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Motivation

The curvature scalar invariants of the Riemann tensor are important
in General Relativity because they allow a manifestly coordinate
invariant characterisation of certain geometrical properties of
spacetimes such as, among others, curvature singularities,
gravitomagnetism (Petrov classification).

We calculate explicit analytic expressions for the set of
Zakhary-McIntosh (ZM) curvature invariants for accelerating
Kerr-Newman black holes in (anti-)de Sitter spacetime as well as for
the Kerr-Newman-(anti-)de Sitter black hole.

These black hole metrics belong to the most general type D solution
of the Einstein-Maxwell equations with a cosmological constant.

Detailed plotting of the curvature invariants reveal a rich structure of
the spacetime geometry surrounding the singularity of a rotating,
electrically charged and accelerating black hole. These graphs also
help us in an exact mathematical way to explore the interior of these
black holes-a terra incognita.
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Outline

Definitions of the Zakhary-McIntosh curvature invariants

Computation of explicit analytic expressions for the set of
Zakhary-McIntosh curvature invariants for the
Kerr-Newman-(anti-)de Sitter black hole.

Independent verification of our symbolic algebraic computations via
the formalism of tetrads of Newman and Penrose (NP)

Computation of explicit algebraic expression for the ZM invariants for
accelerating Kerr-Newman black holes in (anti-)de Sitter spacetime .

The electromagnetic duality anomaly in these curved backgrounds
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Preliminaries on Riemannian invariants

The Christoffel symbols of the second kind are expressed in the coordinate
basis in the form:

Γλ
µν =

1

2
gλα(gµα,ν + gνα,µ − gµν,α), (1)

where the summation convention is adopted and a comma denotes a
partial derivative. The Riemann curvature tensor is given by:

Rκ
λµν = Γκ

λν,µ − Γκ
λµ,ν + Γα

λνΓκ
αµ − Γα

λµΓκ
αν. (2)

The symmetric Ricci tensor and the Ricci scalar are defined by:

Rµν = Rα
µαν, R = g αβRαβ, (3)

while the Weyl tensor Cκλµν (the trace-free part of the curvature tensor) is
given explicitly in terms of the curvature tensor and the metric:

Cκλµν = Rκλµν +
1

2
(Rλµgκν + Rκνgλµ − Rλνgκµ − Rκµgλν)

+
1

6
R(gκµgλν − gκνgλµ). (4)
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The definitions of the Zahkary and McIntosh invariants fall into three groups
Zahkary & McIntosh, GERG 1997:

Weyl invariants :

I1 = CαβγλC
αβγλ = C κλ

αβ C
αβ
κλ , (5)

I2 = −C µν
αβ C

∗ αβ
µν = −K2, (6)

I3 = C
µν

αβ C
oρ

µν C
αβ

oρ , (7)

I4 = −C κλ
αβ C

∗ oρ
κλ C

αβ
oρ (8)

Ricci invariants :

I5 = R = gαβR
αβ, (9)

I6 = RαβR
αβ = Rαβg

µαgλβRµλ, (10)

I7 = R ν
µ R

ρ
ν R

µ
ρ , (11)

I8 = R ν
µ R

ρ
ν R λ

ρ R
µ

λ (12)
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Mixed invariants :

I9 = C ν
αβµ RβµR α

ν = −C ν
µαβR

βµR α
ν , (13)

I10 = −C ∗ γ
αβλ RβλR α

γ , (14)

I11 = RαβRµν(C
ρ

oαβC
o

ρµν − C
∗ ρ
oαβC

∗ o
ρµν), (15)

I12 = −RαβRµν(C
∗ ρ
oαβ C o

ρµν + C
ρ

oαβC
∗ o
ρµν), (16)

I15 =
1

16
RαβRµν(CoαβρC

o ρ
µν + C ∗oαβρC

∗o ρ
µν ), (17)

I16 = −
1

32
RαβRµν

(
CoησρC

o ρ
αβ C

η σ
µν + CoησρC

∗o ρ
αβ C

∗η σ
µν

− C ∗oησρC
∗o ρ
αβ C

η σ
µν + C ∗oησρC

o ρ
αβ C

∗η σ
µν

)
, (18)
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and

I17 =
1

32
RαβRµν

(
C ∗oκλρC

o ρ
αβ C κ λ

µν + C ∗oκλρC
∗o ρ
αβ C ∗κ λ

µν

− CoκλρC
∗o ρ
αβ C κ λ

µν + CoκλρC
o ρ
αβ C ∗κ λ

µν

)
(19)

Here C ∗αβγδ is the dual of the Weyl tensor, defined by:

C ∗αβγδ =
1

2
EαβκλC

κλ
γδ, (20)

where Eαβκλ is the Levi-Civita pseudotensor.
Historically, the first invariant studied was the Kretschmann’s scalar:

K := RαβγδR
αβγδ. (21)

We calculated the ZM curvature invariants in tensorial representation for
the specific black holes with MapleTM2021.
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The Kerr-Newman-de Sitter black hole metric

The spacetime interval for the Kerr-Newman-de Sitter black hole solution
(which is of Petrov type D and Segre type [(11)(1,1)]) in Boyer-Lindquist
coordinates is (G = c = 1):

ds2 =
∆KN
r

Ξ2ρ2
(dt − a sin2 θdφ)2 − ρ2

∆KN
r

dr2 − ρ2

∆θ
dθ2

− ∆θ sin2 θ

Ξ2ρ2
(adt − (r2 + a2)dφ)2 (22)

∆θ := 1 +
a2Λ

3
cos2 θ, Ξ := 1 +

a2Λ
3

, (23)

ρ2 = r2 + a2 cos2 θ (24)

∆KN
r :=

(
1− Λ

3
r2
) (

r2 + a2
)
− 2mr + q2, (25)

This is accompanied by a non-zero electromagnetic field F = dA with vector
potential :

