

Recent High Luminosity LHC (HL-LHC) projections from CMS

Sandhya JAIN on behalf of CMS Collaboration

June 27, 2022 to July 2, 2022 University of Ioannina (GR)

HL-LHC planning and physics studies at CMS

18 new studies by CMS for Snowmass White Paper + 3 recently got public

Focus of studies:

- HL-LHC: 14 TeV, 3000 fb⁻¹.
- Exploit upgraded CMS detector.

- Higgs prospects cover Higgs boson properties and couplings, BSM higgs physics
- SM prospects include EWK precision physics, QCD and strong interactions, Heavy flavor and top quark physics
- New Physics incorporate Model-specific explorations, general explorations and Dark matter at colliders

New readout, new GEM/RPC, Extended coverage

Calorimeter Barrel:

ECAL/HCAL new back-

Calorimeter Endcap:

3D showering topology

CMS Analysis approach and Systematics

CMS Analysis Approach:

- Projections: Use existing samples, scale results to cross section and higher luminosity
- Fast simulation: Use events from Delphes with dedicated Phase-2 parametrized detector simulation

Uncertainties treatment:

- Run 2 systematics (S1): Use Run
 2 values
- "YR18" systematics (S2): A set of reduced uncertainties anticipated for Phase-2. Experimental ones based on ultimate performance and factor of half reduction for theory uncertainties.

Source	Component	Run 2 uncertainty	Projection minimum uncertainty
Muon ID		1–2%	0.5%
Electron ID		1–2%	0.5%
Photon ID		0.5–2%	0.25-1%
Hadronic tau ID		6%	2.5%
Jet energy scale	Absolute	0.5%	0.1-0.2%
	Relative	0.1–3%	0.1-0.5%
	Pileup	0–2%	Same as Run 2
	Method and sample	0.5-5%	No limit
	Jet flavour	1.5%	0.75%
	Time stability	0.2%	No limit
Jet energy res.		Varies with $p_{ m T}$ and η	Half of Run 2
MET scale		Varies with analysis selection	Half of Run 2
b-Tagging	b-/c-jets (syst.)	Varies with $p_{\rm T}$ and η	Same as Run 2
	light mis-tag (syst.)	Varies with p_{T} and η	Same as Run 2
	b-/c-jets (stat.)	Varies with $p_{\rm T}$ and η	No limit
	light mis-tag (stat.)	Varies with p_{T} and η	No limit
Integrated lumi.		2.5%	1%

Higgs Physics

Higgs mass and width measurement

Projection in the H \rightarrow ZZ \rightarrow 4l and H \rightarrow $\gamma\gamma$ channels from Run-2

Phase-2 Higgs mass:

125.38 \pm 0.022(stat) \pm 0.02(sys) GeV (68%) ~Order of magnitude improvement in H \rightarrow ZZ \rightarrow 4I

125.38 \pm 0.07 (\pm 0.02 stat) GeV Improvement by x3 in H \rightarrow $\gamma\gamma$

Dominant Uncertainties associated with mass resolution and lepton identification.

Expected $\pm 1\sigma$ uncertainties on mass measurement in ZZ decay mode

	Mass uncertainty (MeV)				
	Combined	4μ	4e	2e2μ	2μ2e
Stat. uncertainty	22	28	83	51	59
Syst. uncertainty	20	15	189	94	95
Total	30	32	206	107	112

Completely driven by 4μ channel, thanks to improved mass resolution (25%) and extended coverage (~7%), statistical uncertainty is expected to improve.

Width: $\Gamma_H < 0.09$ (0.18) GeV at 68% (95%) CL >x4 improvement n H \rightarrow ZZ \rightarrow 4I

Likelihood scan of the expected m_H (H $\rightarrow \gamma\gamma$)

FTR-21-007

FTR-21-008

Higgs Coupling measurements

HIG-21-008 FTR-21-002 FTR-21-006 FTR-21-009

Projection in H → μμ (ggF+VBF) and VH(H → cc) channels from Run-2

First evidence in H $\rightarrow \mu\mu$ with full Run 2 significance of 3(2.5) σ obs (exp)

