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Maximal Gauged Supergravities

Maximal gauged supergravities in different dimensions have a
natural decriptions in terms of the embedding tensor ©, “.
[de Wit, Samtleben, Trigiante,2003]

The scalar manifold is the homogeneous coset space E,,/H.
(we will not consider the Trombone symmetry)

Supersymmetry and gauge symmetries impose consistency
constraints on the embedding tensor ©,, %, such as © € 351
of E6(6) in D =5.
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Compactifications

reduction
ontorusT"

UNIVERSITA
L1 STUDI
DI PADOVA

To obtain maximal ungauged
supergravities in lower
dimensions, it is necessary to
reduce higher dimensional
supergravities on n-dimensional
tori.
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Compactifications

Picking a particular gauge results in a gauged Supergravity.

reduction
ontorusT"

gauging
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Gauging Procedure Ly e

The Embedding Tensor parameterise every possible
deformations of the theory.

reduction in presence of

- torsion (geometric flux) de® = T#,.ebAe®

reduction

g e
ontorus T" g-form fluxes [:F7=Cs

- non-geometric fluxes

11/10-n gauged
Supergravity

gauging
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Quadratic Constraints i St

Generators of the gauge group are picked by means of the
embedding tensor by

Xv = 0Oy “t,

The Embedding tensor must satisfy also some Quadratic
Constraints (QC):

f3y “Om "On " — (t5)n "OM Op * =0

or
[XI\/I7 XN] - *XI\/IN PXP

Looking for vacua means solving the QC and the EOM.
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Equations of Motion

Potentials in gauged supergravities is given by the difference of
the fermionic shifts A1 and A2 (which are function of the
embedding tensor):

V = o] A2]? - B|ALP

a = and 8 = 3,15 respectively in D =5,7.

11
3’8
The EOM are obtained by varying the potential along the

directions of the coset manifold E,,)/H, represented by ¥,

giving rise to quadratic expressions in the fermionic shift. e.g.
in D=5

4 ;
<3A1qu2m,,-ij/q + 2A2m’”P‘7A2,,7m,-jkaQ,q> Yk — o
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Method and Techniques

We look for solutions to the Quadratic Constraints toghether
with the EOM.

Every point of the
scalar manifold can
be reached by an
E(n) transformation

[G. Dall’Agata , G.Inverso, 2012]

n(n)/H

We look at extrema of the scalar potential
without fixing the gauging, ©, a priori!
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Analitic Techniques: g

eXtended Linearization

Given a second order system of multivariate equations /;,

denoting with x* terms of degree k: Hﬁ(:l xj,, and with Zp the
space generated by x*/ with 0 < k < D — 2 (n.T. courtois, A. Kiimov, J.

Patarin, A. Shamir, 2000] .

m Multiply: Create equations Hf-;l x;li € Lp, with
k<D-2

m Linearise: Linearise the system by introducing variables
Yirjaewfs = XinXiz -+ Xij

m Solve: When the linearisation technique produces an

equation with only one variable, solve it (with Berlekamp's
algorithm).

m Repeat: Insert the root in the system, simplify, and repeat

until every root is found. —
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Numerical Techniques:

Genetic Algorithms

Mutation

fittest individuals to
reproduce and carring
their phenotypes to
next generations.

? _ _
Genetic Algorithms
’ Initial p(:pulation ‘ (GA) max|m|ze
| Calculate the fitness value | (mlnlmlze) funCtlonS
-, by evolving a
I Selection I . . .
i population, increasing
Crossover
| = | the chances of the

s termination criteria
satisfied?




Genetic Algorithms

4‘ ‘:‘“‘ c'
In our case: f : R"— > R with n > 50.
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Candidate solutions are sampled according to a multivariate
normal dlStrIbUtIOh |n Rn [Hansen N., Ostermeier A., 2001]

Generation 1 Generation 2 Generation 3
/ 7 7]
\\/
Generation 4 Generation 5 Generation 6
|
CMA is a method to update the covariance matrix of this
distribution




UNIVERSITA
DEGLI STUDI

Data Analysis o

Residual
symmetries of the
vacua, vanishing
parameters of the !
embedding tensor :
and reconstruction (a) Uncorrelated Variables () No dependance among the variables
of the relations

among the ol
variables, allow to / ).(
obtain analytical s pyan
results. g i
T P
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Results

The vacua found in 5D are:

vacuum | Susy Ggauge Gres
AL | 8 S0(6) S0(6)
N 50(6) S0(5)
A3 | o 50(6) SU(3)
A |2 50(6) SU)XU(1)
MO |0,2.4,6 U(1) x R u(1)
ML | 4 U(1) x R® u(1)
M2 | 2 SO*(6) = SU(3,1)  SUB)XU(L)
M3 | 4 SO*(4) x R U(2)
Mé | 0 [SO(3,1)x SO(2,1)]xR®  U(2)
DL | 0 50(3,3) 50(3)?
D2 | o S0*(6) = SU(3,1) SU(2)

Some of them were already known [Bobev, Fischbacher, Gautason, Pilch,2020] [Gunaydin,
Romans, Warner,1985]
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Results

The vacua found in 7D are:

vacuum | susy  Ggayge Gres
AL | 4 S0(5) SO()
A2 0 SO(5) SO(4)
M1 0 U(L)xR* U(
M2 | 0 U@Q)xES U1

SOme Of them were already knOWn [K. Pilch, P. van Nieuwenhuizen, and P. K. Townsend, 1984]
[M. Pernici, K. Pilch, P. van Nieuwenhuizen, and N. P. Warner,1985]
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Results

The spectra have also been computed:

Vacuum | 42, = = A, A
AdS1 1g Og . [%]40 . [%}8 —420,—320, 02 015 i
AdS2 [¥]s 040, [%}3 ! [%}s —22081, 07, [7%}14 010, [%]5 [%}10 62

o[ty e 4], ¥
AdS3 2, |28 16 18 9 )12 9112 0g, |32| 8 : 7
Y L, o e
[%L' [ﬂs’ [%L o [—4] [ 15]
13, 1— %3 4
AdS4 [%]4' {7%}2' L2, {%L' {‘9‘}4 {?}8 55 ’ 3192 04 [1%]4 [%]2 %}2 {1%}4'
225 225 PEL' (=32, [75}4 65 25 25
I [ 4]2 42'{ 9}4 35, [4 4+ 2/7] {1}4 o1 16}4'{4}2
- [% . ‘ﬁ}z o [k 1

The spectra are analytical!
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Future Perspectives

m Numerical Scan in D=5 with 351 parameters with BFGS
algorithm (with T. Fischbacher and F.F. Gautason)

m Numerical Scan in D=4 with 912 parameters (with T.
Fischbacher and F.F. Gautason and al.)

m Explore some ideas around numerically-assisted fully
automatic generation of stringent completeness proofs
(with T. Fischbacher and F.F. Gautason and al.)

m Compare optimization analysis with Reinforcement
Learning techniques in D=7
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The End

Thank you
for the attention !
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