Non-local S-matrix in a solvable model

Dimitrios Karamitros

Manchester U.

28 June 2022

Upcoming article:
DK, A. Pilaftsis

Introduction

- Why non-local S-matrix?
- local S-matrix
- Introducing non-locality
- Simplifications
- Physical representation
(2) Analytical results
- First analytical result
- Some observations
- Further simpification: Recover conservartion of momentum
(3) Features
- Far-field-| $|\vec{l}| \gg|\vec{k}| \delta l^{2}$
- Near-field- $\left.|\vec{l}| \ll|\vec{k}| \delta\right|^{2}$
- Pattern in space
(4) Makes sense check-list
(5) Summary-Future

Introduction

- Why non-local S-matrix?
- local S-matrix
- Introducing non-locality
- Simplifications
- Physical representation
(2) Analytical results
- First analytical result
- Some observations
- Further simpification: Recover conservartion of momentum
(3) Features
- Far-field- $\left.|\vec{l}| \gg|\vec{k}| \delta\right|^{2}$
- Near-field- $\left.|\vec{T}| \ll|\vec{k}| \delta\right|^{2}$
- Pattern in space

4 Makes sense check-listSummary-Future

Non-locality is connected to finite volume effects.

[^0]Non-locality is connected to finite volume effects.

Some reasons for non-locality/finite volume:

[^1]Non-locality is connected to finite volume effects.

Some reasons for non-locality/finite volume:

- Neutrino oscillations. ${ }^{1}$

[^2]Non-locality is connected to finite volume effects.

Some reasons for non-locality/finite volume:

- Neutrino oscillations. ${ }^{1}$
- Singularities in the t-channel may be regularised by taking into account finite beam size. ${ }^{2}$ Especially useful in (future?) muon colliders.

[^3]Non-locality is connected to finite volume effects.

Some reasons for non-locality/finite volume:

- Neutrino oscillations. ${ }^{1}$
- Singularities in the t-channel may be regularised by taking into account finite beam size. ${ }^{2}$ Especially useful in (future?) muon colliders.
- Displaced vertex searches. Deeper understanding of how a mediator travels.

[^4]Non-locality is connected to finite volume effects.

Some reasons for non-locality/finite volume:

- Neutrino oscillations. ${ }^{1}$
- Singularities in the t-channel may be regularised by taking into account finite beam size. ${ }^{2}$ Especially useful in (future?) muon colliders.
- Displaced vertex searches. Deeper understanding of how a mediator travels.
- Other possibilities: QFT picture of diffraction, effective interactions (e.g. non-local chiral ET^{3} or jets), etc.

[^5]For concreteness, assume a toy model with

$$
\mathcal{L}_{i n t}(x)=\lambda S_{1}(x) \chi_{1}(x) \Phi(x)+g S_{2}(x) \chi_{2}(x) \Phi(x)
$$

The amplitude for $S_{1}\left(p_{1}\right) \chi_{1}\left(p_{1}^{\prime}\right) \rightarrow S_{2}\left(p_{2}\right) \chi_{2}\left(p_{2}^{\prime}\right):$

For concreteness, assume a toy model with

$$
\mathcal{L}_{i n t}(x)=\lambda S_{1}(x) \chi_{1}(x) \Phi(x)+g S_{2}(x) \chi_{2}(x) \Phi(x)
$$

The amplitude for $S_{1}\left(p_{1}\right) \chi_{1}\left(p_{1}^{\prime}\right) \rightarrow S_{2}\left(p_{2}\right) \chi_{2}\left(p_{2}^{\prime}\right):$

For concreteness, assume a toy model with

$$
\mathcal{L}_{i n t}(x)=\lambda S_{1}(x) \chi_{1}(x) \Phi(x)+g S_{2}(x) \chi_{2}(x) \Phi(x)
$$

