# ATLAS measurements of CP violation and rare decay processes with beauty mesons

#### Lukas Novotny, on behalf of the ATLAS collaboration

29th International Conference on Supersymmetry and Unification of Fundamental Interactions

 $27^{\rm th}$  June -  $2^{\rm nd}$  July 2022



### B Physics in ATLAS

- $\blacksquare$  ATLAS has collected 25  ${
  m fb^{-1}}$  of data in Run 1, and 139  ${
  m fb^{-1}}$  in Run 2
- B physics in ATLAS mostly focus on final states with muons
- CP violation in  $B_s^0 \to J/\psi \phi$  analysis (Run2, 2015-2017) and  $B_{(s)} \to \mu \mu$  analysis (Run2, 2015-2016)
  - Events collected with a mixture of triggers based on  $J/\psi \to \mu^+\mu^-$  identification, with muon  $p_{\rm T}$  thresholds of either 4 GeV or 6 GeV (vary over run periods)



# Measurement of the CP-violating phase $\phi_s$ in $B_s^0 \to J/\psi \phi$ decays in ATLAS at 13 TeV

Eur. Phys. J. C 81 (2021) 342

#### Motivation

#### **CP** violation measurement in $B_s^0 \to J/\psi \phi$

- $lacksquare{B}^0_s
  ightarrow {
  m J}/\psi\phi$  used to measure the *CP*-violating phase  $\phi_s$ 
  - Potentially sensitive to New Physics (NP)
- The *CP* violation due to interference between a direct decay and a decay with  $B_s^0 \overline{B}_s^0$  mixing
- In the Standard Model (SM),  $\phi_s$  is related to the CKM elements and predicted with high precision:  $\phi_s \simeq 2 \text{arg}[-(V_{ts}V_{tb}^*)/(V_{cs}V_{cb}^*)] = -0.03696_{-0.00082}^{+0.00072} \text{ rad}$

Phys. Rev. D 91 (2015), 073007



■ Any deviations from SM: SUSY particles, Dark Matter, ... in the box diagram?

 $27^{
m th}$  June -  $2^{
m nd}$  July 2022

#### Motivation

### *CP* violation measurement in $B_s^0 \to J/\psi \phi$

Eur. Phys. J. C 81 (2021) 342

- The other quantities in  $B_s^0$  mixing are  $\Delta m_s = |m_L m_H|$ ,  $\Delta \Gamma_s = \Gamma_s^L \Gamma_s^H$  and  $\Gamma_s = (\Gamma_s^L + \Gamma_s^H)/2$
- $\Delta \Gamma_s$ ,  $\Gamma_s$  not as sensitive to New Physics, however the measurement is interesting to test the theory  $(\Delta \Gamma_s = (0.091 \pm 0.013) \ \mathrm{ps}^{-1})$
- Similar measurements were previously performed at the LHC in Run1 and at the Tevatron by the CDF and D0 experiments

■ Situation before LHC Run2:



Eur. Phys. J. C 81 (2021) 226

 $27^{
m th}$  June -  $2^{
m nd}$  July 2022

#### CP Violation and Lifetime Measurement: Data Selection

#### Data:

- pp collisions at  $\sqrt{s}=13$  TeV collected between years 2015 and 2017 corresponding to a total luminosity of 80.5 fb<sup>-1</sup>
- Statistically combined with Run1 ATLAS results
  - 4.9 fb<sup>-1</sup> (7 TeV, pp 2011)
  - 14.3 fb<sup>-1</sup> (8 TeV, pp 2012)

#### Selection:

- Events collected with a mixture of triggers based on  $J/\psi \to \mu^+\mu^-$  identification, with muon  $p_{\rm T}$  thresholds of either 4 GeV or 6 GeV (vary over run periods)
- Four-track vertex fit  $\chi^2/d.o.f. < 3$
- Keep only the candidate with best vertex fit  $\chi^2/\text{d.o.f.}$  in event
- lacksquare 5150  ${
  m MeV} < m(B_{
  m s}^0) < 5650 {
  m MeV}$  Toroid Magnets SemiConductor Tracker

### CP Violation and Lifetime Measurement: Angular Analysis

- $lacksquare B^0_s 
  ightarrow {
  m J}/\psi \phi$  is a decay of pseudoscalar into a pair of vectors
- Final state: admixture of *CP*-odd (L = 1) and *CP*-even (L = 0, 2) states
- Contribution from non-resonant S-wave  $B^0_s o {\mathrm J}/\psi {\mathsf K}^+ {\mathsf K}^ {\mathit CP}$ -odd
- Distinguishable through time-dependent angular analysis

differential decay rate depends on amplitudes  $A_0$ ,  $A_{\perp}$ ,  $A_{\parallel}$ ,  $A_S$  (and interferences) and angles  $\theta_{\tau}$ ,  $\psi_{\tau}$ ,  $\phi_{\tau}$ 



