

Dark matter at the LHC

- Dark matter is invisible to the detector (no interaction) (for DM candidates covered in this talk)
- creates momentum imbalance in the transverse plane
 - "missing transverse momentum" (magnitude: $E_{T,miss}$)
 - same as neutrinos

Simplified 1-mediator models (s-channel)

- cover a large set of models
- easy reinterpretation

Complete models with extended Higgs or gauge sector

Monojet search

- ISR of a gluon can always happen in p-p collisions
 - \rightarrow Jet + $E_{T,miss}$ covers a variety of dark matter models

Considered models:

- s-channel exchange of a spin-1 (axial-vector) or spin-0 (pseudoscalar) mediator
- SUSY: Squarks in compressed mass scenarios
- Dark energy (Horndeski model)
- Extra dimensions (KK graviton escaping into extra dimensions)
- Axion-like particles (ALPs)
- Invisible Higgs decays

Run: 337215
Event: 2546139368
2017-10-05 10:36:30 CEST jet p_T = 1.9 TeV

 Z_A

Monojet strategy

- Require $E_{T,miss} > 200$ GeV and at least one jet with $p_T > 150$ GeV
- Up to 3 additional jets
- Shape fit: 13 bins in $E_{T,miss}$

Z+jets vs W+jets difference calculated at NNLO(α_s) +NNLL(α_s), NLO(α_{ew})

- Irreducible Z(vv)+jet background (dominant)
- Furthermore: W+jets, Diboson, tt, and smaller backgrounds
 - → Large backgrounds need to be well constrained in order to be sensitive to smaller signals.
 - ightarrow 1 & 2 lepton control regions both constrain Z+jets and W+jets

Monojet results

- Background modelling describes data in signal region well, no significant excess.
- Various interpretations, e.g. dark matter via axial-vector or pseudoscalar mediator.
- See also dark-sector reinterpretation: ATL-PHYS-PUB-2021-020

$tt + E_{T.miss}$ combination

- For spin 0 mediators DM is assumed to be produced preferably in association with top quarks due to Yukawa-type couplings (for Minimal Flavour Violation).
- New combination of $tt + E_{T,miss}$ analyses with 2, 1 and 0 leptons.
 - new 0l low- $E_{T,miss}$ channel, making use of bjet triggers
- Targetting scalar and pseudoscalar mediators (including SM Higgs).
- Same signature as stop pair production.
- Contribution also from tW+DM production.

ATLAS-CONF-2022-007, web

$tt+E_{T,miss}$ combination – results

All OI signal region bins. No excesses in 1I and 2I categories.

2I channel dominates sensitivity

Simplified 1-mediator models (s-channel)

- cover a large set of models
- easy reinterpretation

Complete models with extended Higgs or gauge sector

- cover only specific models
 - → usually better sensitivity in these models
 - \rightarrow a discovery would tell us more about the underlying theory
- more free parameters

Mono-Higgs searches

2HDM+*Z*⁺

- 5 new Higgs bosons
- 1 new vector boson

2HDM+a

- additional pseudoscalar which couples to SM fermions and DM
- allows gluon—gluon fusion

$Z_{\rm B}$

 new U(1)_B baryon number symmetry with new Z' and baryonic Higgs

Mono-Higgs into photons

- Require $E_{T,miss} > 90$ GeV and two photons with $105 > m_{yy}/\text{GeV} > 160$.
- BDT using the two most discriminating variables p_T^{yy} and $E_{\text{T,miss}}$ significance.

$$S_{E_{\mathrm{T}}^{\mathrm{miss}}} = E_{T}^{\mathrm{miss}} / \sqrt{\sum E_{\mathrm{T}}}$$

- signal: 2HDM+a model
- background: data from control region where one photon fails the identification/isolation criteria and with $120 > m_{yy}/\text{GeV} > 130 \text{ vetoed}$
- 4 categories with high/low BDT score and high/low $E_{T,miss}$.
- Signal diphoton invariant mass distribution modelled with double-sided Crystal Ball function.
- Normalization of non-resonant background (exp. function) through fit to data, resonant background normalized to theory expectation.

JHEP 10 (2021) 13, web

no significant excesses

Mono-Higgs into photons – results

2HDM+*Z*′

2HDM+a

When the mixing angle θ between pseudoscalars a and A is 0 or $\pi/2$, signal vanishes.