The amplitude for $S_{1}\left(p_{1}\right) \chi_{1}\left(p_{1}^{\prime}\right) \rightarrow S_{2}\left(p_{2}\right) \chi_{2}\left(p_{2}^{\prime}\right):$

$$
\delta^{(4)}(p-q) \delta^{(4)}(k-q)
$$

$T(p, k)=\lambda g \int \frac{d^{4} q}{(2 \pi)^{4}} \frac{1}{q^{2}-m_{\Phi}^{2}+i \epsilon} \overbrace{\int d^{4} x d^{4} y e^{-i(p-q) \cdot x} e^{i(k-q) \cdot y}}$, with $p=p_{1}+p_{1}^{\prime}, k=p_{2}+p_{2}^{\prime}$

Introducing non-locality

We can rearrange the terms in the integral to see what each one means.

We can rearrange the terms in the integral to see what each one means.

$$
T(p, k)=\overbrace{\lambda e^{-i p \cdot x}}^{\left(S_{1} \chi_{1} \Phi\right)_{x}}
$$

We can rearrange the terms in the integral to see what each one means.

$$
T(p, k)=\overbrace{\lambda e^{-i p \cdot x}}^{\left(S_{1} \chi_{1} \Phi\right)_{x}} \overbrace{\int \frac{d^{4} q}{(2 \pi)^{4}} \frac{e^{i q \cdot(x-y)}}{q^{2}-m_{\phi}^{2}+i \epsilon}}^{\Phi(x) \rightarrow \Phi(y)}
$$

We can rearrange the terms in the integral to see what each one means.

$$
\begin{aligned}
& T(p, k)= \\
& \overbrace{\lambda e^{-i p \cdot x}}^{\left(S_{1} \chi_{1}\right.}{ }^{\Phi)_{x}} \overbrace{\int \frac{d^{4} q}{(2 \pi)^{4}} \frac{e^{e^{i q \cdot(x-y)}}{ }^{2}-m_{\Phi}^{2}+i \epsilon}{}}^{\Phi(x) \rightarrow \Phi(y)} \overbrace{g e^{i k \cdot y}}^{\left(\Phi S_{2} \chi_{2}\right)_{y}} .
\end{aligned}
$$

We can rearrange the terms in the integral to see what each one means.

$$
T(p, k)=\overbrace{\int d^{4} x d^{4} y}^{\sum_{x} \sum_{y}} \overbrace{\lambda e^{-i p \cdot x}}^{\left(S_{1} \chi_{1} \Phi\right)_{x}} \overbrace{\int \frac{d^{4} q}{(2 \pi)^{4}} \frac{e^{i q \cdot(x-y)}}{q^{2}-m_{\Phi}^{2}+i \epsilon}}^{\Phi(x) \rightarrow \Phi(y)} \overbrace{g e^{i k \cdot y}}^{\left(\Phi S_{2} \chi_{2}\right)_{y}} .
$$

We can rearrange the terms in the integral to see what each one means.

$$
T(p, k)=\overbrace{\int d^{4} x d^{4} y}^{\sum_{x} \sum_{y}} \overbrace{\lambda e^{-i p \cdot x}}^{\left(S_{1} \chi_{1} \Phi\right)_{x}} \overbrace{\int \frac{d^{4} q}{(2 \pi)^{4}} \frac{e^{i q \cdot(x-y)}}{q^{2}-m_{\Phi}^{2}+i \epsilon}}^{\Phi(x) \rightarrow \Phi(y)} \overbrace{g e^{i k \cdot y}}^{\left(\Phi S_{2} \chi_{2}\right)_{y}} .
$$

Finite volume can be introduced by limiting x and y.

Introducing non-locality

We can rearrange the terms in the integral to see what each one means.

Finite volume can be introduced by limiting x and y.

We can simplify the calculations by assuming steady state and spherical symmetry; $\delta p^{0}, \delta k^{0} \rightarrow 0, \delta p^{i}=1 / \delta x$, and $\delta k^{i}=1 / \delta y$.