### CP Violation and Lifetime Measurement: Opposite Side Tagging

- Opposite side tagging (Tight muons, Electrons, Low- $p_T$  muons and Jets),
  - Events tagged by the method with the highest statistical power



- Muon and Electron Tagging
  - $b \rightarrow I$  transitions are clean tagging method
  - ullet b o c o I and neutral B-meson oscillations dilute the tagging
  - Tracks in cone around lepton also included ⇒ weighted sum of charges used
- Jet-Charge
  - information from tracks in b-tagged Jet, when no lepton is found
- Calibration using  $B^{\pm} o J \psi K^{\pm}$



### CP Violation and Lifetime Measurement: Opposite Side Tagging

Cone around OST lepton:

$$Q = rac{\sum_{i}^{Ntracks} q^{i}(p_{ ext{T}}^{i})^{\kappa}}{\sum_{i}^{Ntracks} (p_{ ext{T}}^{i})^{\kappa}} \; 
ightarrow \; P(Q|B^{\pm})$$

The probability to tag a  $B_s^0$  meson as containing a  $\bar{b}$ -quark:

$$P(B|Q) = \frac{P(Q|B^+)}{P(Q|B^+) + P(Q|B^-)}$$

- Tagging performance quality described by:
  - **Efficiency**  $\varepsilon$ : Fraction of tagged events
  - **Dilution:**  $D = (1 2\omega)$ , where  $\omega$  is the mistag probability
  - Tagging Power:  $T = \varepsilon D^2$  figure of merit of tagger performance



| Tag method      | $\epsilon_{\scriptscriptstyle X}$ [%] | $D_x$ [%]      | $T_x$ [%]         |
|-----------------|---------------------------------------|----------------|-------------------|
| Tight muon      | $4.50 \pm 0.01$                       | $43.8 \pm 0.2$ | $0.862 \pm 0.009$ |
| Electron        | $1.57 \pm 0.01$                       | $41.8 \pm 0.2$ | $0.274 \pm 0.004$ |
| Low- $p_T$ muon | $3.12 \pm 0.01$                       | $29.9 \pm 0.2$ | $0.278 \pm 0.006$ |
| Jet             | $12.04 \pm 0.02$                      | $16.6 \pm 0.1$ | $0.334 \pm 0.006$ |
| Total           | $21.23 \pm 0.03$                      | $28.7 \pm 0.1$ | $1.75 \pm 0.01$   |

#### CP Violation and Lifetime Measurement: Fit Model

Unbinned maximum likelihood (ML) fit:

$$\mathcal{L} = \sum_{i=1}^{N} \{ \begin{array}{c|c} \text{trigger} \\ \text{weight} \\ \text{|} \\ \text{|$$

- Base observables: mass m, lifetime t, angles  $\Omega(\psi_T, \phi_T, \theta_T)$
- Conditional observables per-candidate: mass and lifetime resolution  $(\sigma_m, \sigma_t)$ , candidate  $p_T$ , tagging probability and method
- Likelihood corrected to lifetime weight trigger efficiencies
- Contributions from  $B_d \to J/\psi K^{*0}$ ,  $B_d \to J/\psi K\pi$  and  $\Lambda_b \to J/\psi Kp$  misidentified as  $B_s^0$  candidates
  - Efficiencies and acceptance from MC
  - BR from PDG
  - Fragmentation fractions from other measurements

 $27^{
m th}$  June -  $2^{
m nd}$  July 2022

#### CP Violation and Lifetime Measurement: Results

- Results two solutions observed for strong phases
  - Well separated local maxima in the likelihood
    - Interesting parameters are almost insensitive to strong phase ambiguity