A = − qr

Ξ(r2 + a2 cos2 θ)
(dt − a sin2 θdφ). (26)
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Result for the Chern-Pontryagin invariant K2 for the
KN(a)dS BH

The Chern-Pontryagin invariant K2 is also equal to the invariant built from
the dual of the Riemmann tensor:

K2 = C ∗αβγδC
αβγδ =

1

2
E αβσρR

µν
σρ Rαβµν ≡∗ R ·R. (27)

∗R ·R has been proposed by Ciufolini to characterise the spacetime
geometry and curvature generated by mass-energy currents and by the
intrinsic angular momentum of a central body. We computed the invariant
∗R ·R = 1

2E
αβσρR

µν
σρ Rαβµν-the Hirzebruch signature density in closed form

for the KN(a)dS BH Kraniotis Class.Quantum Grav. 39 (2022) 145002:

K2 =
96a(

r2 + a2 cos(θ)2
)6 (cos(θ)3 a2m− 3 cos(θ)m r2 + 2 cos(θ) q2r

)
×
(
−3a2 cos(θ)2mr + a2 cos(θ)2 q2 +m r3 − q2r2

)
.

(28)
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The Euler-Poincare invariant for the
Kerr-Newman-(anti-)de Sitter black hole

The Hirzebruch signature density, K2, is of course an example of a
topological invariant. Another interesting topological invariant, besides K2,
is the quantity constructed from the doubly dual curvature tensor:

KEuler =
1

4
E αβγδE µνρσRαβµνRγδρσ. (29)

The topological invariant KEuler is essentially Euler’s density whose
integral over spacetime measure gives the so called Euler-Poincare
characteristic χ Indeed, the Euler-Poincare characteristic in four
dimensions is: χ =

∫ −1
128π2

√
−gKEulerd4x .

The topological Euler invariant has been studied in relation to Weyl
conformal anomaly in four derivative theories such as conformal gravity
and conformal supergravity Duff 2020 as well as in the context of boundary
conformal invariants in five dimensions Astaneh & Solodukhin 2021
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The Euler-Poincare invariant for the
Kerr-Newman-(anti-)de Sitter black hole

We calculated the invariant KEuler for the Kerr-Newman-(anti-)de Sitter
black hole spacetime. The novel explicit algebraic expression of the Euler
invariant we computed is:

KEuler =
1

3
(
r2 + a2 cos(θ)2

)6
(
−8Λ2 cos(θ)12 a12 − 48Λ2 cos(θ)10 a10r2

− 120Λ2 cos(θ)8 a8r4 +
(
−160a6Λ2r6 + 144a6m2

)
cos(θ)6

+
(
−120Λ2a4r8 − 2160a4m2r2 + 1440a4mq2r − 120q4a4

)
cos(θ)4

− 2160

(
1

45
Λ2a2r8 − a2m2r2 +

4

3
a2mq2r − 19

45
a2q4

)
r2 cos(θ)2

− 8r12Λ2 − 144m2r6 + 288mq2r5 − 120q4r4

)
. (30)

G. V. Kraniotis (UOI) Curvature invariants for accelerating, rotating and charged black holes with Λ 6= 029 June 2022, susy 2022 11 / 46



Results for the ZM invariants for the KN(a)dS BH

I1 =
48(

r2 + a2 cos(θ)2
)6
(
−a3m cos(θ)3 +

(
−3a2mr + a2q2

)
cos(θ)2 +

(
3am r2 − 2a q2r

)
cos(θ)

+
(
mr − q2

)
r2

)
×
(
a3m cos(θ)3 +

(
−3a2mr + a2q2

)
cos(θ)2 +

(
−3am r2 + 2a q2r

)
cos(θ)−

(
−mr + q2

)
r2
)

,

(31)

I3 =
96(

r2 + a2 cos(θ)2
)9
(
−3 cos(θ)6 a6m2 +

(
27a4m2r2 − 18a4mq2r + a4q4

)
cos(θ)4

+
(
−33a2m2r4 + 44a2mq2r3 − 14a2q4r2

)
cos(θ)2 + r6m2 − 2mq2r5 + q4r4

)
×
((
−3a2mr + a2q2

)
cos(θ)2 +m r3 − q2r2

)
(32)

I4 = −
864a(

r2 + a2 cos(θ)2
)9
(

cos (θ)3 a2m

3
+

(
−m r2 +

2

3
q2r

)
cos(θ)

)

×
[
−cos (θ)6 a6m2

3
+

(
11a4m2r2 − 22

3
a4mq2r + a4q4

)
cos(θ)4

+

(
−9a2m2r4 + 12a2mq2r3 − 10

3
a2q4r2

)
cos(θ)2 −

r4
(
−3m2r2 + 6mq2r − 3q4

)
3

]
,

(33)

I5 = R = 4Λ, (34)
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I7 =
4
(

Λ2 cos(θ)8 a8 + 4Λ2 cos(θ)6 a6r2 + 6Λ2 cos(θ)4 a4r4 + 4Λ2 cos(θ)2 a2r6 + Λ2r8 + 3q4
)

Λ(
r2 + a2 cos(θ)2

)4 ,

(35)

I8 =
1(

r2 + a2 cos(θ)2
)8
(

4Λ4 cos(θ)16 a16 + 32Λ4 cos(θ)14 a14r2 + 112Λ4 cos(θ)12 a12r4

+ 224Λ4 cos(θ)10 a10r6 +
(
280Λ4a8r8 + 24Λ2a8q4

)
cos(θ)8 + 96r2

(
7

3
a6Λ4r8 + a6q4Λ2

)
cos(θ)6

+
(
112Λ4a4r12 + 144Λ2a4q4r4

)
cos(θ)4 + 96r2

(
1

3
Λ4a2r12 + Λ2a2q4r4

)
cos(θ)2

+ 4Λ4r16 + 24Λ2q4r8 + 4q8

)
, (36)

I6 =
4q4(

r2 + a2 cos(θ)2
)4 + 4Λ2, (37)