We can simplify the calculations by assuming steady state and spherical symmetry; $\delta p^{0}, \delta k^{0} \rightarrow 0, \delta p^{i}=1 / \delta x$, and $\delta k^{i}=1 / \delta y$.

$$
\begin{aligned}
T(p, k ; \vec{l}, \delta x, \delta y)= & (2 \pi) \delta\left(p^{0}-k^{0}\right) \lambda g \\
& \int d^{3} \vec{x} e^{i \vec{p} \cdot \vec{x}-\vec{x}^{2} / \delta x^{2}} \\
& \int d^{3} \vec{y} e^{-i \vec{k} \cdot \vec{y}-\vec{y}^{2} / \delta y^{2}} \\
& \int \frac{d^{3} \vec{q}}{(2 \pi)^{3}} \frac{e^{-i \vec{q} \cdot(\vec{x}-\vec{y}-\vec{l})}}{\tilde{q}^{2}-|\vec{q}|^{2}+i \epsilon},
\end{aligned}
$$

with $\vec{l}=\langle\vec{y}\rangle-\langle\vec{x}\rangle$ and $\tilde{q}^{2}=p^{02}-m_{\Phi}^{2}$.

Physical representation

Analytical results

Introduction

- Why non-local S-matrix?
- lócal S-matrix
- Introducing non-locality
- Simplifications
- Physical representation
(2) Analytical results
- First analytical result
- Some observations
- Further simpification: Recover conservartion of momentum
(3) Features
- Far-field- $\left.|\vec{\eta}| \gg|\vec{k}| \delta\right|^{2}$
- Near-field- $\left.|\vec{T}| \ll|\vec{k}| \delta\right|^{2}$
- Pattern in space
(4) Makes sense check-list
(5) Summary-Future

After some algebra, the amplitude becomes

$$
\begin{aligned}
T(p, k ; \vec{l}, \delta x, \delta y) & \sim \delta\left(p^{0}-k^{0}\right) \frac{\delta x^{3} \delta y^{3}}{|\vec{L}|} e^{-\left[\left(|\vec{p}|^{2}+\tilde{q}^{2}\right) \delta x^{2}+\left(|\vec{k}|^{2}+\tilde{q}^{2}\right) \delta y^{2}\right] / 4} \\
& {\left[e^{i \tilde{q}|\vec{L}|} \operatorname{Erfc}\left(z_{-}\right)-e^{-i \tilde{q}|\vec{L}|} \operatorname{Erfc}\left(z_{+}\right)\right], }
\end{aligned}
$$

where $z_{ \pm}=-\frac{i}{2} \tilde{q} \delta I \pm \frac{|\vec{L}|}{\delta l}, \vec{L}=\vec{l}-\frac{i}{2}\left(\vec{p} \delta x^{2}+\vec{k} \delta y^{2}\right)$, $\left.\delta\right|^{2}=\delta x^{2}+\delta y^{2}$, and $|\vec{L}|=\sqrt{\vec{L} \cdot \vec{L}}$.

Some observations

From this form we observe that:

4
W. Grimus and P. Stockinger, Phys. Rev. D 54 (1996), 3414-3419 [arXiv:hep-ph/9603430 [hep-ph]].

From this form we observe that:

- Amplitude is finite in the physical region.

4 W. Grimus and P. Stockinger, Phys. Rev. D 54 (1996), 3414-3419 [arXiv:hep-ph/9603430 [hep-ph]].

From this form we observe that:

- Amplitude is finite in the physical region.
- Momentum is not conserved, and the distribution of \vec{k} depends on $\delta x, \delta y$.