| Parameter                           | Value        | Statistical | Systematic  |  |  |
|-------------------------------------|--------------|-------------|-------------|--|--|
|                                     |              | uncertainty | uncertainty |  |  |
| $\phi_s$ [rad]                      | -0.081       | 0.041       | 0.022       |  |  |
| $\Delta\Gamma_s~[ m ps^{-1}]$       | 0.0607       | 0.0047      | 0.0043      |  |  |
| $\Gamma_s~[ m ps^{-1}]$             | 0.6687       | 0.0015      | 0.0022      |  |  |
| $ A_{\parallel}(0) ^2$              | 0.2213       | 0.0019      | 0.0023      |  |  |
| $ A_0(0) ^2$                        | 0.5131       | 0.0013      | 0.0038      |  |  |
| $ A_S(0) ^2$                        | 0.0321       | 0.0033      | 0.0046      |  |  |
| $\delta_{\perp} - \delta_{S}$ [rad] | -0.25        | 0.05        | 0.04        |  |  |
|                                     | Solution (a) |             |             |  |  |
| $\delta_{\perp}$ [rad]              | 3.12         | 0.11        | 0.06        |  |  |
| $\delta_\parallel$ [rad]            | 3.35         | 0.05        | 0.09        |  |  |
| Solution (b)                        |              |             |             |  |  |
| $\delta_{\perp}$ [rad]              | 2.91         | 0.11        | 0.06        |  |  |
| $\delta_{\parallel}$ [rad]          | 2.94         | 0.05        | 0.09        |  |  |

#### CP Violation Measurement: Results

- Used 80.5 fb<sup>-1</sup> of 2015-17 data from *pp* collisions collected by the ATLAS detector
- Combined with Run 1 results: 4.9 fb<sup>-1</sup> (7 TeV, pp 2011) and 14.3 fb<sup>-1</sup> (8 TeV, pp 2012)

$$\phi_s = -87 \pm 36 (\mathrm{stat.}) \pm 21 (\mathrm{syst.}) \,\mathrm{mrad}$$

$$\Delta \Gamma_s = 65.7 \pm 4.3 (\mathrm{stat.}) \pm 3.7 (\mathrm{syst.}) \,\mathrm{ns}^{-1}$$

$$\Gamma_s = 670.3 \pm 1.4 (\mathrm{stat.}) \pm 1.8 (\mathrm{syst.}) \,\mathrm{ns}^{-1}$$



 $27^{
m th}$  June -  $2^{
m nd}$  July 2022

### CP Violation Measurement: HL-LHC Prospects

#### ATL-PHYS-PUB-2018-041

- Updated tracking (ITk): proper decay time resolution improved by 21% w.r.t. Run 2
- Three trigger scenarios:
  - 2MU10:  $18 \times N_{\text{Run}1}$
  - MU6\_MU10:  $60 \times N_{\mathrm{Run}1}$
  - 2MU6:  $100 \times N_{\text{Run}1}$
- **N**<sub>sig</sub> and  $\sigma_t$  scale with statistics, tag power not scaled
- Expected improvements w.r.t. Run 1:
  - $\phi_s$  stat. uncertainty: better by  $\sim 9 \times$  to  $20 \times$
  - $\Delta\Gamma$  stat. uncertainty: better by  $\sim 4\times$  to  $10\times$
- LHC Run2 results not included in this study





# Search for $B^0_{(s)} \to \mu\mu$

JHEP 04 (2019) 098

# $B^0_{(s)} \to \mu\mu$ : Motivation

- Flavour-changing-neutral-current (FCNC) processes **highly supressed in SM**, significant deviations predicted by theories beyond SM
- $lacksquare{B} B^0_s 
  ightarrow \mu \mu$  and  $B^0 
  ightarrow \mu \mu$  highly sensitive to New Physics
- SM predictions:  $\mathcal{B}(B_s^0 \to \mu\mu) = (3.66 \pm 0.14) \cdot 10^{-9}$  and  $\mathcal{B}(B^0 \to \mu\mu) = (1.03 \pm 0.05) \cdot 10^{-10}$



Any deviation of results from SM: hint for SUSY, dark matter,...?

# $B^0_{(s)} o \mu \mu$ : Motivation

■ Branching fractions are measured relative to the reference decay mode  $B^{\pm} \to {\rm J}/\psi K^{\pm}$ :

$$\mathcal{B}\left(B_{(s)}^{0} \to \mu\mu\right) = N_{d(s)} \frac{\mathcal{B}\left(B^{\pm} \to J/\psi K^{\pm}\right) \times \mathcal{B}\left(J/\psi \to \mu\mu\right)}{N_{J/\psi K^{\pm}} \frac{\varepsilon_{\mu\mu}}{\varepsilon_{J/\psi K^{\pm}}}} \frac{f_{u}}{f_{d(s)}}$$

- Branching ratios known from PDG,  $f_u/f_{d(s)}$  from HFLAV
- Relative reconstruction efficiencies estimated from MC (corrected for data-MC differences):  $\varepsilon_{\mu\mu}/\varepsilon_{{\rm J/\psi}K^\pm}=0.1176\pm0.0009({\rm stat.})\pm0.0047({\rm syst.})$
- ullet Yields  $N_{d(s)}$  and  $N_{\mathrm{J}/\psi K^{\pm}}$  exctracted from unbinned ML fit
- lacksquare  $B_s^0 o {\mathrm J}/\psi \phi$  used as control channel