I9 = −
16
(
−3a2 cos(θ)2mr + a2 cos(θ)2 q2 +m r3 − q2r2

)
q4(

r2 + a2 cos(θ)2
)7 , (38)
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I10 =
16aq4(

r2 + a2 cos(θ)2
)7 (cos(θ)3 a2m− 3 cos(θ)m r2 + 2 cos(θ) q2r

)
, (39)

I11 =
64q4(

r2 + a2 cos(θ)2
)10
[

cos(θ)3 a3m+
(
−3a2mr + a2q2

)
cos(θ)2 +

(
−3am r2 + 2a q2r

)
cos(θ)

− r2
(
−mr + q2

)]
×
(
− cos(θ)3 a3m+

(
−3a2mr + a2q2

)
cos(θ)2 +

(
3am r2 − 2a q2r

)
cos(θ) +

(
mr − q2

)
r2
)

,

(40)

I12 = −
128aq4(

r2 + a2 cos(θ)2
)10 (cos(θ)3 a2m− 3 cos(θ)m r2 + 2 cos(θ) q2r

)
×
(
−3a2 cos(θ)2mr + a2 cos(θ)2 q2 +m r3 − q2r2

)
, (41)

I15 =
4q4

(
cos(θ)2 a2m2 + r2m2 − 2mq2r + q4

)
(
r2 + a2 cos(θ)2

)8 , (42)

I16 = −
24q4

(
cos(θ)2 a2m2 +

(
mr − q2

)2)(
a2
(
mr − q2

3

)
cos(θ)2 − r2(mr−q2)

3

)
(
r2 + a2 cos(θ)2

)11 , (43)
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I17 = −
24a q4(

r2 + a2 cos(θ)2
)11

(
cos (θ)3 a2m

3
+

(
−m r2 +

2

3
q2r

)
cos(θ)

) (
cos(θ)2 a2m2 + (mr − q2)2

)
.

(44)

We summarise our results as follows:

Theorem

The exact algebraic expressions for the curvature invariants calculated for the Kerr-Newman-(anti-)de
Sitter metric are given in Equations (31)-(44) and (28).

Theorem

The Kretschmann invariant K for the KN(a)dS black hole is given by the expression:

KKN(a)dS =
1

3
(
r2 + a2 cos(θ)2

)6
(

8Λ2 cos(θ)12 a12 + 48Λ2 cos(θ)10 a10r2 + 120Λ2 cos(θ)8 a8r4

+
(
160Λ2a6r6 − 144a6m2

)
cos(θ)6 + 2160

(
1

18
r8Λ2 +m2r2 − 2

3
mq2r +

7

90
q4
)
a4 cos(θ)4

− 2160

(
− 1

45
r8Λ2 +m2r2 − 4

3
mq2r +

17

45
q4
)
a2r2 cos(θ)2 + 8Λ2r12 + 144m2r6 − 288mq2r5

+ 168q4r4

)
. (45)
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(a) Contour plot of KEuler.
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(b) Contour plot of KEuler
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Figure: Contour plots of KEuler. (a) for spin parameter a = 0.52, charge
q = 0.4,dimensionless cosmological parameter Λ = 3.6× 10−33,m = 1. (b) For
spin a = 0.9939, charge q = 0.11,dimensionless cosmological parameter
Λ = 3.6× 10−33,m = 1. (c) For low spin a = 0.26, electric charge
q = 0.91,dimensionless cosmological parameter Λ = 3.6× 10−33, m = 1.
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(a) 3D plot of KEuler. (b) 3D plot of KEuler

(c) 3D Plot of KEuler.

Figure: 3D plots of the Euler invariant, KEuler, plotted as a function of the
Boyer-Lindquist coordinates r and θ . (a) for spin parameter a = 0.52, charge
q = 0.4,dimensionless cosmological parameter Λ = 3.6× 10−33,m = 1. (b) For spin
a = 0.9939, charge q = 0.11,dimensionless cosmological parameter
Λ = 3.6× 10−33,m = 1. (c) For low spin a = 0.26, electric charge
q = 0.91,dimensionless cosmological parameter Λ = 3.6× 10−33 and mass m = 1.
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(a) 3D plot of K2. (b) 3D Plot of K2.

Figure: 3D plots of the Chern-Pontryagin invariant, K2, plotted as a
function of the Boyer-Lindquist coordinates r and θ . (a) for spin
parameter a = 0.52, charge q = 0.4, mass m = 1. (b) For spin
a = 0.9939, charge q = 0.11, mass m = 1.
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(a) 3D plot of I1. (b) 3D plot of I1

(c) 3D Plot of I1.

Figure: 3D plots of the ZM Weyl invariant, I1, plotted as a function of the Boyer-Lindquist coordinates r and θ . (a) for
spin parameter a = 0.26, charge q = 0.91, m = 1. (b) For spin a = 0.52, charge q = 0.4, m = 1. (c) For high spin a = 0.9939,
electric charge q = 0.11 and mass m = 1.
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The Newman-Penrose (NP) formalism is a tetrad formalism with a special
choice of the tetrad in terms the null vectors l,n,m,m. In the NP
formalism, the ten independent components of the Weyl tensor are
determined by the five complex scalar functions defined as:

Ψ0 = Cµνλσl
µmνlλmσ,

Ψ1 = Cµνλσl
µnνlλmσ,

Ψ2 = Cµνλσm
µnνlλmσ,

Ψ3 = Cµνλσm
µnνlλnσ,

Ψ4 = Cµνλσm
µnνmλnσ.