[^6]From this form we observe that:

- Amplitude is finite in the physical region.
- Momentum is not conserved, and the distribution of \vec{k} depends on $\delta x, \delta y$.
- In the limit $\delta x, \delta y \rightarrow 0, T \sim \delta x^{3} \delta y^{3} e^{i \tilde{q} \mid \overrightarrow{\|}} /|\vec{\Pi}| \delta\left(p^{0}-k^{0}\right) .{ }^{4}$

[^7]In an experiment, we expect negligible violation of momentum conservation ($|\vec{p}| \delta x,|\vec{k}| \delta y \gg 1$). So, we introduce a profile that can help us work out the general behaviour of the amplitude:

In an experiment, we expect negligible violation of momentum conservation $(|\vec{p}| \delta x,|\vec{k}| \delta y \gg 1)$. So, we introduce a profile that can help us work out the general behaviour of the amplitude:

$$
G(\vec{l}, \delta I)=e^{-(\vec{x}-\vec{y}-\vec{l})^{2} / \delta I^{2}}
$$

In an experiment, we expect negligible violation of momentum conservation $(|\vec{p}| \delta x,|\vec{k}| \delta y \gg 1)$. So, we introduce a profile that can help us work out the general behaviour of the amplitude:

$$
G(\vec{l}, \delta I)=e^{-(\vec{x}-\vec{y}-\vec{l})^{2} / \delta I^{2}}
$$

This results in

$$
T(k ; \vec{l}, \delta l) \sim T(p, k ; \vec{l}, \delta x, \delta y) \delta^{(3)}(\vec{p}-\vec{k}) .
$$

In an experiment, we expect negligible violation of momentum conservation $(|\vec{p}| \delta x,|\vec{k}| \delta y \gg 1)$. So, we introduce a profile that can help us work out the general behaviour of the amplitude:

$$
G(\vec{l}, \delta I)=e^{-(\vec{x}-\vec{y}-\vec{l})^{2} / \delta I^{2}}
$$

This results in

$$
T(k ; \vec{l}, \delta l) \sim T(p, k ; \vec{l}, \delta x, \delta y) \delta^{(3)}(\vec{p}-\vec{k}) .
$$

Note:

Momenta at each vertex suffer from uncertainties. Introduce matrix element as usual

$$
M \sim \frac{\delta l^{3}}{|\vec{L}|} e^{-\delta I^{2}\left(|\vec{k}|^{2}+\tilde{q}^{2}\right) / 2}\left[e^{i \tilde{q}|\vec{L}|} \operatorname{Erfc}\left(z_{-}\right)-e^{-i \tilde{q}|\vec{L}|} \operatorname{Erfc}\left(z_{+}\right)\right]
$$

(1) Introduction

- Why non-local S-matrix?
- local S-matrix
- Introducing non-locality
- Simplifications
- Physical representation
(2) Analytical results
- First analytical result
- Some observations
- Further simpification: Recover conservartion of momentum
(3) Features
- Far-field-| $|\vec{l}| \gg|\vec{k}| \delta l^{2}$
- Near-field- $\left.|\vec{l}| \ll|\vec{k}| \delta\right|^{2}$
- Pattern in space
(4) Makes sense check-list
(5) Summary-Future

In the far-field (Fraunhofer) region we recover the inverse-square law (similar to $\delta I \rightarrow 0$). The matrix element becomes:

$$
M \sim \delta l^{3} \frac{e^{i \tilde{q}|\vec{l}|}}{|\vec{l}|} e^{-\frac{1}{4}(|\vec{k}|-\tilde{q} \hat{\imath})^{2} \delta l^{2}}
$$

In the far-field (Fraunhofer) region we recover the inverse-square law (similar to $\delta l \rightarrow 0$). The matrix element becomes:

$$
M \sim \delta l^{3} \frac{e^{i \tilde{q}|\vec{l}|}}{|\vec{l}|} e^{-\frac{1}{4}(|\vec{k}|-\tilde{q} \hat{l})^{2} \delta l^{2}}
$$

Observations:

- Inverse square law.
- Suppressed backwards direction.
- Finite.
- Oscillations of mixed mediators.
- Off-shell mediator may be the most probable outcome.