# $B^0_{(s)} \to \mu \mu$ : Data and Selection

- pp collisions at  $\sqrt{s}=13~{\rm TeV}$  collected between years 2015 and 2016 corresponding to  $36.2~{\rm fb^{-1}}$ 
  - Due to the trigger prescales, 26.3  ${\rm fb^{-1}}$
- Data were collected with triggers based on the identification of a  $J/\psi \to \mu^+\mu^-$  ( $p_T > 4$  or 6 GeV)
- Signal sample :
  - ullet Distance between primary vertex and the dimuon vertex in the transverse plane:  $L_{xy}>0$
  - Di-muon candidate in 4.0-8.5 GeV
- Reference and control channel
  - two, three or four track vertex fit:  $\chi/\mathrm{n.d.f.} < 6$
  - $J/\psi$  vertex:  $\chi^2/n.d.f. < 10$
  - Mass ranges: 5050–5650 MeV  $(B_s^0)$  and 4930–5630  $B^{\pm}$
- $\blacksquare$   $B_{(s)}^0 \to \mu\mu$  mass range: 4766–5966 MeV

# $B^0_{(s)} \to \mu\mu$ : Background description

#### ■ Partially reconstructed *b*-hadrons

- one or more of the final-state particles (X) in a b-hadron decay is not reconstructed
- Mostly in the low di-muon mass region

#### ■ Peaking backgrounds

- $B^0_{(s)} \to hh'$  decays, both hadrons misreconstructed as muons
- Simulated and fixed in the mass fit
- Very small contribution by comparison to signal yield

#### Continuum background

- Muons originating from uncorrelated hadron decays
- Reduced by BDT (15 variables)



# $B^0_{(s)} o \mu \mu$ : Signal extraction

- BDT with 15 variables used (kinematics, isolation)
- BDT output validated on reference and control channels
- Signal region divided into four BDT bins
- $B_s^0$  and  $B^0$  yields extracted from simultaneous unbinned ML fit



# $B^0_{(s)} \to \mu \mu$ : Results

#### JHEP 04 (2019) 098

■ Results combined with ATLAS Run1:

$$\mathcal{B}\left(B_s^0 
ightarrow \mu \mu 
ight) = \left(2.8^{+0.8}_{-0.7}
ight) \cdot 10^{-9}$$

$$\mathcal{B}\left(B^{0} \to \mu\mu\right) < 2.1 \cdot 10^{-10} \text{at } 95\% \text{ CL}$$

- Combined measurement compatible with SM at  $2.4\sigma$
- Statistic uncertainties dominate



27<sup>th</sup> June - 2<sup>nd</sup> July 2022

# $B_{(s)}^0 \to \mu\mu$ : LHC Combination



- Combination from LHC experiments results calculated
- $ightharpoonup 2.1\sigma$  compatibility of LHC combination and SM

$$\mathcal{B}\left(B_s^0 \to \mu \mu\right) = \left(2.69^{+0.37}_{-0.35}\right) \cdot 10^{-9}$$

$$\mathcal{B}\left(B^{0} \to \mu\mu\right) < 1.9 \cdot 10^{-10} \text{at } 95\% \text{ CL}$$

ATLAS-CONF-2020-049

### Summary

CP violation in  $B_s^0 o J/\psi \phi$  and  $B_{(s)} o \mu \mu$  analysis on the latest LHC Run2 data performed

Eur. Phys. J. C 81 (2021) 342 JHEP 04 (2019) 098

The results are consistent with the Run1 results and with SM predictions





Eur. Phys. J. C 81 (2021) 226

# Back-up Slides

# $B^0_{(s)} \to \mu\mu$

 $\blacksquare$   $B^{\pm}$  mass distribution:



# $B^0_{(s)} \to \mu\mu$

#### Simultaneous ML binned fit in four BDT bins:









#### CP Violation and Lifetime Measurement: Parameters of Interest

- Unbinned maximum likelihood fit performed on the combined data samples extracting parameters of interest
  - textitCP-violating phase  $\phi_s$
  - ullet The average decay width  $\Gamma_s$  and the decay width difference  $\Delta\Gamma_s$
  - The *CP*-state amplitudes at t=0:  $|A_0(0)|^2$ ,  $|A_{\perp}(0)|^2$ ,  $|A_{\parallel}(0)|^2$ ,  $|A_S(0)|^2$

$$|A_0(0)|^2 + |A_\perp(0)|^2 + |A_\parallel(0)|^2 = 1$$

- The strong phases  $\delta_{\perp}$ ,  $\delta_{\parallel}$ ,  $\delta_{0}=$  0,  $\delta_{S}$
- ATLAS sensitive to  $\delta_{\perp}$ ,  $\delta_{\parallel}$  and  $\delta_{\mathcal{S}} \delta_{\perp}$
- No direct CP violation assumed
- $\Delta m_s = |m_L m_H|$  value fixed to PDG:  $\Delta m_s = 17.77 \; \mathrm{ps}^{-1}$
- Opposite side tagging (OST) used to identify initial flavour of  $B_s^0$

#### CP Violation and Lifetime Measurement: Results

- Projections of mass  $m(J/\psi\phi)$ , lifetime t and three transversity angles  $\Omega(\psi_T,\phi_T,\theta_T)$
- Combinatorial background for angular distribution use Legendre polynomials from sidebands





#### CP Violation and Lifetime Measurement: Results

- Projections of mass  $m(J/\psi\phi)$ , lifetime t and three transversity angles  $\Omega(\psi_T,\phi_T,\theta_T)$
- Combinatorial background for angular distribution use Legendre polynomials from sidebands







### CP Violation and Lifetime Measurement: Systematic uncertainties

- Extensive systematic study was performed
- Here is the list of the major contributions to the total systematics:
  - Flavour tagging: calibration,  $B_s^0-B^\pm$  MC difference and dependencies on the pile-up distribution
  - Fit bias: fit stability is validated by the pseudo-experiments with default fit results
  - Background angles model: varying the bin boundaries, invariant mass window and sideband definition
  - Best candidate selection: statistically equivalent sample is created where all candidates in the event are retained
  - Angular acceptance method: different acceptance functions are calculated using different numbers of  $p_T$  bins as well as different widths and central values of the bins

## Systematic uncertainties

|                               | $\phi_s$               | $\Delta\Gamma_s$            | $\Gamma_s$                  | $ A_{\parallel}(0) ^2$ | $ A_0(0) ^2$ | $ A_S(0) ^2$ | $\delta_{\perp}$       | $\delta_{\parallel}$   | $\delta_{\perp} - \delta_{S}$ |
|-------------------------------|------------------------|-----------------------------|-----------------------------|------------------------|--------------|--------------|------------------------|------------------------|-------------------------------|
|                               | [10 <sup>-3</sup> rad] | $[10^{-3} \text{ ps}^{-1}]$ | $[10^{-3} \text{ ps}^{-1}]$ | $[10^{-3}]$            | $[10^{-3}]$  | $[10^{-3}]$  | [10 <sup>-3</sup> rad] | [10 <sup>-3</sup> rad] | [10 <sup>-3</sup> rac         |
| Tagging                       | 19                     | 0.4                         | 0.3                         | 0.2                    | 0.2          | 1.1          | 17                     | 19                     | 2.3                           |
| ID alignment                  | 0.8                    | 0.2                         | 0.5                         | < 0.1                  | < 0.1        | < 0.1        | 11                     | 7.2                    | < 0.1                         |
| Acceptance                    | 0.5                    | 0.3                         | < 0.1                       | 1.0                    | 0.9          | 2.9          | 37                     | 64                     | 8.6                           |
| Time efficiency               | 0.2                    | 0.2                         | 0.5                         | < 0.1                  | < 0.1        | 0.1          | 3.0                    | 5.7                    | 0.5                           |
| Best candidate selection      | 0.4                    | 1.6                         | 1.3                         | 0.1                    | 1.0          | 0.5          | 2.3                    | 7.0                    | 7.4                           |
| Background angles model:      |                        |                             |                             |                        |              |              |                        |                        |                               |
| Choice of fit function        | 2.5                    | < 0.1                       | 0.3                         | 1.1                    | < 0.1        | 0.6          | 12                     | 0.9                    | 1.1                           |
| Choice of $p_T$ bins          | 1.3                    | 0.5                         | < 0.1                       | 0.4                    | 0.5          | 1.2          | 1.5                    | 7.2                    | 1.0                           |
| Choice of mass window         | 9.3                    | 3.3                         | < 0.1                       | 0.4                    | 0.8          | 0.4          | 17                     | 8.6                    | 1.8                           |
| Choice of sidebands intervals | 0.4                    | 0.1                         | 0.1                         | 0.3                    | 0.3          | 1.3          | 4.4                    | 7.4                    | 2.3                           |
| Dedicated backgrounds:        |                        |                             |                             |                        |              |              |                        |                        |                               |
| $B_d^0$                       | 2.6                    | 1.1                         | < 0.1                       | 0.2                    | 3.1          | 1.5          | 10                     | 23                     | 2.1                           |
| $\Lambda_b^a$                 | 1.6                    | 0.3                         | 0.2                         | 0.5                    | 1.2          | 1.8          | 14                     | 30                     | 0.8                           |
| Alternate $\Delta m_S$        | 1.0                    | < 0.1                       | < 0.1                       | < 0.1                  | < 0.1        | < 0.1        | 15                     | 4.0                    | < 0.1                         |
| Fit model:                    |                        |                             |                             |                        |              |              |                        |                        |                               |
| Time res. sig frac            | 1.4                    | 1.1                         | 0.5                         | 0.5                    | 0.6          | 0.8          | 12                     | 30                     | 0.4                           |
| Time res. $p_T$ bins          | 0.7                    | 0.5                         | 0.8                         | 0.1                    | 0.1          | 0.1          | 2.2                    | 14                     | 0.7                           |
| S-wave phase                  | 0.3                    | < 0.1                       | < 0.1                       | < 0.1                  | < 0.1        | 0.2          | 8.0                    | 15                     | 37                            |
| Fit bias                      | 5.7                    | 1.3                         | 1.2                         | 1.3                    | 0.4          | 1.1          | 3.3                    | 19                     | 0.3                           |
| Total                         | 22                     | 4.3                         | 2.2                         | 2.3                    | 3.8          | 4.6          | 55                     | 88                     | 39                            |

