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e Neutrino oscillations.!

@ Singularities in the t-channel may be regularised by taking into
account finite beam size.? Especially useful in (future?) muon
colliders.

@ Displaced vertex searches. Deeper understanding of how a
mediator travels.

@ Other possibilities: QFT picture of diffraction, effective
interactions (e.g. non-local chiral ET3 or jets), etc.
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For concreteness, assume a toy model with
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For concreteness, assume a toy model with
Lint(x) = A S1(x)x1(x) ®(x) + & S2(x)x2(x) ®(x) .

The amplitude for S1(p1) x1(p1) = S2(p2) x2(ph):

N /
\ / , /
ARt Py A/

X1 N 4
N 7 X2
\ q /
\ /
.
- —- - =<
4 P N
’ \
/

S 71 \\‘Sz
7 p1 P2 NN
/ \
’ N

5@ (p—q)6™® (k—q)

/d4X d4y e_i(P_q)'Xei(k_q)'y ,

d*q 1
2m)* g2 — m3 +ie

T(pvk)ZAg/(

with p = p1 + py, k =p> + p5



Introducing non-locality

We can rearrange the terms in the integral to see what each one
means.
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Simplifications

We can simplify the calculations by assuming steady state and
spherical symmetry, 6p°,0k® — 0, 6p' = 1/6x, and 6k' = 1/6y.
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Physical representation
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First analytical result

After some algebra, the amplitude becomes

35,3 -
T(p, ki I, 6x,8y) ~ 6(p° — k°) 6X’L§|y e [(17+8) 3+ (1K +%)0y°]/4
[e'ﬁm Erfc(z_) — el Erfe (z+)] ,

|6L/’ [=T- §<p5x +k5y)

612 =0x2+ 6y, and |[| = VL-L.

where zy = —fqél +
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Some observations

From this form we observe that:
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Some observations

From this form we observe that:
e Amplitude is finite in the physical region.
e Momentum is not conserved, and the distribution of k depends
on 0x,dy.
o In the limit 6x,6y — 0, T ~ 6x30y3 eif’|ﬂ/|f[ 5(p° — k9).4

4 W. Grimus and P. Stockinger, Phys. Rev. D 54 (1996), 3414-3419 [arXiv:hep-ph/9603430
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Further simpification: Recover conservartion of momentum

In an experiment, we expect negligible violation of momentum
conservation (|p]ox, |k|dy > 1). So, we introduce a profile that
can help us work out the general behaviour of the amplitude:
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Further simpification: Recover conservartion of momentum

In an experiment, we expect negligible violation of momentum
conservation (|p]ox, |k|dy > 1). So, we introduce a profile that
can help us work out the general behaviour of the amplitude:

6(7.51) — & (51 1or
This results in
T(ki1,61) ~ T(p, ki I,6x,8y) 6®)(p — k) .
Note:

Momenta at each vertex suffer from uncertainties.
Introduce matrix element as usual

513
~ e
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Far-field—|/] > |k| /2

In the far-field (Fraunhofer) region we recover the inverse-square
law (similar to 6/ — 0). The matrix element becomes:
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Far-field—|/] > |k| /2

In the far-field (Fraunhofer) region we recover the inverse-square
law (similar to 6/ — 0). The matrix element becomes:

eidll|

M~ 6P i (IK=al)’se

l

-~

Observations:
@ Inverse square law.
@ Suppressed backwards direction.
e Finite.
@ Oscillations of mixed mediators.

@ Off-shell mediator may be the most probable outcome.
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Near-field—|/| < |k| 6/

In the near-field (Fresnel) region we also assume |/| < &/.The
matrix element becomes

:ET _ 1 2
e () off-shell
{|k2—62
Mr\/
Gk 0r_evesi2 e a (Txk)?
e‘laéle (f=arer/a= (%) o chel

Observations:

- 1
0 6l —so00=Mn~im (k> =) +Pq = 7.
k> — &
o Finite.

o Oscillations of mixed mediators.
@ Slightly shifted maximum.
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Makes sense check-list

Is this approach realistic?
v Dependence only on relative distance.
V" In the limit §x, dy — 0, decoupling of momenta.
v Local S-matrix at / — oo.
v As m — 00, We recover inverse square law.
v

Backwards direction suppressed by a “quantum" obliquity
factor.

v Distinct features, i.e. falsifiable.
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@ Reasonable parametrization of non-local S-matrix.
@ Description of real mediation of virtual particles.

@ Successful regularization of singularities that appear in the
local S-matrix.

@ Unique features.

What we want to see:

Calculate observables (e.g. cross sections).

@ Inclusion of incoherent uncertainties.

@ Other profiles (e.g. beyond spherical symmetry, hard wall).
e Particle diffraction from QFT.

@ Correspondence between parameters and experimental setup.
°

Experiments.
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