Near-field- $|\overline{\mid}| \ll|\vec{k}| \delta I^{2}$

In the near-field (Fresnel) region we also assume $|\vec{I}| \ll \delta l$.

In the near-field (Fresnel) region we also assume $|\vec{l}| \ll \delta l$. The matrix element becomes

$$
M \sim \begin{cases}\frac{e^{i \vec{k} \cdot \vec{l}}}{|\vec{k}|^{2}-\tilde{q}^{2}} e^{-\left(\frac{\mid \vec{l}}{\delta l}\right)^{2}}, & \text { off-shell } \\ \frac{e^{i \tilde{q} \vec{l} \cdot \hat{k}}}{|\vec{k}|} \delta l e^{-(|\vec{k}|-\tilde{q})^{2} \delta l^{2} / 4-\frac{\tilde{q}}{|\vec{k}|}\left(\frac{\vec{l} \times \hat{k}}{\delta l}\right)^{2}}, & \text { on-shell }\end{cases}
$$

In the near-field (Fresnel) region we also assume $|\overrightarrow{\|}| \ll \delta l$. The matrix element becomes

$$
M \sim \begin{cases}\frac{e^{i \vec{k} \cdot \vec{l}}}{|\vec{k}|^{2}-\tilde{q}^{2}} e^{-\left(\frac{\mid \vec{J}}{\delta l}\right)^{2}}, & \text { off-shell } \\ \frac{e^{i \tilde{q} \vec{l} \cdot \hat{k}}}{|\vec{k}|} \delta l e^{-(|\vec{k}|-\tilde{q})^{2} \delta l^{2} / 4-\frac{\tilde{q}}{|\vec{k}|}\left(\frac{\vec{l} \times \hat{k}}{\delta \delta}\right)^{2}}, & \text { on-shell }\end{cases}
$$

Observations:

- $\delta I \rightarrow \infty \Rightarrow M \sim i \pi \delta_{+}\left(|\vec{k}|^{2}-\tilde{q}^{2}\right)+\mathcal{P}\left\{\frac{1}{|\vec{k}|^{2}-\tilde{q}^{2}}\right\}$.
- Finite.
- Oscillations of mixed mediators.
- Slightly shifted maximum.

Pattern in space

Makes sense check-list

(1)

Introduction

- Why non-local S-matrix?
- local S-matrix
- Introducing non-locality
- Simplifications
- Physical representation
(2) Analytical results
- First analytical result
- Some observations
- Further simpification: Recover conservartion of momentum
(3) Features
- Far-field- $\left.|\vec{I}| \gg|\vec{k}| \delta\right|^{2}$
- Near-field- $\left.|\vec{T}| \ll|\vec{k}| \delta\right|^{2}$
- Pattern in space
(4) Makes sense check-listSummary-Future

Makes sense check-list

Is this approach realistic?

Is this approach realistic?
\checkmark Dependence only on relative distance.

Is this approach realistic?
\checkmark Dependence only on relative distance.
\checkmark In the limit $\delta x, \delta y \rightarrow 0$, decoupling of momenta.

Is this approach realistic?
\checkmark Dependence only on relative distance.
\checkmark In the limit $\delta x, \delta y \rightarrow 0$, decoupling of momenta.
\checkmark Local S-matrix at $\delta I \rightarrow \infty$.

Is this approach realistic?
\checkmark Dependence only on relative distance.
\checkmark In the limit $\delta x, \delta y \rightarrow 0$, decoupling of momenta.
\checkmark Local S-matrix at $\delta I \rightarrow \infty$.
\checkmark As $|\vec{l}| \rightarrow \infty$, we recover inverse square law.

Is this approach realistic?
\checkmark Dependence only on relative distance.
\checkmark In the limit $\delta x, \delta y \rightarrow 0$, decoupling of momenta.
\checkmark Local S-matrix at $\delta I \rightarrow \infty$.
\checkmark As $|\vec{l}| \rightarrow \infty$, we recover inverse square law.
\checkmark Backwards direction suppressed by a "quantum" obliquity factor.