### Systematic uncertainties

#### Solution a:

|                       | ΔΓ     | $\Gamma_s$ | $ A_{  }(0) ^2$ | $ A_0(0) ^2$ | $ A_S(0) ^2$ | $\delta_{\parallel}$ | $\delta_{\perp}$ | $\delta_{\perp} - \delta_{S}$ |
|-----------------------|--------|------------|-----------------|--------------|--------------|----------------------|------------------|-------------------------------|
| $\phi_s$              | -0.080 | 0.017      | -0.003          | -0.004       | -0.007       | 0.007                | 0.004            | -0.007                        |
| $\Delta\Gamma$        | 1      | -0.586     | 0.090           | 0.095        | 0.051        | 0.032                | 0.005            | 0.020                         |
| $\Gamma_s$            |        | 1          | -0.125          | -0.045       | 0.080        | -0.086               | -0.023           | 0.015                         |
| $ A_{  }(0) ^2$       |        |            | 1               | -0.341       | -0.172       | 0.522                | 0.133            | -0.052                        |
| $ A_0(0) ^2$          |        |            |                 | 1            | 0.276        | -0.103               | -0.034           | 0.070                         |
| $ A_S(0) ^2$          |        |            |                 |              | 1            | -0.362               | -0.118           | 0.244                         |
| $\delta_{\parallel}$  |        |            |                 |              |              | 1                    | 0.254            | -0.085                        |
| $\delta_{\perp}^{''}$ |        |            |                 |              |              |                      | 1                | 0.001                         |

#### Solution b:

|                      | ΔΓ     | $\Gamma_s$ | $ A_{  }(0) ^2$ | $ A_0(0) ^2$ | $ A_S(0) ^2$ | $\delta_{\parallel}$ | $\delta_{\perp}$ | $\delta_{\perp} - \delta_{S}$ |
|----------------------|--------|------------|-----------------|--------------|--------------|----------------------|------------------|-------------------------------|
| $\phi_s$             | -0.084 | 0.019      | -0.011          | -0.003       | -0.006       | 0.007                | 0.005            | -0.006                        |
| $\Delta\Gamma$       | 1      | -0.586     | 0.090           | 0.096        | 0.057        | -0.029               | -0.010           | 0.021                         |
| $\Gamma_s$           |        | 1          | -0.116          | -0.048       | 0.071        | 0.070                | 0.017            | 0.015                         |
| $ A_{  }(0) ^2$      |        |            | 1               | -0.338       | -0.110       | -0.444               | -0.106           | -0.052                        |
| $ A_0(0) ^2$         |        |            |                 | 1            | 0.269        | 0.080                | 0.017            | 0.070                         |
| $ A_S(0) ^2$         |        |            |                 |              | 1            | 0.291                | 0.060            | 0.251                         |
| $\delta_{\parallel}$ |        |            |                 |              |              | 1                    | 0.235            | 0.097                         |
| $\delta_{\perp}$     |        |            |                 |              |              |                      | 1                | 0.056                         |