(46)

Two particularly useful complex scalar polynomial invariants for a vacuum
spacetime are given in terms of the Weyl tensor components by Podolský
& Griffiths 2009:

I = Ψ0Ψ4 − 4Ψ1Ψ3 + 3Ψ2
2, J = det Ψ, Ψ =

 Ψ0 Ψ1 Ψ2

Ψ1 Ψ2 Ψ3

Ψ2 Ψ3 Ψ4

 . (47)
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For our computations we use the generalised Kinnersley null tetrad used in
Kraniotis 2019:

lµ =

[
(r2 + a2)Ξ

∆KN
r

, 1, 0,
aΞ

∆KN
r

]
, nµ =

[
Ξ(r2 + a2)

2ρ2
,−∆KN

r

2ρ2
, 0,

aΞ
2ρ2

]
mµ =

1

(r + ia cos θ)
√

2∆θ

[
iaΞ sin θ, 0, ∆θ,

iΞ
sin θ

]
mµ =

−1

(r − ia cos θ)
√

2∆θ

[
iaΞ sin θ, 0,−∆θ,

iΞ
sin θ

]
(48)

where we computed for the Ricci scalars:

Φ00 ≡
1

2
Rµνl

µlν = 0, Φ01 ≡
1

2
lµmν = Φ10 = 0, (49)

Φ02 ≡
1

2
Rµνm

µmν = Φ20 = 0, Φ22 ≡
1

2
Rµνn

µnν = 0, (50)

Φ12 ≡
1

2
Rµνn

µmν = Φ21 = 0, (51)

Φ11 ≡
1

4
Rµν(l

µnν +mµmν) =
q2

2(r2 + a2 cos(θ)2)2
(52)
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The only non-zero Weyl scalar is Ψ2:

Ψ2 = −
i cos(θ)ma+mr − q2

(r − ia cos(θ))3(r + ia cos(θ))
. (53)

A non-trivial check of our analytic computations performed in the tensorial
representation of the ZM invariants, provided with the aid of the NP
formalism, is the following equation that relates the Weyl invariant I1 and
the Chern-Potryagin invariant K2 with the Weyl scalar Ψ2 computed in
eqn(53):

I := I1 − iK2 = 16.3Ψ2
2 = 16I. (54)

We also derived the following relation:

J := I3 + iI4 = 96(−Ψ2)
3 = 6.16(−Ψ2)

3 = 96J. (55)
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The metric for an accelerating Kerr-Newman black hole in
(anti-)de Sitter spacetime

The Plebański-Demiański metric covers a large family of solutions which include
the physically most significant case: that of an accelerating, rotating and
charged black hole with Λ 6= 0 . We focus on the following metric that
describes an accelerating Kerr-Newman black hole in (anti-)de Sitter spacetime
Podolský & Griffiths 2006:

ds2 =
1

Ω2

{
−Q

ρ2
[
dt − a sin2 θdφ

]2
+

ρ2

Q
dr2 +

ρ2

P
dθ2

+
P

ρ2
sin2 θ

[
adt − (r2 + a2)dφ

]2}
, (56)

Ω =1− αr cos θ, (57)

P =1− 2αm cos θ + (α2(a2 + q2) +
1

3
Λa2) cos2 θ, (58)

Q =((a2 + q2)− 2mr + r2)(1− α2r2)− 1

3
Λ(a2 + r2)r2, (59)

and α is the acceleration of the black hole.
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We first compute the Chern-Pontryagin invariant K2 for an accelerating Kerr-Newman black
hole in (anti-)de Sitter spacetime. The analytic explicit result for this fundamental invariant is:

K2 =
96a (αr cos(θ)− 1)6(
r2 + a2 cos(θ)2

)6
(

cos(θ)3 a4αm+ cos(θ)3 a2αq2r

− 3 cos(θ) a2αm r2 − cos(θ) αq2r3 − 3a2 cos(θ)2mr + a2 cos(θ)2 q2 +m r3 − q2r2

)
×
(

3 cos(θ)2 a2αmr + 2 cos(θ)2 αq2r2 + cos(θ)3 a2m− αr3m− 3 cos(θ)m r2 + 2 cos(θ) q2r
)

(60)
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I1 =
1(

r2 + a2 cos(θ)2
)6 48

((
q2rα + am (aα− 1)

)
a2 cos(θ)3 +

(
−2aαq2r2 − 3a2m (aα + 1) r + a2q2

)
cos(θ)2

+
(
−αq2r3 − 3am (aα− 1) r2 − 2a q2r

)
cos(θ) +

(
m (aα + 1) r − q2

)
r2

)

×
(
a2
(
q2rα + am (aα + 1)

)
cos(θ)3 +

(
2aαq2r2 + 3a2m (aα− 1) r + a2q2

)
cos(θ)2

+
(
−αq2r3 − 3am (aα + 1) r2 + 2a q2r

)
cos(θ)−

(
m (aα− 1) r + q2

)
r2

)
(αr cos(θ)− 1)6 ,

(61)

I3 = −
96 (αr cos(θ)− 1)9(
r2 + a2 cos(θ)2

)9
(
a4
(
q4r2α2 + 2a2mq2rα2 + a2m2

(
a2α2 − 3

))
cos(θ)6

− 24

(
3mq2r2

4
+

(
a2m2 − q4

12

)
r − a2mq2

12

)
a4α cos(θ)5 +

[
−14a2α2q4r4 − 44a4mq2α2r3

+
(
−33a6α2m2 + 27a4m2

)
r2 − 18a4mq2r + a4q4

]
cos(θ)4

+ 80r2
(

11mq2r2

20
+

(
a2m2 − 7q4

20

)
r − 11a2mq2

20

)
a2α cos(θ)3

+
(
q4α2r6 + 18a2α2mq2r5 +

(
27a4α2m2 − 33a2m2

)
r4 + 44a2mq2r3 − 14a2q4r2

)
cos(θ)2

− 24r4
(
mq2r2

12
+

(
a2m2 − q4

12

)
r − 3a2mq2

4

)
α cos(θ)