Uncertainty in Coupling modifier κ_{μ} vs. luminosity

- Largest impact from improvement in dimuon mass resolution after Phase-II tracker upgrade.
- VH challenging due to the small branching fraction, c-quark identification in hadronic environment and very large multijet QCD background. Powerful merged jet analysis

Projection in Two rare decays of Higgs to mesons

Expected gain in upper limit >x6 in ZJ/ψ and >x27 in $\Upsilon\Upsilon$ channel

Projection of Higgs boson coupling ttH(→bb) channel

Luminosity [fb⁻¹]

Measurement with 12% total uncertainty on the signal cross-section, translating to similar level of precision in measuring top-Higgs coupling y_t

Sensitivity to the CP structure of H-T Yukawa coupling

13 TeV Projection based on Run-2

CP nature of the H \rightarrow $\tau\tau$ coupling is described by the effective mixing angle $\alpha^{H\tau\tau}$ = 0 (90)° corresponds to a pure scalar (pseudoscalar) coupling

Any intermediate value indicates a mixed coupling - implying CP violation

Phase-2 expectation:

$$\alpha^{HTT} = 0 \pm 5^{\circ}$$
 at 68% CL.

(sensitivities to larger $\alpha^{H\tau\tau}$ are different due to effects of systematics.)

~x4 improvement wrt Run 2 observation:

$$\alpha^{HTT} = -1 \pm 19^{\circ} (\pm 41^{\circ})$$
 at 68% (95%) CL

Projections of the expected negative log-likelihood scans as a function of the CP mixing angle

HH production: Benchmark for HL-LHC

Expected Likelihood scan as a function of κ_{λ} ($\lambda_{hhh}/\lambda_{hhh}^{SM}$)

X: explored in the YR O: explored in the WP

Updated results on HH → bbyy

CMS Phase-2

Channel	Signific Stat. + syst.	
bbbb	0.95	1.2
$bb\tau\tau$	1.4	1.6
$\mathrm{bbWW}(\ell\nu\ell\nu)$	0.56	0.59
$bb\gamma\gamma$	1.8 2.16	$\frac{\sigma}{1.8}$
$bbZZ(\ell\ell\ell\ell)$	0.37	0.37
$WW\gamma\gamma + \tau\tau\gamma\gamma$	$0.22 \ \sigma$	

Explored WWyy, TTYY channels

ttHH in Minimal composite **Higgs Model (MCHM)**

95% CL upper limit on signal strength

Combination foreseen for the MCHM 12 snowmass report

FTR-21-003 FTR-21-004 FTR-21-010

8

Snowmass White Paper

Higgs as portal to new physics

13 TeV Projection of high mass resonance to W+W- with dileptons from Run-2

Model-independent limits on σ x BR of a new resonance.

Assumes ggF & VBF contribution of same order as expected from a SM-like Higgs at high mass.

Delphes based Search for boosted mono Higgs, with h → bb + dark matter

Interpretation in terms of a Type-II 2HDM+a model: $tan\beta = 1$, $sin\theta = 0.35$

H±± Delphes based search in 4 same flavor leptons final state

Mass Limits of 1400 GeV for H_L±± pair production cross section in a left-right symmetric model for decays to 4e or 4μ.

Standard Model Prospects

Vector boson scattering (VBS) in leptonic WW and WZ

Projection based on Run-2

VBS - Important tool to probe EWSB mechanism and is sensitive to BSM.

Explored sensitivity to VBS cross section and polarization. 2 same-sign leptons (WW) or 3 leptons (WZ) with total charge 1.

• Simultaneous measurement of EW WW, EW WZ and QCD WZ production cross sections.

Simultaneous measurement of longitudinal and transverse polarized components in the WW channel.

Measurement of γγ → τ+τ-

Projection of the Run 2 search for γγ → τ+τ- with 1 muon + 3 charged particles.

Ultra-peripheral heavy ion collisions: No hadronic interaction between the ions.

- \Longrightarrow Clean environment to study $\gamma\gamma$ -induced processes.
- $\gamma\gamma \rightarrow \tau^+\tau^-$ sensitive to BSM \Longrightarrow improved constraints on $(g-2)_\tau$
- 13 nb⁻¹ PbPb luminosity, $sqrt(S_{NN}) = 5.02$ TeV.