Mono-Higgs into b-quarks

- Require E_{T,miss} > 150 GeV and a h → bb candidate with two methods:
 - Resolved regime ($E_{T,miss}$ < 500 GeV): 2 b-tagged small-R jets (R=0.4)
 - Boosted regime (E_{T,miss} > 500 GeV): one single large-R jet (R=1) with two associated b-tagged variable-R track jets
- Split into E_{T,miss} and 2 b-tag/≥ 3 b-tag categories.
- Dedicated control regions to normalize non-resonant backgrounds:
 - 2-lepton CR for Z
 - 1-muon, split by charge, for W and tt
- Resonant background normalized to theory prediction.
- Simultaneous fit in m_{bb} spectrum.

Mono-Higgs into b-quarks – results

2HDM+a

Similary sensitivity as Z(II) channel

→ statistical combination

ATLAS-CONF-2021-036, web

h(yy) mostly sensitive at $300 < m_{\rm A}/{\rm GeV} < 800$

tW + dark matter

- Targetting scenario with a singletop quark and a high p_⊤ W boson, motivated by 2HDM+a model.
- Require $E_{T,miss}$ >250 GeV and ==1 b-jet.
- Channels with 0l and 1l (hadronic and leptonic top).
- Large-R jets (R=1) with W-tagging or two small-R jets for hadronic W candidate.
- Binning in E_{T,miss.}
- Dedicated CRs for main backgrounds (tt, Z/W, ttZ).
- Combination with previous 2l analysis.

tW + dark matter - results

no significant excess \rightarrow exclusion in $(m_a, m_{H\pm})$ or $(m_{H\pm}, \tan\beta)$ plane

Mono-s(WW)

- Dark Higgs model provides Majorana fermion DM candidate, vector boson Z', and dark Higgs boson s.
- Require high $E_{T,miss} > 200$ GeV and ==1 lepton.
- Hadronic W candidate:
 - Merged category: large-R jet (R=1) using track-assisted reclustering (TAR) to deal with dense environment with hadronic activity + close-by lepton
 - Resolved category: two small-R jets
- Dedicated control regions for dominant W (large ΔR(W_{cand},l) and tt (≥2 b-jets) backgrounds.
- Fit $m_{s,min}$ (\equiv approximate dark Higgs reconstruction considering invisible neutrino) distribution to data.

Mono-S(WW) - results

- No significant excess.
 → exclusion in (m_z,m_s) plane
- Complementary to searches for s → bb and s → VV → hadronic.

Summary plots

Summary plots available for s-channel and 2HDM+a: ATL-PHYS-PUB-2021-045. All ATLAS results available here.

Conclusion

- Presented a selection of the latest results of ATLAS searches for dark matter.
 - more public results here
- Multiple new exclusion limits available:
 - One-mediator s-channel models
 - Complete models with several mediators (e.g. 2HDM+a)
- Summary plots available showing the excluded regions from all results for specific models.
- Wide search program for DM, stay tuned for new results!
- Run-3 data soon!

Thank you!