+
(
−3a2α2m2 +m2

)
r6 − 2mq2r5 + q4r4

)
×
(
a2α

(
a2m+ q2r

)
cos(θ)3 +

(
−3a2mr + a2q2

)
cos(θ)2 +

(
−3a2αm r2 − αq2r3

)
cos(θ) +m r3 − q2r2

)
(62)
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I4 =
864 (αr cos(θ)− 1)9 a(

r2 + a2 cos(θ)2
)9

(
cos (θ)3 a2m

3
+ rα

(
a2m+

2q2r

3

)
cos(θ)2 +

(
−m r2 +

2

3
q2r

)
cos(θ)− αr3m

3

)

×
[
a4
(

α2q4r2 + 2a2α2mq2r + a2m2

(
a2α2 − 1

3

))
cos(θ)6 − 8a4

(
11mq2r2

12
+

(
a2m2 − q4

4

)
r

− a2mq2

4

)
α cos(θ)5 +

(
−10a2α2q4r4

3
− 12a4α2mq2r3 +

(
−9a6α2m2 + 11a4m2

)
r2

− 22a4mq2r

3
+ a4q4

)
cos(θ)4 +

80r2a2
(
9mq2r2

20 +
(
a2m2 − q4

4

)
r − 9a2mq2

20

)
α cos (θ)3

3
+

(
α2q4r6

+
22a2α2mq2r5

3
+
(
11a4α2m2 − 9a2m2

)
r4 + 12a2mq2r3 − 10a2q4r2

3

)
cos(θ)2 − 8r4α

(
mq2r2

4

+

(
a2m2 − q4

4

)
r − 11a2mq2

12

)
cos(θ)−

r4
(
m2
(
a2α2 − 3

)
r2 + 6mq2r − 3q4

)
3

]
,

(63)

I5 = 4Λ, (64)

I6 =
4(

r2 + a2 cos(θ)2
)4
(

cos(θ)8 α8q4r8 − 8 cos(θ)7 α7q4r7 + 28 cos(θ)6 α6q4r6

− 56 cos(θ)5 α5q4r5 + Λ2 cos(θ)8 a8 + 4Λ2 cos(θ)6 a6r2 + 70 cos(θ)4 α4q4r4 + 6Λ2 cos(θ)4 a4r4

− 56 cos(θ)3 α3q4r3 + 4Λ2 cos(θ)2 a2r6 + Λ2r8 + 28 cos(θ)2 α2q4r2 − 8 cos(θ) αq4r + q4

)
,

(65)
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I7 =
4(

r2 + a2 cos(θ)2
)4
(

3 cos(θ)8 α8q4r8 − 24 cos(θ)7 α7q4r7 + 84 cos(θ)6 α6q4r6 − 168 cos(θ)5 α5q4r5

+ Λ2 cos(θ)8 a8 + 4Λ2 cos(θ)6 a6r2 + 210 cos(θ)4 α4q4r4 + 6Λ2 cos(θ)4 a4r4

− 168 cos(θ)3 α3q4r3 + 4Λ2 cos(θ)2 a2r6 + Λ2r8 + 84 cos(θ)2 α2q4r2 − 24 cos(θ) αq4r + 3q4

)
Λ,

(66)

I9 =
16q4(

r2 + a2 cos(θ)2
)7 (αr cos(θ)− 1)11

(
cos(θ)3 a4αm+ cos(θ)3 a2αq2r

− 3 cos(θ) a2αm r2 − cos(θ) αq2r3 − 3a2 cos(θ)2mr + a2 cos(θ)2 q2 +m r3 − q2r2

)
, (67)
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I8 =
1(

r2 + a2 cos(θ)2
)8

×
((

4α16q8r16 + 24Λ2a8α8q4r8 + 4Λ4a16
)

cos(θ)16 +
(
−64α15q8r15 − 192Λ2a8α7q4r7

)
cos(θ)15

+ 32r2
(
15α14q8r12 + 3Λ2a6α8q4r8 + 21Λ2a8α6q4r4 + Λ4a14

)
cos(θ)14 − 1344r5α5q4

[
5

3
q4r8α8 +

4

7
a6r4α2Λ2

+ a8Λ2

]
cos(θ)13 + 112r4

((
65q8α12 +

9

7
a4q4α8Λ2

)
r8 + 24a6q4r4α6Λ2 + a8Λ2

(
15q4α4 + a4Λ2

))
cos(θ)12

− 1344r3α3

((
13q4α8 +

6

7
a4α4Λ2

)
r8 + 4a6r4α2Λ2 + a8Λ2

)
q4 cos(θ)11 + 224r2

[
3Λ2a2α8q4r12

7

+
(
143q8α10 + 18Λ2a4α6q4

)
r8 + a6Λ2

(
30q4α4 + a4Λ2

)
r4 + 3a8q4α2Λ2

]
cos(θ)10 − 192rαq4

[
4a2r12α6Λ2

+

(
715

3
q4α8 + 42a4α4Λ2

)
r8 + 28a6r4α2Λ2 + a8Λ2

]
cos(θ)9 +

[
24Λ2α8q4r16 + 2688Λ2a2α6q4r12

+
(
51480q8α8 + 10080Λ2a4α4q4 + 280Λ4a8

)
r8 + 2688Λ2a6α2q4r4 + 24Λ2a8q4

]
cos(θ)8

− 768r3αq4
(
r12α6Λ2

4
+ 7a2r8α4Λ2 +

(
715

12
q4α6 +

21

2
a4α2Λ2

)
r4 + a6Λ2

)
cos(θ)7 + 96r2

[
7q4r12α6Λ2

+

(
70a2q4α4Λ2 +

7

3
a6Λ4

)
r8 +

(
1001

3
q8α6 + 42a4q4α2Λ2

)
r4 + a6q4Λ2

]
cos(θ)6 − 1152r5α

[
7

6
r8α4Λ2

+
14

3
a2r4α2Λ2 +

91

6
q4α4 + a4Λ2

]
q4 cos(θ)5 +

(
1680Λ2α4q4r12 + 112Λ4a4r12 + 2688Λ2a2α2q4r8

+ 7280α4q8r4 + 144Λ2a4q4r4

)
cos(θ)4 − 768r3

(
7

4
r8α2Λ2 + a2r4Λ2 +

35

12
q4α2

)
αq4 cos(θ)3

+ 96r2
(

1

3
Λ4a2r12 + 7q4r8α2Λ2 + Λ2a2q4r4 + 5q8α2

)
cos(θ)2 − 64q4rα

(
3Λ2r8 + q4

)
cos(θ) + 4Λ4r16

+ 24Λ2q4r8 + 4q8

)
, (68)

