Searches for new phenomena in final states with 3rd generation quarks using the ATLAS detector The XXIX International Conference on Supersymmetry and Unification of Fundamental Interactions University of Ioannina 1 July 2022 Patrick Rieck New York University on behalf of the ATLAS collaboration #### Overview - Numerous reasons to search for new physics but no clear target - Overwhelmingly large theory landscape - ⇒ How to shape our search program? - Peculiarity of the 3rd generation of fermions: strong couplings - Higgs physics - B-Meson decay anomalies ? - ⇒ Searches with emphasis on 3rd generation quarks (and leptons) *Only a selection of the available mass limits on new states or phenomena is shown † Small-radius (large-radius) iets are denoted by the letter i (J). †Smail-radius (large-radius) jets are denoted by the letter j (J, ## B-Tagging 3rd generation charged fermions: short-lived with complex decays ⇒ sophisticated event reconstruction and detailed detector understanding required - Key technique: identification of b-quark induced jets - Recurrent, deep neural networks mapping tracks to a b-jet score - Ongoing development with further significant improvements (graph neural networks most recently) Vertex identification in busy environments Early Run 2 vs. end of Run 2: 50 % improvement # **Boosted Top-Quark Tagging** - Building R = 1.0 anti- k_T jets from clusters of calorimeter cells, removing lower p_T contributions from soft QCD physics - Deep Neural Network* tagging algorithm - Input: Jet mass, p_T and substructure variables (constituent p_T correlations, e.g. as indicator of a 3-body-decay) - Training with a flat p_T-spectrum for true top-quark jets Outcome: binary classifier, cut decision giving $\approx 80 \%$ efficiency \forall jet p_{τ} ^{*} Fully connected, feed forward architecture - Benchmark model: new charged mediator W' coupling to right-handed top and b-quarks - Selecting events with a top-tagged large-radius jet and a separate b-jet - Signal and control regions defined by top-tag and b-tag scores - Major background: multijet production, data-driven estimation $$N_{TR} \frac{N_{CR1}}{N_{CR2}} = N_{SR}$$ # Top + Bottom Resonance Search (W') Results Fit of the dijet mass distribution in the signal regions ⇒ W' mass exclusion limit, m_{W'_R}> 4.4 TeV #### Single Vector-Like Quark T - LHC Run 1 / 2: lower mass limits on Vector-Like Quarks (VLQ) beyond 1 TeV ⇒ Higher rates of single VLQ production - \circ Here: $Wb \rightarrow T \rightarrow Ht$ - H-boson and top-quark reconstructed as large-R jets with corresponding substructure, including b-tagging - Signal region: large-R jets pass H and top-Tagging requirements, resp. - Control regions with two top-tags for tt̄ normalisation - Major background: multijet production, data-driven estimation ## Single Vector-Like Quark T Results Combined fit of signal and control region dijet invariant mass spectra • Exclusion limits on the T-quark mass, depending on $\kappa_{\scriptscriptstyle T}$ #### Resonances in 4-top-quark events - Search for new resonances coupling only to top-quarks - Target signature: - Single lepton events: e or µ from associated top-quark decay - Resonance mass reconstruction from two fully hadronic top-quark decays → discriminating variable m_{⊥1} - Data-driven background estimation (tt̄ events) - Control region with fewer b-tagged jets - \circ Fitting a smoothly falling function of m_{JJ} - Extrapolation to the signal region using simulations #### Resonances in 4-top-quark events Results No mass exclusion for Z'-top coupling strength $c_t = 1$ ## Tau Lepton Identification - Recurrent neural network used to distinguish τ-leptons from jets - Trained on di- τ and di-jet MC samples, same p_{τ}^{τ} distribution after reweighting - Charged particle tracks, calorimeter cell topological clusters and variables derived from them as input - Considerable improvement compared to previous approach with fewer input variables #### Search with *t*-leptons, *b*-quarks and MET - Search for pair production of new particles via strong interactions: - SUSY: stop-quark pair production and decays to stau leptons - 2. Leptoquarks: spin \in {0, 1}, $|Q| \in \{\frac{1}{3}, \frac{2}{3}\}$, decays \in { { $tv, b\tau$ }, { $bv, t\tau$ } } - MET triggered events, 1 or 2 τ-leptons (hadronic decays) and b-tagged jets - Require large momentum transfer collisions, e.g. $S_T = \sum p_T(\tau, jets) > 800 \text{ GeV}$ - Main background: $t\bar{t}$ events ($W \rightarrow \tau v$ decays), estimated from control regions, e.g. with lower S_T #### Search with *t*-leptons, *b*-quarks and MET Results Combined control and signal region fit, also using the τ-lepton p_T distribution > Multijet background negligible thanks to the good τ-lepton identification SUSY: stop-quark and stau-lepton mass exclusion - Leptoquarks - Spin 0: mass and branching fraction exclusion - Spin 1, SU(2) singlet : m < 1.77 TeV excluded - Selecting events with MET > 250 GeV, $N_{e/u} = 1$, $N_{iets} \ge 4$, $N_{b-iets} \ge 1$ - ⇒ Challenging phase space, need for reweighting of top-quark background prediction from simulations using a dedicated control region - W+jets and single top-quark control regions - Neural network for signal distrimination - Dedicated networks for various signal hypotheses #### Leptoquarks with cross-generational couplings Results Combined fit of control region event yields and neural network discriminant distribution Leptoquark mass and branching fraction exclusion: Highest sensitivity for BR(ql) = BR(qv): most distinct final states ## Leptoquark Exclusion Summaries Examples - Broad program of complementary leptoquark searches - Run 2: shift from SUSY search reinterpretations to dedicated leptoquark searches # Summary - Broad search program in ATLAS targeting new physics with couplings to 3rd generation quarks and leptons - Searches empowered by sophisticated event reconstruction algorithms - Continued efforts providing improvements beyond the luminosity increase - Increasing importance of searches motivated by B-meson decay anomalies, e.g. leptoquark searches - More final states to be covered in Run 3, providing further improvement beyond the luminosity increase 17