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Why non-local S-matrix?

Non-locality is connected to finite volume effects.

Some reasons for non-locality/finite volume:
Neutrino oscillations.1

Singularities in the t-channel may be regularised by taking into
account finite beam size.2 Especially useful in (future?) muon
colliders.
Displaced vertex searches. Deeper understanding of how a
mediator travels.
Other possibilities: QFT picture of diffraction, effective
interactions (e.g. non-local chiral ET3 or jets), etc.

1 J. E. Campagne, Phys. Lett. B 400 (1997), 135-144, A. Ioannisian and A. Pilaftsis, Phys. Rev. D
59 (1999), 053003 [arXiv:hep-ph/9809503 [hep-ph]].

2 K. Melnikov and V. G. Serbo, Nucl. Phys. B 483 (1997), 67-82 [arXiv:hep-ph/9601290 [hep-ph]].
3 B. Holdom, J. Terning and K. Verbeek, Phys. Lett. B 232 (1989), 351-356.
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local S-matrix

For concreteness, assume a toy model with

Lint(x) = λS1(x)χ1(x) Φ(x) + g S2(x)χ2(x) Φ(x) .

The amplitude for S1(p1) χ1(p′1)→ S2(p2) χ2(p′2):

p1

S1

p′

1

χ1

q

Φ

p′

2

χ2

p2

S2

T (p, k) = λ g

∫
d4q

(2π)4
1

q2 −m2
Φ + iε

δ(4)(p−q)δ(4)(k−q)︷ ︸︸ ︷∫
d4x d4y e−i(p−q)·xe i(k−q)·y ,

with p = p1 + p′1, k = p2 + p′2
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Introducing non-locality

We can rearrange the terms in the integral to see what each one
means.

T (p, k) =

∑
x

∑
y︷ ︸︸ ︷∫

d4x d4y

(S1 χ1 Φ)x︷ ︸︸ ︷
λ e−ip·x

Φ(x)→Φ(y)︷ ︸︸ ︷∫
d4q

(2π)4
e iq·(x−y)

q2 −m2
Φ + iε

(Φ S2 χ2)y︷ ︸︸ ︷
g e ik·y .

e−[(x−〈x〉)·δp]2 e−[(y−〈y〉)·δk]2

Finite volume can be introduced by limiting x and y .
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Simplifications

We can simplify the calculations by assuming steady state and
spherical symmetry; δp0, δk0 → 0, δpi = 1/δx , and δk i = 1/δy .

T (p, k ;~l , δx , δy) =(2π) δ(p0 − k0) λ g∫
d3~x e i~p·~x−~x

2/δx2

∫
d3~y e−i

~k·~y−~y2/δy2

∫
d3~q

(2π)3
e−i~q·(~x−~y−

~l)

q̃2 − |~q|2 + iε
,

with ~l = 〈~y〉 − 〈~x〉 and q̃2 = p0 2 −m2
Φ.
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Physical representation

〈~x〉

δx

p

〈~y〉

δy

k
~l

5/13
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First analytical result

After some algebra, the amplitude becomes

T (p, k ;~l , δx , δy) ∼ δ(p0 − k0)
δx3 δy3

|~L|
e−[(|~p|2+q̃2)δx2+(|~k|2+q̃2)δy2]/4

[
e i q̃|

~L| Erfc (z−)− e−i q̃|
~L| Erfc (z+)

]
,

where z± = − i

2
q̃ δl ± |

~L|
δl

, ~L = ~l − i
2

(
~p δx2 + ~k δy2

)
,

δl2 = δx2 + δy2, and |~L| =
√
~L · ~L.

6/13



Some observations

From this form we observe that:

Amplitude is finite in the physical region.
Momentum is not conserved, and the distribution of ~k depends
on δx , δy .

In the limit δx , δy → 0, T ∼ δx3δy3 e i q̃|
~l |/|~l | δ(p0 − k0).4

4 W. Grimus and P. Stockinger, Phys. Rev. D 54 (1996), 3414-3419 [arXiv:hep-ph/9603430
[hep-ph]].
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Further simpification: Recover conservartion of momentum

In an experiment, we expect negligible violation of momentum
conservation (|~p|δx , |~k |δy � 1). So, we introduce a profile that
can help us work out the general behaviour of the amplitude:

G (~l , δl) = e−(~x−~y−~l)
2
/δl2 .

This results in
T (k ;~l , δl) ∼ T (p, k;~l , δx , δy) δ(3)(~p − ~k) .

Note:

Momenta at each vertex suffer from uncertainties.
Introduce matrix element as usual

M ∼ δl3

|~L|
e−δl

2(|~k|2+q̃2)/2
[
e i q̃|

~L| Erfc (z−)− e−i q̃|
~L| Erfc (z+)

]
.

8/13
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Far-field–|~l | � |~k | δl2

In the far-field (Fraunhofer) region we recover the inverse-square
law (similar to δl → 0). The matrix element becomes:

M ∼ δl3 e i q̃|
~l |

|~l |
e−

1
4( |~k|−q̃ l̂ )

2
δl2 .

Observations:
Inverse square law.
Suppressed backwards direction.
Finite.
Oscillations of mixed mediators.
Off-shell mediator may be the most probable outcome.
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Near-field–|~l | � |~k | δl2

In the near-field (Fresnel) region we also assume |~l | � δl .

The
matrix element becomes

M ∼

{ e i
~k·~l

|~k |2 − q̃2
e
−
(
|~l|
δl

)2

, off-shell

e i q̃
~l ·k̂

|~k |
δl e

−(|~k|−q̃)2δl2/4− q̃

|~k|

(
~l×k̂
δl

)2

, on-shell

Observations:

δl →∞ ⇒ M ∼ iπ δ+(|~k|2 − q̃2) + P

{
1

|~k|2 − q̃2

}
.

Finite.
Oscillations of mixed mediators.
Slightly shifted maximum.
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1 Introduction
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Simplifications
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Makes sense check-list

Is this approach realistic?

X Dependence only on relative distance.
X In the limit δx , δy → 0, decoupling of momenta.
X Local S-matrix at δl →∞.
X As |~l | → ∞, we recover inverse square law.
X Backwards direction suppressed by a “quantum" obliquity

factor.
X Distinct features, i.e. falsifiable.
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Summary–Future

What we saw:

Reasonable parametrization of non-local S-matrix.
Description of real mediation of virtual particles.
Successful regularization of singularities that appear in the
local S-matrix.
Unique features.

What we want to see:
Calculate observables (e.g. cross sections).
Inclusion of incoherent uncertainties.
Other profiles (e.g. beyond spherical symmetry, hard wall).
Particle diffraction from QFT.
Correspondence between parameters and experimental setup.
Experiments.
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Thank you!


	Introduction
	Why non-local S-matrix?
	local S-matrix
	Introducing non-locality
	Simplifications
	Physical representation

	Analytical results
	First analytical result
	Some observations
	Further simpification: Recover conservartion of momentum

	Features
	Far-field–||  ||  l 2
	Near-field–||  ||  l 2
	Pattern in space

	Makes sense check-list
	Summary–Future