I10 = −
16aq4 (αr cos(θ)− 1)11(

r2 + a2 cos(θ)2
)7

(
3 cos(θ)2 a2αmr + 2 cos(θ)2 αq2r2 + cos(θ)3 a2m

− αr3m− 3 cos(θ)m r2 + 2 cos(θ) q2r

)
, (69)
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I11 =
64q4 (αr cos(θ)− 1)14(

r2 + a2 cos(θ)2
)10

[(
q2rα + am (aα + 1)

)
a2 cos(θ)3 +

(
2a q2αr2 + 3a2m (aα− 1) r + a2q2

)
cos(θ)2

+
(
−αq2r3 − 3am (aα + 1) r2 + 2a q2r

)
cos(θ)− r2

(
m (aα− 1) r + q2

)]

×
(
a2
(
q2rα + am (aα− 1)

)
cos(θ)3 +

(
−2a q2αr2 − 3a2m (aα + 1) r + a2q2

)
cos(θ)2

+
(
−αq2r3 − 3am (aα− 1) r2 − 2a q2r

)
cos(θ) +

(
m (aα + 1) r − q2

)
r2

)
, (70)

I12 = −
128aq4 (αr cos(θ)− 1)14(

r2 + a2 cos(θ)2
)10

(
3 cos(θ)2 a2αmr + 2 cos(θ)2 αq2r2 + cos(θ)3 a2m

− αr3m− 3 cos(θ)m r2 + 2 cos(θ) q2r

)

×
[

cos(θ)3 a4αm+ cos(θ)3 a2αq2r − 3 cos(θ) a2αm r2 − cos(θ) αq2r3 − 3a2 cos(θ)2mr

+ a2 cos(θ)2 q2 +m r3 − q2r2

]
, (71)

I15 =
4q4(

r2 + a2 cos(θ)2
)8
((

α2q4r2 + 2a2α2mq2r + a2m2
(
a2α2 + 1

))
cos(θ)2

+ 2q2α
(
a2m−m r2 + q2r

)
cos(θ) +m2

(
a2α2 + 1

)
r2 − 2mq2r + q4

)
(αr cos(θ)− 1)14 ,

(72)

I16 = −
8 (αr cos(θ)− 1)17 q4(
r2 + a2 cos(θ)2

)11
[(

α2q4r2 + 2a2α2mq2r + a2m2
(
a2α2 + 1

))
cos(θ)2

+ 2q2α
(
a2m−m r2 + q2r

)
cos(θ) +m2

(
a2α2 + 1

)
r2 − 2mr q2 + q4

]

×
(
a2α

(
a2m+ q2r

)
cos(θ)3 +

(
−3a2mr + a2q2

)
cos(θ)2

+
(
−3a2αm r2 − αq2r3

)
cos(θ) +m r3 − q2r2

)
, (73)
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I17 =
24aq4 (αr cos (θ)− 1)17(

r2 + a2 cos(θ)2
)11

(
cos (θ)3 a2m

3
+ rα

(
a2m+

2q2r

3

)
cos(θ)2

+

(
−m r2 +

2

3
q2r

)
cos(θ)− αr3m

3

)((
α2q4r2 + 2a2α2mq2r + a2m2

(
a2α2 + 1

))
cos(θ)2

+ 2q2α
(
a2m−m r2 + q2r

)
cos(θ) +m2

(
a2α2 + 1

)
r2 − 2mq2r + q4

)
. (74)

We summarise our results as follows:

Theorem

The exact algebraic expressions for the curvature invariants calculated for the accelerating
Kerr-Newman black hole in (anti-)de Sitter spacetime are given in Equations (61)-(74) and (60).

Remark

For vanishing acceleration of the black hole, i.e. α = 0, we recover the results of Theorem 1.
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We note that we have also checked our results for the curvature invariants for
accelerating Kerr-Newman-(anti-)de Sitter black holes within the NP formalism
, as we did for the case of non-accelerating Kerr-Newman-(anti-)de Sitter black
holes. For instance, the only non-zero curvature scalars in the NP-formalism for
the metric (56) relative to a natural null tetrad are the Ricci scalars:

Φ11 =
1

2
q2

(1− αr cos(θ))4

(r2 + a2 cos(θ)2)2
, and Λ, (75)

and the Weyl scalar:

Ψ2 = −
(1− αr cos(θ))3

(
m (iaα + 1) (r + ia cos(θ))− q2 (1 + αr cos(θ))

)
(r − ia cos(θ))3 (r + ia cos(θ))

(76)
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As a result, we obtain for the curvature invariant I6 the explicit compact form:

I6 =
4q4 (1− αr cos(θ))8(
r2 + a2 cos(θ)2

)4 + 4Λ2, (77)

which is in total agreement with eqn.(65) obtained with tensorial computation
using a Maple code. Likewise within the NP formalism we derive the following
explicit algebraic expression for the curvature invariants I7, I8:

I7 =
12Λq4 (1− αr cos(θ))8(

r2 + a2 cos(θ)2
)4 + 4Λ3, (78)

I8 =
4q8 (1− αr cos(θ))16(

r2 + a2 cos(θ)2
)8 + 4

12Λq4 (1− αr cos(θ))8(
r2 + a2 cos(θ)2

)4 + 4Λ3

Λ

− 6

4q4 (1− αr cos(θ))8(
r2 + a2 cos(θ)2

)4 + 4Λ2

Λ2 + 12Λ4. (79)

a result that fully agrees with eqns.(66) and (68) respectively.
G. V. Kraniotis (UOI) Curvature invariants for accelerating, rotating and charged black holes with Λ 6= 029 June 2022, susy 2022 32 / 46