Is this approach realistic?
\checkmark Dependence only on relative distance.
\checkmark In the limit $\delta x, \delta y \rightarrow 0$, decoupling of momenta.
\checkmark Local S-matrix at $\delta I \rightarrow \infty$.
\checkmark As $|\vec{l}| \rightarrow \infty$, we recover inverse square law.
\checkmark Backwards direction suppressed by a "quantum" obliquity factor.
\checkmark Distinct features, i.e. falsifiable.

Summary-Future

(1)

Introduction

- Why non-local S-matrix?
- local S-matrix
- Introducing non-locality
- Simplifications
- Physical representationAnalytical results
- First analytical result
- Some observations
- Further simpification: Recover conservartion of momentum
(3) Features
- Far-field- $|\overrightarrow{l \mid} \gg| \vec{k} \mid \delta l^{2}$
- Near-field- $\left.|\vec{T}| \ll|\vec{k}| \delta\right|^{2}$
- Pattern in space
(4) Makes sense check-list
(5) Summary-Future

Summary-Future

What we saw:

Summary-Future

What we saw:

- Reasonable parametrization of non-local S-matrix.

Summary-Future

What we saw:

- Reasonable parametrization of non-local S-matrix.
- Description of real mediation of virtual particles.

What we saw:

- Reasonable parametrization of non-local S-matrix.
- Description of real mediation of virtual particles.
- Successful regularization of singularities that appear in the local S-matrix.

What we saw:

- Reasonable parametrization of non-local S-matrix.
- Description of real mediation of virtual particles.
- Successful regularization of singularities that appear in the local S-matrix.
- Unique features.

What we saw:

- Reasonable parametrization of non-local S-matrix.
- Description of real mediation of virtual particles.
- Successful regularization of singularities that appear in the local S-matrix.
- Unique features.

What we want to see:

What we saw:

- Reasonable parametrization of non-local S-matrix.
- Description of real mediation of virtual particles.
- Successful regularization of singularities that appear in the local S-matrix.
- Unique features.

What we want to see:

- Calculate observables (e.g. cross sections).

What we saw:

- Reasonable parametrization of non-local S-matrix.
- Description of real mediation of virtual particles.
- Successful regularization of singularities that appear in the local S-matrix.
- Unique features.

What we want to see:

- Calculate observables (e.g. cross sections).
- Inclusion of incoherent uncertainties.

What we saw:

- Reasonable parametrization of non-local S-matrix.
- Description of real mediation of virtual particles.
- Successful regularization of singularities that appear in the local S-matrix.
- Unique features.

What we want to see:

- Calculate observables (e.g. cross sections).
- Inclusion of incoherent uncertainties.
- Other profiles (e.g. beyond spherical symmetry, hard wall).

What we saw:

- Reasonable parametrization of non-local S-matrix.
- Description of real mediation of virtual particles.
- Successful regularization of singularities that appear in the local S-matrix.
- Unique features.

What we want to see:

- Calculate observables (e.g. cross sections).
- Inclusion of incoherent uncertainties.
- Other profiles (e.g. beyond spherical symmetry, hard wall).
- Particle diffraction from QFT.

What we saw:

- Reasonable parametrization of non-local S-matrix.
- Description of real mediation of virtual particles.
- Successful regularization of singularities that appear in the local S-matrix.
- Unique features.

What we want to see:

- Calculate observables (e.g. cross sections).
- Inclusion of incoherent uncertainties.
- Other profiles (e.g. beyond spherical symmetry, hard wall).
- Particle diffraction from QFT.
- Correspondence between parameters and experimental setup.

What we saw:

- Reasonable parametrization of non-local S-matrix.
- Description of real mediation of virtual particles.
- Successful regularization of singularities that appear in the local S-matrix.
- Unique features.