Backup

Monojet - selection

ΩD	ıci	NIC	
OR Excelle		i V O	
		710000	

Requirement	SR	$W \rightarrow \mu \nu$	$Z \rightarrow \mu\mu$	$W \rightarrow e \nu$	$Z \rightarrow ee$	Тор
Primary vertex	at least one with ≥ 2 associated tracks with $p_T > 500 \text{MeV}$					
Trigger	$E_{ m T}^{ m miss}$		single-electron		$E_{\mathrm{T}}^{\mathrm{miss}},$ single-electron	
$p_{ m T}^{ m recoil}$ cut	$E_{\rm T}^{ m miss} > 200{ m GeV}$	$ \mathbf{p}_{\mathrm{T}}^{\mathrm{miss}} + \mathbf{p}_{\mathrm{T}}(\mu) > 200 \mathrm{GeV}$	$ \mathbf{p}_{\mathrm{T}}^{\mathrm{miss}} + \mathbf{p}_{\mathrm{T}}(\mu\mu) > 200 \mathrm{GeV}$	$ \mathbf{p}_{\mathrm{T}}^{\mathrm{miss}} + \mathbf{p}_{\mathrm{T}}(e) > 200 \mathrm{GeV}$	$ \mathbf{p}_{\mathrm{T}}^{\mathrm{miss}} + \mathbf{p}_{\mathrm{T}}(ee) > 200 \mathrm{GeV}$	$ \mathbf{p}_{\mathrm{T}}^{\mathrm{miss}} + \mathbf{p}_{\mathrm{T}}(\mu) > 200 \mathrm{GeV} \mathrm{or} \\ \mathbf{p}_{\mathrm{T}}^{\mathrm{miss}} + \mathbf{p}_{\mathrm{T}}(e) > 200 \mathrm{GeV}$
Jets			to 4 with $p_{\rm T} >$			
$ \Delta\phi(\text{jets},\mathbf{p}_{\text{T}}^{\text{recoil}}) $	$> 0.4 (> 0.6 \text{ if } 200 \text{ GeV} < E_{\text{T}}^{\text{miss}} \le 250 \text{ GeV})$					
Leading jet		$p_{\mathrm{T}} >$	$150 \text{GeV}, \eta <$	$(2.4, f_{\rm ch}/f_{\rm max})$	> 0.1	
<i>b</i> -jets	any	none	any	none	any	at least one
Electrons or muons	none	exactly one muon, with $p_T > 10 \text{GeV}$, $30 < m_T < 100 \text{GeV}$; no electron	exactly two muons, with $p_T > 10 \text{GeV}$, $66 < m_{\mu\mu} < 116 \text{GeV}$; no electron	exactly one electron, tight, with $p_{\rm T} > 30~{\rm GeV},$ $ \eta \notin (1.37, 1.52),$ tight isolation, $30 < m_{\rm T} < 100~{\rm GeV};$ no muon	exactly two electrons, with $p_T > 30 \text{GeV}$, $66 < m_{ee} < 116 \text{GeV}$; no muon	same as for $W \to \mu \nu$ or same as for $W \to e \nu$
τ-leptons	none					
Photons	none					

Monojet - interpretation (1)

Monojet - interpretations (2)

Higgs to invisible

- Signal: gluon-gluon fusion (73%), VBF (18%), VH (8%), ttH (1%)
- Result: BF(H → inv) ≤ 34%
 (39% exp.)

Dark sector

FRVZ model

Long-lived scalar particles

ATL-PHYS-PUB-2021-020

Source of uncertainty and effect on the total SR background estimate [%]				
Flavor tagging	0.1 - 0.9	au-lepton identification efficiency	0.1 - 0.07	
Jet energy scale	0.17 - 1.0	Luminosity	0.01 - 0.05	
Jet energy resolution	0.15 - 1.3	Noncollision background	0.2 - 0.0	
Jet JVT efficiency	0.01 - 0.03	Multijet background	1.0 - 0.0	
Pileup reweighting	0.4 - 0.24	Diboson theory	0.01 - 0.22	
$E_{\rm T}^{ m miss}$ resolution	0.34 - 0.04	Single-top theory	0.13 - 0.28	
$E_{\mathrm{T}}^{\mathrm{miss}}$ scale	0.5 - 0.25	$t\bar{t}$ theory	0.06 - 0.7	
Electron and photon energy resolution	0.01 - 0.08	V +jets τ -lepton definition	0.04 - 0.16	
Electron and photon energy scale	0.3 - 0.7	V+jets pure QCD corrections	0.24 - 1.1	
Electron identification efficiency	0.5 - 1.0	V+jets pure EW corrections	0.17 - 2.2	
Electron reconstruction efficiency	0.15 - 0.2	V+jets mixed QCD–EW corrections	0.02 - 0.7	
Electron isolation efficiency	0.04 - 0.19	V+jets PDF	0.01 - 0.7	
Muon identification efficiency	0.03 - 0.9	VBF EW V+jets backgrounds	0.02 - 1.1	
Muon reconstruction efficiency	0.4 - 1.5	Limited MC statistics	0.05 - 1.9	
Muon momentum scale	0.1 - 0.7			
Total background uncertainty in the Signal Region: 1.5%–4.2%				