The sign of the invariant I1

0.0 0.5 1.0 1.5 2.0

0.0
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1.0
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2.0
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3.0

r

� I1<0,a=0.9939,q=0.11,α=0.01

I1>0,a=0.9939,q=0.11,α=0.01

Figure: Regions of negative and positive I1, eqn.(61) for an accelerating,
charged and rotating black hole for the choice of values for the black hole
parameters: a = 0.9939, q = 0.11, α = 0.01,m = 1.
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� I1<0,a=0.9939,q=0.11,α=0

I1>0,a=0.9939,q=0.11,α=0

Figure: Regions of negative and positive I1, eqn.(31) for a
non-accelerating, charged and rotating black hole for the choice of values
for the black hole parameters: a = 0.9939, q = 0.11, α = 0,m = 1.
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The sign of the Chern-Pontryagin invariant K2

0.0 0.5 1.0 1.5 2.0
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3.0

r

� K2<0,a=0.52,q=0.11,α=0.05

K2>0,a=0.52,q=0.11,α=0.05

Figure: Regions of negative and positive Chern-Pontryagin invariant K2,
eqn.(60) for an accelerating Kerr-Newman black hole in (anti-)de Sitter
spacetime for the choice of values for the black hole parameters:
a = 0.52, q = 0.11, α = 0.05,m = 1.
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Figure: Contour plot of level curves of constant I1 (eqn.61) for the choice
of parameter values: a = 0.9939, q = 0.11, α = 0.01,m = 1, in the r − θ
plane.
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The meaning/importance of regions with positive and
negative values of the invariants I1,K2

We now briefly comment the meaning/importance of regions with positive
and negative values of the invariants I1,K2 and the zero-value boundaries
between the regions in the graphs. The regions of spacetime where the
invariants I1,K2 vanish can be determined analytically. For reasons of
simplicity of the presentation we focus the discussion in the case of zero
acceleration, i.e. α = 0. Solving I1 = 0 for cos(θ), applying the method of
Tartaglia and Cardano, and assuming α = 0 we obtain:
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cos(θ) = ±a2q2 − 3a2mr

3a3m

±
(
−a4q4 + 12a4mq2r − 18a4m2r2

)
/

(
3a3m

(
−a6q6 + 18a6mq4r − 54a6m2q2r2 + 54a6m3r3

+ 3
√

6
√
−a12m2q8r2 + 18a12m3q6r3 − 72a12m4q4r4 + 108a12m5q2r5 − 54a12m6r6

)1/3)

∓ 1

3a3m

(
−a6q6 + 18a6mq4r − 54a6m2q2r2 + 54a6m3r3

+ 3
√

6
√
−a12m2q8r2 + 18a12m3q6r3 − 72a12m4q4r4 + 108a12m5q2r5 − 54a12m6r6

)1/3

,

(80)

cos(θ) = ±a2q2 − 3a2mr

3a3m

∓
((

1 + i
√

3
) (
−a4q4 + 12a4mq2r − 18a4m2r2

))
/

(
6a3m

(
−a6q6 + 18a6mq4r − 54a6m2q2r2 + 54a6m3r3

+ 3
√

6
√
−a12m2q8r2 + 18a12m3q6r3 − 72a12m4q4r4 + 108a12m5q2r5 − 54a12m6r6

)1/3)

± 1

6a3m

(
1− i
√

3
)(
−a6q6 + 18a6mq4r − 54a6m2q2r2 + 54a6m3r3

+ 3
√

6
√
−a12m2q8r2 + 18a12m3q6r3 − 72a12m4q4r4 + 108a12m5q2r5 − 54a12m6r6

)1/3

,

(81)
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cos(θ) = ±a2q2 − 3a2mr

3a3m

∓
((

1− i
√

3
) (
−a4q4 + 12a4mq2r − 18a4m2r2

))
/

(
6a3m

(
−a6q6 + 18a6mq4r − 54a6m2q2r2 + 54a6m3r3

+ 3
√

6
√
−a12m2q8r2 + 18a12m3q6r3 − 72a12m4q4r4 + 108a12m5q2r5 − 54a12m6r6

)1/3)

± 1

6a3m

(
1 + i
√

3
)(
−a6q6 + 18a6mq4r − 54a6m2q2r2 + 54a6m3r3

+ 3
√

6
√
−a12m2q8r2 + 18a12m3q6r3 − 72a12m4q4r4 + 108a12m5q2r5 − 54a12m6r6

)1/3

, (82)

while solving K2 = 0 (again for zero acceleration α = 0) yields:

cos(θ) = 0, (83)

cos(θ) = ±
√

3mr2 − 2q2r

m

1

a
, (84)

cos(θ) = ±1

a

√
q2r2 −mr3

q2 − 3mr
. (85)
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Thus the zero boundary expressed by eqns(80)-(82) can be interpreted as
separating regions of electric dominance of the Weyl tensor (I1 > 0) from
regions of Weyl magnetic dominance (I1 < 0) (Kraniotis Class.Quantum
Grav. 39 (2022) 145002). We mention at this point that an observer with
a timelike velocity vector field uα is said to measure the electric and
magnetic components, Eαβ and Hαβ, respectively, of the Weyl tensor by

Eαβ ≡ Cαγβδu
γuδ, Hαβ ≡ C ∗αγβδu

γuδ. (86)

The curvature invariant I1 is related to the electric and magnetic
components of the Weyl tensor as follows (Filipe L et al)(2021)):

I1
8
= EαβEαβ −HαβHαβ, (87)

while the Chern-Pontryagin invariant K2 is expressed as follows :