What we want to see:

- Calculate observables (e.g. cross sections).
- Inclusion of incoherent uncertainties.
- Other profiles (e.g. beyond spherical symmetry, hard wall).
- Particle diffraction from QFT.
- Correspondence between parameters and experimental setup.
- Experiments.

Thank you!

[^0]: 1 J. E. Campagne, Phys. Lett. B 400 (1997), 135-144, A. Ioannisian and A. Pilaftsis, Phys. Rev. D 59 (1999), 053003 [arXiv:hep-ph/9809503 [hep-ph]].
 K. Melnikov and V. G. Serbo, Nucl. Phys. B 483 (1997), 67-82 [arXiv:hep-ph/9601290 [hep-ph]].

 3 B. Holdom, J. Terning and K. Verbeek, Phys. Lett. B 232 (1989), 351-356.

[^1]: 1 J. E. Campagne, Phys. Lett. B 400 (1997), 135-144, A. Ioannisian and A. Pilaftsis, Phys. Rev. D 59 (1999), 053003 [arXiv:hep-ph/9809503 [hep-ph]].
 K. Melnikov and V. G. Serbo, Nucl. Phys. B 483 (1997), 67-82 [arXiv:hep-ph/9601290 [hep-ph]].

 3 B. Holdom, J. Terning and K. Verbeek, Phys. Lett. B 232 (1989), 351-356.

[^2]: 1 J. E. Campagne, Phys. Lett. B 400 (1997), 135-144, A. Ioannisian and A. Pilaftsis, Phys. Rev. D 59 (1999), 053003 [arXiv:hep-ph/9809503 [hep-ph]].

 2 K. Melnikov and V. G. Serbo, Nucl. Phys. B 483 (1997), 67-82 [arXiv:hep-ph/9601290 [hep-ph]]. B. Holdom, J. Terning and K. Verbeek, Phys. Lett. B 232 (1989), 351-356.

[^3]: 1 J. E. Campagne, Phys. Lett. B 400 (1997), 135-144, A. loannisian and A. Pilaftsis, Phys. Rev. D 59 (1999), 053003 [arXiv:hep-ph/9809503 [hep-ph]].

 2 K. Melnikov and V. G. Serbo, Nucl. Phys. B 483 (1997), 67-82 [arXiv:hep-ph/9601290 [hep-ph]].
 ${ }^{3}$ B. Holdom, J. Terning and K. Verbeek, Phys. Lett. B 232 (1989), 351-356.

[^4]: 1 J. E. Campagne, Phys. Lett. B 400 (1997), 135-144, A. Ioannisian and A. Pilaftsis, Phys. Rev. D 59 (1999), 053003 [arXiv:hep-ph/9809503 [hep-ph]].

 2 K. Melnikov and V. G. Serbo, Nucl. Phys. B 483 (1997), 67-82 [arXiv:hep-ph/9601290 [hep-ph]].
 ${ }^{3}$ B. Holdom, J. Terning and K. Verbeek, Phys. Lett. B 232 (1989), 351-356.

[^5]: 1 J. E. Campagne, Phys. Lett. B 400 (1997), 135-144, A. Ioannisian and A. Pilaftsis, Phys. Rev. D 59 (1999), 053003 [arXiv:hep-ph/9809503 [hep-ph]].
 ${ }_{3}^{2}$ K. Melnikov and V. G. Serbo, Nucl. Phys. B 483 (1997), 67-82 [arXiv:hep-ph/9601290 [hep-ph]].
 3 B. Holdom, J. Terning and K. Verbeek, Phys. Lett. B 232 (1989), 351-356.

[^6]: ${ }^{4}$ W. Grimus and P. Stockinger, Phys. Rev. D [hep-ph]].

[^7]: 4 W. Grimus and P. Stockinger, Phys. Rev. D
 D 54 (1996), 3414-3419 [arXiv:hep-ph/9603430