Mono-Higgs to photons – distributions

		Backgrounds [%]		
Source	Signals [%]	SM Higgs boson	Non-resonant background	
Experimental				
Luminosity	1.7	1.7	_	
Trigger efficiency	1.0	1.0	_	
Vertex selection (inclusive cat.)	0.01	0.01	-	
Photon energy scale	1.0	1.2	_	
Photon energy resolution	0.3	0.4	_	
Photon identification efficiency	1.3	1.3	_	
Photon isolation efficiency	1.3	1.4	_	
AtlFastII simulation	2.0	_	_	
$E_{\rm T}^{\rm miss}$ reconstruction and jet uncertainty	2.8	1.7	_	
Pile-up reweighting	2.3	2.0	_	
Signal efficiency interpolation	< 13	_	_	
Non-resonant background modelling	_	_	6.8	
Theoretical				
Factorization and renormalization scale in migration	1.3	3.5	_	
PDF+ α_s in migration	1.2	1.0	_	
Factorization and renormalization scale in cross section	_	2.8	_	
PDF+ α_s in cross section	_	2.8	_	
Multi-parton interactions, ISR/FSR, hadronization	3.0	3.0	_	
$B(H \to \gamma \gamma)$	1.7	1.7	_	

Mono-Higgs to b-quarks - control regions

Resolved	Merged		
Primary $E_{\mathrm{T}}^{\mathrm{miss}}$ trigger			
Dat	a quality selections		
	$E_{\rm T}^{\rm miss} > 150 {\rm GeV}$		
	δ & extended τ -lepton veto		
$\Delta \phi$ ($\text{jet}_{1,2,3}, E_{\text{T}}^{\text{miss}}) > 20^{\circ}$		
$E_{\rm T}^{\rm miss}$ < 500 GeV	$E_{\rm T}^{\rm miss} > 500 \; {\rm GeV}$		
At least 2 small-R jets At least 1 large-R jet			
At least 2 <i>b</i> -tagged small- <i>R</i> jets	At least 2 <i>b</i> -tagged associated variable- <i>R</i> track-jets		
$p_{\mathrm{T}h} > 100 \mathrm{GeV}$ if $E_{\mathrm{T}}^{\mathrm{miss}} < 350 \mathrm{GeV}$	_		
$p_{\mathrm{T}_h} > 300 \mathrm{GeV} \mathrm{if} E_{\mathrm{T}}^{\mathrm{miss}} > 350 \mathrm{GeV}$			
$m_{\rm T}^{b,\rm min} > 170 {\rm GeV}$	_		
$m_{\rm T}^{b,\rm max} > 200{\rm GeV}$	_		
S > 12 —			
$N_{\text{small-}R\text{jets}} \le 4 \text{ if } 2 b\text{-tag}$			
$N_{\text{small-}R \text{jets}} \le 5 \text{if} \ge 3 b\text{-tag}$			
$50 \text{GeV} < m_h < 280 \text{GeV}$ $50 \text{GeV} < m_h < 270 \text{GeV}$			

	0 lepton	1 muon	2 leptons		
Aim	Signal regions	$t\bar{t}$ and W+HF control region	Z+HF control regions		
Fitted observable	m_h distribution	Muon charge (2 b -tag) Yields ($\geq 3 b$ -tag)	Yields		
h tag multiplicities		resolved (small- <i>R</i> jets): 2,	≥3		
b-tag multiplicities		merged (variable-R track-je	ets):		
	2 (inside h candidate), ≥ 3 (2 inside h candidate)				
$E_{\mathrm{T}}^{\mathrm{miss}}$ proxy	$E_{ m T}^{ m miss}$ $E_{ m T, lep. invis.}^{ m miss}$		$E_{\mathrm{T, lep. invis.}}^{\mathrm{miss}}$		
	resolved: [150, 200), [200, 350) and [350, 500) GeV				
Bins in $E_{\rm T}^{\rm miss}$ proxy	2 <i>b</i> -tag merged signal regions (0 lepton): $[500, 750)$ and $[750, \infty)$ GeV				
	Other merged regions: [500, ∞) GeV				

Mono-Higgs to b-quarks – more interpretations

2HDM+Z'

model-independent limits

	Fractional squared uncertainty in μ			
Source of uncertainty	Z' -2HDM signals, (m'_Z, m_A) [GeV]			
	(800, 500)	(1400, 1000)	(2800, 300)	
Z+HF normalisation	0.11	0.03	< 0.01	
W+HF normalisation	0.02	0.01	< 0.01	
$tar{t}$ normalisation	0.16	0.04	< 0.01	
Z modelling uncertainties	0.02	0.07	< 0.01	
W modelling uncertainties	< 0.01	0.01	< 0.01	
$t\bar{t}$ modelling uncertainties	0.13	0.05	< 0.01	
Single-t modelling uncertainties	0.18	0.02	< 0.01	
Other modelling uncertainties	0.05	0.01	< 0.01	
Jets	0.20	0.06	0.01	
b-tagging	0.01	0.01	0.04	
$E_{\mathrm{T}}^{\mathrm{miss}}$ soft term and pile-up	< 0.01	< 0.01	< 0.01	
Other experimental systematic uncertainties	0.01	< 0.01	< 0.01	
Signal systematic uncertainties	< 0.01	< 0.01	< 0.01	
MC sample size	0.08	0.07	0.11	
Statistical uncertainty	0.27	0.61	0.79	
Total systematic uncertainties	0.73	0.39	0.21	