Phase-2 expected $\gamma\gamma \rightarrow \tau^+\tau^-$ x-section: $4.8 \pm < 0.1 \pm 0.2 \mu b$.

Total Uncertainty: 4%

~x4 Improvement wrt Run 2 prediction: $4.8 \pm < 0.6 \pm 0.5 \mu b$.

Improvements originate from lepton and tracking reconstruction

Top quark spin correlations

Projection analysis of precision measurement of the strength of expected $t\bar{t}$ spin correlation in e μ + \geq 2 jets + \geq 1 b-jet final state.

⇒ Spin correlation coefficient D is the most accurate observable with 3% precision (among 22 studied)

Delphes based search of top squarks in the "top corridor" using spin corr. variables in a DNN

Phase-2 exclusion limits on the stopstop cross section in stop-neutralino mass plane.

Expected limits on signal strength corresponding to $\Delta M(\tilde{t_1},\tilde{\chi}_1^0)$ = 175 GeV

Ratio of Run 2/Phase-2 expected exclusion limits on cross section.

Beyond Standard Model Prospects

Hadronic EW SUSY Search

Projection based on Run-2

Search for EW-produced chargino / neutralino decaying to boosted hadronic W/Z/H + LSP

Final states: WW, WH, WZ, ZH + E_T^{miss} > 200 GeV.
 ⇒ 2 AK8 jets with pT > 200 GeV and W/Z/H tagging.

Interpretion done in scenarios with binolike LSP and wino-like or Higgsino-like NSLP.

m_{NLSP} exclusion limits difference Phase-2 expected - Run 2 observed : 650 - 750 GeV.

CMS Phase-2 Projection Preliminary

Stop search with 2 tops + multijets

13 TeV Projection based on Run-2

Search for stop pair production in R-parity violating or stealth SUSY models

- Final states: 2 tops + additional jets
 - \implies 1 lepton + \ge 7 jets (no E_Tmiss)
- Binary classifier neural networks to discriminate signal from background

RPV: 670 GeV (Run 2) → 870 GeV (Phase-2)

Stealth: 870 GeV (Run 2) → **1190 GeV (Phase-2)**

Z'

Leptophobic Z' to charginos

Delphes based analysis

Search for leptophobic Z' decaying to two charginos, subsequently decaying to leptonically decaying Ws and neutralinos.

- Final states : ee, μμ, eμ + E_Tmiss
 - ⇒ Select events with opposite-charged leptons and E_Tmiss > 80 GeV
- Signal extraction via Deep Neural Networks.
 - Input variables exploiting the resonance nature of the Z'.

DNN score trained in ee finał state for $m_{Z'} = 2.5$ TeV, $m_{\widetilde{\chi}_1}^{\pm} = 1.095$ TeV

Phase-2 upper limits for Z' production xsection

Exclusion of Z' with mass up to 4.5 TeV.

Seesaw model searches with multipleptons

Delphes based analysis

Search for Type-I and Type-II seesaw models (explaining neutrino masses).

- Final states: Exactly 3 or 4 leptons.
- Discriminating variables: $L_T = \sum p_T^l$, min(m_{||})
- Signal region: 87 bins of lepton flavor, L_T, max(m_{II}).

Signal and background distributions in most sensitive 10 bins

Type-I seesaw with singlet N:

FTR-22-003

Type-II seesaw with triplet Δ :

Dilepton high mass resonances

Projection based on Run-2

Search for high mass ee and µµ resonances & test of lepton flavor universality (LFU)

• LFU violation via measurement of cross section ratio $R_{\mu+\mu-/e+e-}$ for the DY process.

Exclusion limits on a spin-1 Z' resonance vs. mass.

Discovery sensitivity showing Z' with masses upto these values can be discovered at HL-LHC

$$m_Z(SSM) = 6.27 \text{ TeV}$$

 $m_Z(\psi) = 5.72 \text{ TeV}$

x5 improvement wrt. Run 2.

Summary & the future of future physics

- HL-LHC offers a BIG opportunity for measurements and searches in all the sectors.
- Studies for the Yellow Report and White Paper covered a substantial part of the HL-LHC physics phase space.
- CMS encourages exploring new ideas, in particular final states only accessible at HL-LHC and studies exploiting detector features and upgrades.

Stay Tuned!!