# CP Violation Measurement: Angular analysis

| k  | $\mathcal{O}^{(k)}(t)$                                                                                | $\pm 	o B_s/ar{B_s}$                                                                                           | $g^{(k)}(\theta_T, \psi_T, \phi_T)$                                      |
|----|-------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|
| 1  |                                                                                                       | $(1 - \cos \phi_s) e^{-\Gamma_{\rm H}^{(s)} t} \pm 2e^{-\Gamma_s t} \sin(\Delta m_s t) \sin \phi_s$            | $2\cos^2\psi_T(1-\sin^2\theta_T\cos^2\phi_T)$                            |
| 2  |                                                                                                       | $(1-\cos\phi_s)e^{-\Gamma_{\rm H}^{(s)}t}\pm 2e^{-\Gamma_s t}\sin(\Delta m_s t)\sin\phi_s$                     | $\sin^2 \psi_T (1 - \sin^2 \theta_T \sin^2 \phi_T)$                      |
| 3  | $\frac{1}{2} A_{\perp}(0) ^2 \left[ (1 - \cos\phi_s) e^{-\Gamma_{\rm L}^{(s)} t} + \right]$           | $(1 + \cos\phi_s) e^{-\Gamma_{\rm H}^{(s)} t} \mp 2e^{-\Gamma_s t} \sin(\Delta m_s t) \sin\phi_s$              | $\sin^2 \psi_T \sin^2 \theta_T$                                          |
| 4  | $\frac{1}{2} A_0(0)  A_{\parallel}(0) \cos\delta_{  }$                                                |                                                                                                                | $-\frac{1}{\sqrt{2}}\sin 2\psi_T\sin^2\theta_T\sin 2\phi_T$              |
|    |                                                                                                       | $(1 - \cos \phi_s) e^{-\Gamma_{\rm H}^{(s)}t} \pm 2e^{-\Gamma_s t} \sin(\Delta m_s t) \sin \phi_s$             |                                                                          |
| 5  | $ A_{\parallel}(0)  A_{\perp}(0) [\frac{1}{2}(e^{-\Gamma_{\rm L}^{(s)}t}-e^{-\Gamma_{\rm H}^{(s)}})]$ |                                                                                                                | $\sin^2 \psi_T \sin 2\theta_T \sin \phi_T$                               |
|    | $\pm e^{-\Gamma_s t} (\sin(\delta_\perp - \delta_\parallel) + \frac{\Gamma_s^{(s)}}{2})$              | $  \cos(\Delta m_s t) - \cos(\delta_{\perp} - \delta_{\parallel})\cos\phi_s\sin(\Delta m_s t)  $               |                                                                          |
| 6  | $ A_0(0)  A_{\perp}(0) [\frac{1}{2}(e^{-\Gamma_{\rm L}^{(s)}t}-e^{-\Gamma_{\rm H}^{(s)}})]$           |                                                                                                                | $\frac{1}{\sqrt{2}}\sin 2\psi_T\sin 2\theta_T\cos\phi_T$                 |
|    |                                                                                                       | $\int_{-r}^{r} (\sin \delta_{\perp} \cos(\Delta m_s t) - \cos \delta_{\perp} \cos \phi_s \sin(\Delta m_s t))]$ |                                                                          |
| 7  | $\frac{1}{2} A_S(0) ^2 \left[ (1-\cos\phi_s) e^{-\Gamma_L^{(s)}t} + \right]$                          | $(1 + \cos\phi_s) e^{-\Gamma_{\rm H}^{(s)}t} \mp 2e^{-\Gamma_s t} \sin(\Delta m_s t) \sin\phi_s$               | $\frac{2}{3}\left(1-\sin^2\theta_T\cos^2\phi_T\right)$                   |
| 8  | $ A_S(0)  A_{\parallel}(0) [\frac{1}{2}(e^{-\Gamma_{\rm L}^{(s)}t}-e^{-\Gamma_{\rm H}^{(s)}})]$       |                                                                                                                | $\frac{1}{3}\sqrt{6}\sin\psi_T\sin^2\theta_T\sin2\phi_T$                 |
|    | $\pm e^{-\Gamma_s t} (\cos(\delta_{\parallel} - \delta_s))$                                           | $(s)\cos(\Delta m_s t) - \sin(\delta_{\parallel} - \delta_S)\cos\phi_s\sin(\Delta m_s t)$                      |                                                                          |
| 9  | $\frac{1}{2} A_S(0)  A_{\perp}(0) \sin(\delta_{\perp}-\delta_S)$                                      |                                                                                                                | $\frac{1}{3}\sqrt{6}\sin\psi_T\sin2\theta_T\cos\phi_T$                   |
|    | $\left[ \left( 1 - \cos \phi_s \right) e^{-\Gamma_{\rm L}^{(s)} t} + \right.$                         | $(1 + \cos \phi_s) e^{-\Gamma_{\rm H}^{(s)} t} \mp 2e^{-\Gamma_s t} \sin(\Delta m_s t) \sin \phi_s$            |                                                                          |
| 10 | $ A_0(0)  A_S(0) [\frac{1}{2}(e^{-\Gamma_{\rm H}^{(s)}t}-e^{-\Gamma_{\rm L}^{(s)}})]$                 |                                                                                                                | $\frac{4}{3}\sqrt{3}\cos\psi_T\left(1-\sin^2\theta_T\cos^2\phi_T\right)$ |
|    | $\pm e^{-\Gamma}$                                                                                     | $^{st}(\cos\delta_S\cos(\Delta m_s t) + \sin\delta_S\cos\phi_s\sin(\Delta m_s t))]$                            |                                                                          |