tW + DM - regions

tW + DM - systematics

Mono-s(WW) - selections

Requirement	SR	CRW	CRTT
Trigger	$E_{\mathrm{T}}^{\mathrm{miss}}$ or single muon		
N_ℓ	=	= 1	
$m_{\mathrm{T}} \; [\mathrm{GeV}]$	>	220	
$E_{\rm T}^{ m miss}$ [GeV]	> 200		
$N_{b ext{-}\mathrm{Jets}}$	0	0	≥ 2
$N_{ m TAR~Jets}$	2	≥ 1	
$m_{W_{\mathrm{cand}}}[\mathrm{GeV}]$	[68	[8, 89]	
\mathcal{S}	> 16	> 12	> 12
$\Delta R(W_{ m cand},\ell)$	< 1.2	> 1.8	< 1.2
$D_2^{\beta=1}$	< 1.1		
$m_s^{\rm min}$ binning [GeV]	$ \begin{array}{c c} [125, 165, 190, \\ 225, 375] \end{array} $	incl.	incl.

Requirement	SR	CRW	CRTT
Orthogonality	Fails merged category selections		
Trigger	$E_{\mathrm{T}}^{\mathrm{miss}}$ or	single mu	ion
N_ℓ		=1	
$m_{\mathrm{T}} \; [\mathrm{GeV}]$	>	> 200	
$E_{\mathrm{T}}^{\mathrm{miss}}$ [GeV]	> 250		
$N_{b ext{-Jets}}$	0	0	≥ 2
$N_{ m Jets}$		≥ 2	
$m_{W_{ m cand}}$ [GeV]		[55, 95]	
${\cal S}$		> 16	
$\Delta R(W_{ m cand},\ell)$	< 1.4	> 1.4	< 1.4
$p_{\mathrm{T},W_{\mathrm{cand}}}$ [GeV]	> 150		
$m_s^{\rm min}$ binning [GeV]	$ \begin{vmatrix} [125, 175, 225, \\ 275, 325, 375] \end{vmatrix}$	incl.	incl.

Mono-s(WW) - methods

Analytical solution of $s \rightarrow WW \rightarrow qqlv$ system

- Find minimum m_s consistent with observed W_{had} and lepton momenta and $m_W = 80.4$ GeV constraint.
- Use a rotated frame of reference with lepton along z-axis and hadronic W in x-z plane.
- m_s^{min} occurs at $\phi_v = 0$.
- Solve numerically for θ_{lv} subject to m_{W} constraint

	Uncertainty [%]			
Source of uncertainty		(1000, 140)	-	
W+jets modelling	4	5	2	
Diboson modelling	5	4	1	
$tar{t}$ modelling	7	4	1	
Single top modelling	9	5	11	
Signal modelling	1	3	0	
MC statistics	26	15	29	
R = 0.4 jet energy scale	11	12	14	
R = 0.4 jet energy resolution	9	4	7	
R = 0.2 jet energy scale	9	9	14	
R = 0.2 jet energy resolution	13	10	16	
$E_{ m T}^{ m miss}$	7	1	7	
Track reconstruction	5	2	2	
Lepton reconstruction	2	3	1	
Systematic uncertainty	38	28	40	
Statistical uncertainty	38	32	37	
Total uncertainty	53	43	55	

Mono-s comparison

New result overlaid with previous result (mono-s(\rightarrow VV \rightarrow qqqq)) Phys. Rev. Lett. 126 (2021) 121802, web

Higgs to invisible

Run 1&2 combination Most stringent direct limit so far $BF(H \rightarrow inv.) \le 11\%$ (11% exp)

ATLAS-CONF-2020-052

New VBF+E_{T,miss} result (most sensitive channel): BF(H \rightarrow inv.) \leq 14.5% (10.3% exp) (submitted to JHEP, web)