1

16
K2 = EαβHαβ. (88)

Equation (87) clarifies the introduction of the region of Weyl electric
dominance: EαβEαβ > HαβHαβ, i.e. I1 > 0, and regions of Weyl magnetic

dominance: EαβEαβ < HαβHαβ, i.e. I1 <0.
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The zeros of the Hirzebruch invariant K2 in eqns.(83)-(85) define purely
electric/magnetic Weyl surfaces. For θ = π/2 and

cos(θ) = ±
√

mr (3mr−2q2)
ma Weyl tensor is purely electric while for the zeros

in (85) the Weyl tensor is purely magnetic. A Weyl tensor is called purely
electric (purely magnetic) when Hαβ = 0 (Eαβ = 0) R. Arianhod CQG
1994.
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Chiral photon anomaly for a gravitational background with
a non-trivial Chern-Pontryagin invariant K2

A non-trivial Hirzebruch signature density invariant K2 also appears to play
a role in the electromagnetic duality anomaly in curved spacetimes. As is
known the source-free Maxwell action is invariant under electric-magnetic
duality rotations in arbitrary spacetimes (Deser and Teitelboim 1976):

Fµν → Fµν cos(θ) + F ∗µν sin(θ). (89)

This leads to a conserved classical Noether charge. In the work by I Agullo
et al PRL (2017),inspired by earlier work of A.D. Dolgov et al NPB
1989,1, it was shown that this conservation law was broken at the
quantum level in the presence of a background field with a non-trivial
Chern-Pontryagin invariant.

1The result of Dolgov, was further explored in (Reuter 1988) where it was shown
that for antisymmetric gauge fields of rank 2n− 1 coupled to gravity in 4n dimensions,
the symmetry under duality rotations is broken by quantum effects.
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In particular quantum effects may induce violation of helicity conservation
for photons propagating in curved spacetimes. Observable effects of this
photon chiral anomaly are directly related to the variation of
electromagnetic helicity Hem (Galaverni and Gabriele GERG 2021):

∆〈Hem〉 ∝
∫ t2

t1

∫
Σ3

RαβµνR
∗αβµν√−gd4x (90)

If the integral on the right term is different from zero, then Hem is not
conserved. The difference between the numbers of right circularly
polarised photons and left circularly polarised photons changes: the degree
of circular polarisation is not conserved.
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Indeed, at large distances from a Kerr-Newman-(anti-)de Sitter black hole the
Hirzebruch density, eqn.(28), has the expansion:

K2 =
∗ R ·R =

96a

r12

(
−3m2r5 cos(θ) + 5 cos(θ)mq2r4 − 2q4r3 cos(θ)

+ 10m2a2r3 cos3(θ)

)(
1− 6a2

r2
cos2(θ) + · · ·

)
= −288

m2a

r7
cos(θ) + 480

a cos(θ)mq2

r8

− 192
a cos(θ)

r9
(
q4 − 14m2a2 cos2(θ)

)
+O

(
1

r9

)
(91)

Then integration yields the result (Kraniotis Class.Quantum Grav. 39 (2022)
145002):∫

RαβµνR
∗αβµν√−gd4x ∝

∫ π

0
cos(θ) sin2(θ)(r2 + a2 cos2(θ))dθ = 0. (92)

Thus despite the fact that, for a non-accelerating KN(a)dS black hole, the
Hirzebruch invariant is non-trivial its integral over all space is zero-in this case
there are no observable effects related to the quantum anomaly. This is in
agreement with the recent calculation for the Kerr metric in (Galaverni and
Gabriele GERG 2021).
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Let us investigate now the case of accelerating Kerr-Newman black holes in
(anti-)de Sitter spacetime. The Chern-Pontryagin invariant K2 in equation (60)
for large radii takes the form:

K2 =
∗ R ·R =

96a (αr cos(θ)− 1)6

r12

(
cos(θ)3 a4αm+ cos(θ)3 a2αq2r

− 3 cos(θ) a2αm r2 − cos(θ) αq2r3 − 3a2 cos(θ)2mr + a2 cos(θ)2 q2 +m r3 − q2r2

)

×
[

3 cos(θ)2 a2αmr + 2 cos(θ)2 αq2r2 + cos(θ)3 a2m− αr3m− 3 cos(θ)m r2

+ 2 cos(θ) q2r

](
1− 6

a2

r2
cos2(θ) + · · ·

)

=
96a (αr cos(θ)− 1)6

r6
(mq2α2 cos(θ)−m2α) + · · · (93)

Interestingly, the following polar angular integration of the leading term in (93),
which is a part of the spacetime integral

∫∫∫∫
RαβµνR

∗αβµν√−gd4x , gives a
non-zero result:∫ π

0

96a

r6
(mq2α2 cos(θ)−m2α) sin2(θ)(r2 + a2 cos2(θ))(αr cos(θ)− 1)2dθ 6= 0.

(94)

Thus, it appears that accelerating Kerr-Newman black holes in (anti-)de Sitter
spacetime yield a non-zero effect for the quantum photon chiral anomaly since a
nonzero Chern-Pontryagin integrated term is present.
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Conclusions

We computed, exact explicit algebraic expressions for the curvature invariants
in the ZM framework as well as for the Euler-Poincare and Kretschmann
invariants for accelerating Kerr-Newman black hole in (anti-)de Sitter
spacetime.

Despite the complexity of the computations involved using the tensorial
method of calculation, our final expressions are reasonably compact and easy
to use in applications.
We have also checked our computations through the NP formalism and with
the discovery of certain syzygies that the curvature invariants satisfy.
From the bestiary of our explicit novel expressions for the ZM curvature
invariants, we performed an extensive plotting of curvature that represents a
novel pathway to explore the geometry of spacetime inside accelerating and
non-accelerating Kerr-Newman black holes in (anti-)de Sitter spacetime. In
the process we demarcated the regions in the r − θ space of negative and
positive sign for these curvature invariants.
We mentioned the quantum photon chiral anomaly in connection to the
Chern-Pontryagin invariant and the difference between the case of
non-accelerated and accelerated black hole is highlighted.
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