# |CP| Violation Measurement: Using Tag Information in $B_s^0$ Fit

Opposite side lepton or jet, with tracks in cone  $\Delta R < 0.5$ 

$$Q = rac{\sum_{i}^{Ntracks} q^{i} (p_{\mathrm{T}}^{i})^{\kappa}}{\sum_{i}^{Ntracks} (p_{\mathrm{T}}^{i})^{\kappa}}$$

- Events separated discrete contribution (cone charge +1 or -1) and continuous contribution
- By using calibration curves: we get the  $B_s^0$  tag probability
- Fractions of events  $f_{+1}$  and  $f_{-1}$  with charges +1 and -1, respectively, are determined separately for signal and background
- Remaining fraction of events,  $1 f_{+1} f_{-1}$ , constitute the continuous part

| Tag Method      | Sig               | nal               | Backg                               | ground                         |
|-----------------|-------------------|-------------------|-------------------------------------|--------------------------------|
|                 | $f_{+1}$          | $f_{-1}$          | $f_{+1}$                            | $f_{-1}$                       |
| Tight $\mu$     | $0.073 \pm 0.005$ | $0.081\pm0.006$   | $0.051 \pm 0.001$                   | $0.053 \pm 0.001$              |
| Medium <i>e</i> | $0.18 \pm 0.01$   | $0.16\pm 0.01$    | $0.159\pm0.003$                     | $\boldsymbol{0.161 \pm 0.003}$ |
| Low-pt $\mu$    | $0.120\pm0.008$   | $0.125 \pm 0.008$ | $\textbf{0.074} \pm \textbf{0.001}$ | $\boldsymbol{0.080 \pm 0.001}$ |
| Jets            | $0.038 \pm 0.002$ | $0.039 \pm 0.002$ | $0.0324 \pm 0.0004$                 | $0.0323 \pm 0.0004$            |

# |CP| Violation Measurement: Using Tag Information in $B_s^0$ Fit

Opposite side lepton or jet, with tracks in cone  $\Delta R < 0.5$ 

$$Q = rac{\sum_{i}^{Ntracks} q^{i} (p_{ ext{T}}^{i})^{\kappa}}{\sum_{i}^{Ntracks} (p_{ ext{T}}^{i})^{\kappa}}$$

- Events separated discrete contribution (cone charge +1 or -1) and continuous contribution
- By using calibration curves: we get the  $B_s^0$  tag probability
- Fractions of events  $f_{+1}$  and  $f_{-1}$  with charges +1 and -1, respectively, are determined separately for signal and background
- Remaining fraction of events,  $1 f_{+1} f_{-1}$ , constitute the continuous part

| Tag method       | Signal              | Background           |
|------------------|---------------------|----------------------|
| Tight $\mu$      | $0.0400 \pm 0.0006$ | $0.0316 \pm 0.0001$  |
| Electron         | $0.0187 \pm 0.0004$ | $0.01480 \pm 0.0001$ |
| Low-pT $\mu$     | $0.0291 \pm 0.0005$ | $0.0264 \pm 0.0001$  |
| Jets             | $0.144\pm0.001$     | $0.1196 \pm 0.0002$  |
| ${\sf Untagged}$ | $0.767 \pm 0.003$   | $0.8077 \pm 0.0005$  |

## CP Violation Measurement: Tagging





27<sup>th</sup> June - 2<sup>nd</sup> July 2022