases for highly constrained cases: low parameter sampling 

efficiency

For more difficult scans one usually adapts for simplicity (e.g. known alignment 
limits, a priori choice of parameter space corners, less constraints, etc)

Computational 
Routine
(SPheno, SoftSUSY, 
MicrOMEGAS, 
Calchep, etc)

O(θ)θ Valid?
Yes 
or No

Sample a 
point θ

Constraints 
(experimental 
measures, 
limits, 
theoretical, etc)
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Machine Learning in HEP
Applications to model building and pheno
● Considering that the observable computation is the heavy step, try to replace it, 

either by predicting the observables (regression) or predicting if a point is valid 
(classification)

Computational 
Routine
(SPheno, SoftSUSY, 
MicrOMEGAS, 
Calchep, etc)

O(θ)θ Valid?
Yes 
or No

Sample a 
point θ

Constraints 
(experimental 
measures, 
limits, 
theoretical, etc)

Caron, et al [1605.02797]; Ren, et al 
[1708.06615]; Staub [1906.03277]

Kronheim, et al 
[2007.04506] 9



Machine Learning in HEP
Applications to model building and pheno
● Another approach is to use generative Machine Learning to generate new 

points from a collection of valid points
○ Hollingsworth, et al [2103.06957] using Normalizing Flow Networks 

and compared to a DNN Regressor+Monte Carlo sampler

https://lilianweng.github.io/posts/2018-10-13-flow-models/ 10



Machine Learning in HEP
Applications to model building and pheno
● However, these methodologies require large amounts of training data which 

cover the whole parameter space
● Predicting the observables from a parameter point using a regressor:

○ If training data do not cover the whole parameter space... might map the 
parameter to observables incorrectly

● Predicting if a point is valid or invalid using a classifier:
○ If training data do not cover the whole parameter space… wrong guess

● Resampling from valid points using generative methods:
○ If training data do not cover the whole parameter space… we might end up 

resampling from a subset of the parameter space
● For highly constrained and realistic scans, it is computationally prohibitive to 

get enough valid points to use some of these methods
11
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Exploring Parameter Spaces with Artificial Intelligence and Machine Learning Black-Box 
Optimisation Algorithms
Fernando Abreu de Souza, MCR, Nuno Filipe Castro, Mehraveh Nikjoo, Werner Porod
https://arxiv.org/abs/2206.09223
code: https://gitlab.com/lip_ml/blackboxbsm 12

https://arxiv.org/abs/2206.09223
https://gitlab.com/lip_ml/blackboxbsm


Exploring Parameter Spaces with AI/ML
Problem (re)framing: face the sampling
● The “ah-ah” moment of this work was to consider: what if we change the 

sampling itself

2206.09223

Computational 
Routine
(SPheno, SoftSUSY, 
MicrOMEGAS, 
Calchep, etc)

O(θ)θ Valid?
Yes 
or No

Sample a 
point θ

Constraints 
(experimental 
measures, 
limits, 
theoretical, etc)
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Exploring Parameter Spaces with AI/ML
Problem (re)framing: BSM as a black-box
● We do not look at if a point is valid or try to predict observables
● Instead, we look at how far a point is from being valid
● Let C(O) be a function of a observable O

● The set of valid points

● Equivalently

● => Finding the valid points is the same as minimising C(O)

2206.09223
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Exploring Parameter Spaces with AI/ML
Problem (re)framing: BSM as a black-box
● Since O=O(θ) we can close the loop and optimise in order to the 

parameters C(O)=C(O(θ)). From the outside, C(O(θ)) is a Black-Box => 
Black-Box Optimisation Problem

2206.09223

Computational 
Routine
(SPheno, SoftSUSY, 
MicrOMEGAS, 
Calchep, etc)

O(θ)θ C(O(θ))

Optimisation 
Algorithm

Constraints 
(experimental 
measures, 
limits, 
theoretical, etc)

Black Box
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Exploring Parameter Spaces with AI/ML
The physics models and computational routine
● We used the same physics cases as Hollingsworth, et al [2103.06957] 

○ cMSSM: 4 parameters
○ pMSSM: 19 parametrs

● We performed two studies:
○ Higgs mass constraint

○ Higgs mass and Dark Matter Relic Density constraints by adding them 
up

2206.09223

Ask for backup slides 
for free bonus material 16



Exploring Parameter Spaces with AI/ML
Meet the algorithms
● The fields of Artificial Intelligence and Machine Learning have a multitude 

of search algorithms for black-box optimisation
● We explore three different classes of algorithms to see their differences

○ A Bayesian Optimisation Algorithm: Tree-Parzen Estimator (TPE)
○ A Genetic Algorithm: Nondominated Sorting Genetic Algorithm II 

(NSGA-II)
○ An (non-genetic) Evolutionary Algorithm: Covariant Matrix 

Approximation  Evolution Strategy (CMA-ES)

2206.09223
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Exploring Parameter Spaces with AI/ML
Meet the algorithms: Take home aspects
● The algorithms are sequential, i.e. a new suggested point depends on the 

points seen so far
● Two (Bayesian and Evolutionary) have a learning component, the other 

(Genetic) does not
● Different algorithms realise different balances of the 

exploration-exploitation trade-off
● The algorithms only sort the points by their loss, i.e. they do not care about 

the actual values of observables, etc
○ => The only important aspect of C(θ) is to be monotonic with the 

distance to boundaries
● All algorithms do not require data prior to the run

○ => They adapt the search dynamically

2206.09223

Ask for backup slides 
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Exploring Parameter Spaces with AI/ML
Methodology
● We used optuna python package and its implementations of the algorithms
● Each scan was broken down into 500 episodes of 2000 sequential 

trials/points each (i.e. 1M trials/points per sampler per scan)
● Samplers were compared using the metrics

○ Efficiency (bigger is better)

○ Wasserstein Distance vs the Uniform distribution (smaller is better)

2206.09223
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Exploring Parameter Spaces with AI/ML
Results: pMSSM observables

2206.09223
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Exploring Parameter Spaces with AI/ML
Results: pMSSM parameter distributions

2206.09223
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Exploring Parameter Spaces with AI/ML
Results: pMSSM parameter scatters

2206.09223
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Exploring Parameter Spaces with AI/ML
Results: Performance metrics
● Efficiency (bigger is better)

2206.09223
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Exploring Parameter Spaces with AI/ML
Results: Performance metrics
● Wasserstein Distance (smaller is better)

2206.09223
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Exploring Parameter Spaces with AI/ML
Results: Performance metrics

2206.09223
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Conclusions
And future work
● We presented a new approach to parameter space scanning: black-box 

optimisation
● The dynamic samplers introduced produced up to 2 orders of magnitude 

increased sampling efficiency without the need of a prior training 
dataset

● Different samplers have different exploration-exploitation trade-off
○ Bayesian (TPE) closer to the random sampler coverage
○ Evolutionary (CMA-ES) achieves almost optimal efficiency
○ Genetic (NSGA-II) somewhere in between

● Samplers with learning components suffer from the curse of 
dimensionality
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Conclusions
And future work
● The samplers used were not tailor-made for this task

○ => Develop custom samplers that can maximise coverage and 
efficiency

● Samplers with classical/shallow learning components suffer from curse of 
dimensionality
○ => Develop samplers with Kernel or Neural Net components

● We summed two constraints into a single one
○ => Explore multi-objective optimisation algorithms

● The physics cases at hand were not particularly difficult and sampling 
efficiency saturated quickly
○ => Go beyond proof-of-concept and apply methodology to more 

difficult and realistic scans 28



Thank you! mcromao@lip.pt
BONUS: A conversation with Prof. Aisusy (gpt-3)

Human: Tell me Prof., do you still believe in the realisation of supersymmetry given 
the lack of experimental evidence?
Prof. Aisusy: There is still a great deal of theoretical evidence supporting the 
existence of supersymmetry, and I remain optimistic that we will eventually find 
experimental evidence for it. The implications of supersymmetry are very significant, 
and finding it would be a major breakthrough in our understanding of the universe.
Human: What if we can't find supersymmetry at the Large Hadron Collider?
Prof. Aisusy: The Large Hadron Collider is the most powerful machine we have for 
finding supersymmetry, but it is not the only possible tool. If supersymmetry exists, 
we will eventually find it through one method or another. There are also many other 
mysteries of our universe that we may be able to solve without supersymmetry, so 
even if we don't find it, we can still make significant progress in our understanding of 
the cosmos. 29
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Exploring Parameter Spaces with AI/ML
The physics models and computational routine

2206.09223
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Exploring Parameter Spaces with AI/ML
The physics models and computational routine

2206.09223
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Exploring Parameter Spaces with AI/ML
The physics models and computational routine
● The physical spectrum, i.e. the Higgs mass, was computed using Spheno

○ Points with invalid physical spectrum (e.g. charged tachyons) were 
given the value C=+∞ (“unphysical”)

● The dark matter relic density was computed using MicrOMEGAS
○ Points for which MicrOMEGAS did not produce a relic density (e.g. 

charged LSP) were given the value C=+∞  (“unphysical”)

2206.09223
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Exploring Parameter Spaces with AI/ML
Meet the algorithms: TPE, the Bayesian
● TPE sorts the parameter points by their loss value (i.e. C)
● It splits points between good and bad through a moving quantile heuristic
● Fits a Gaussian Mixture Model (learnable component of the algorithm) on 

each good and bad set
● Samples a point from the good, and keeps it if its likelihood is greater 

than being bad

2206.09223
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θ 34



Exploring Parameter Spaces with AI/ML
Meet the algorithms: NSGAI-II, the Genetic
● Encode parameter space point (a vector) as genes

● Prepare a population (say 50)
● Evaluate their fitness (i.e. the loss)
● Sort them by their fitness
● Keep the best (elitism) discard the rest
● Create offspring from the elite (cross-over)
● Apply random mutations
● Repeat

2206.09223
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Exploring Parameter Spaces with AI/ML
Meet the algorithms: CMA-ES, the Evolutionary
● Initialise a multivariate normal with random mean and identity covariance 

matrix
● Sample a population
● Evaluate them and sort by loss
● Use the best and compute their statistics

○ Mean
○ Covariance

● Update mean and covariance matrix with weighted rolling updates
● Repeat

2206.09223

36



Exploring Parameter Spaces with AI/ML
Methodology
● Mean euclidean pairwise distance between valid points (bigger is better)
● Intuitive, but produces counter intuitive values for some cases

2206.09223
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Exploring Parameter Spaces with AI/ML
Results: cMSSM parameter distributions

2206.09223

38



Exploring Parameter Spaces with AI/ML
Results: cMSSM observables

2206.09223

39



Exploring Parameter Spaces with AI/ML
Results: cMSSM parameter scatters

2206.09223
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Exploring Parameter Spaces with AI/ML
Results: Performance metrics
● Mean Euclidean Distance (Bigger is better)

2206.09223
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Exploring Parameter Spaces with AI/ML
Results: Performance metrics

2206.09223
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Exploring Parameter Spaces with AI/ML
Results: Performance metrics

2206.09223
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Exploring Parameter Spaces with AI/ML
Results: Performance metrics

2206.09223
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