Connected Vacua of String Models

Kang-Sin Choi
Ewha Womans University

In collaboration with
Stephen Angus (APCTP), Tatsuo Kobayashi (Hokkaido)

SUSY 2022, University of Ioannina
June 28, 2022

Bifundamental

- Bifundamental nature of the SM fields can be nicely explained by open string en ding on intersecting branes.

$U(3)$

$U(1) \times U(2)$

$U(1) \times U(2)$
- Geometrical understanding.

1. Local gauge symm enhancement to $U(1) \mathrm{x} U(2)->U(3)$. W bosons, ($1,-1,0$)..., become light.
2. Chiral matter: Either 2_{1} or $2^{*}-1$ exclusively survives.
3. Problems in D-brane construction using perturbative srings.

Tilted D-branes

- T-duality along i-th direction: $A_{i}<->X$
- Const A (Wilson line): translation
- Const F : slope

$$
F_{12}=\frac{2 \pi}{A}(3)
$$

- Toron quantization: closed curve.

D-brane wrapping (1,3)-cycle RR charges 1 and 3

$$
F_{12}=\frac{2 \pi}{A}\left(\begin{array}{ccc}
-\frac{1}{3} & & \\
& -\frac{1}{3} & \\
& & -\frac{1}{3}
\end{array}\right) \quad<->
$$

Torons are magnetized brane

- 2-cycles in T^{4} induced from 1-cycles of T^{2}
- (n, m) cycle -> magnetized flux
- 4D

$$
\begin{aligned}
& \left(n^{1}, m^{1}\right)\left(n^{2}, m^{2}\right)=\left(n^{1} n^{2}, n^{1} m^{2}, m^{1} n^{2}, m^{1} m^{2}\right) \\
& =\left(N, c_{1}^{12}, c_{2}^{34}, c_{2}\right) \\
& F_{12}=\frac{2 \pi}{A_{2}}\left(\begin{array}{ccc}
\frac{m_{1}^{1}}{n_{1}^{1}} \mathbf{1}_{n_{1}^{1} n_{1}^{2}} & & \\
& \ddots & \\
& & \frac{m_{k}^{1}}{n_{k}^{1}} \mathbf{1}_{n_{k}^{1}} n_{k}^{2}
\end{array}\right) \quad F_{34}=\frac{2 \pi}{A_{34}}\left(\begin{array}{ccc}
\frac{m_{1}^{2}}{n_{1}^{2}} \mathbf{1}_{n_{1}^{1} n_{1}^{2}} & & \\
& \ddots & \\
& & \frac{m_{k}^{2}}{n_{k}^{2}} \mathbf{1}_{n_{k}^{1} n_{k}^{2}}
\end{array}\right)
\end{aligned}
$$

- Cf. T-branes

Brane recombination [lbanez etal.] [K. Hashimoto, w. Taylor] [Kim, KSC] [KSC]...

$(1,1)+(1,-1)$
$U(1) \times U(1)$

$(1,1)+2(1,-1)$
$U(1) \times U(2)<->U(1)^{3}$

$$
\begin{aligned}
& (1,0)+(1,0) \\
& U(1) x U(1) \text { <-> } U(2)
\end{aligned}
$$

$(3,-1)$
U(3)

SUSY [Marino, Minahan, Moore, Strominger]

- In 4D SUSY cond: $\theta_{12} \pm \theta_{34}=$ const.

$$
f_{12}+f_{34}=\mu\left(1-f_{12} f_{34}\right)
$$

- MMMS equation means projection <-> SUSY cond. of intersecting branes.

$$
\begin{aligned}
H & =\tau_{9} V_{3} V_{4} \operatorname{Tr}\left[\left(\mathbf{1}+f_{67}\right)\left(\mathbf{1}+f_{89}^{2}\right)\right]^{1 / 2} \\
& =\tau_{9} V_{3} V_{4} \operatorname{Tr}\left[\mathbf{1}+f_{67}+f_{89}+f_{67} f_{89}\right]^{1 / 2} \\
f_{67}=f_{89} & =\tau_{9} V_{3} V_{4} \operatorname{Tr}\left[\mathbf{1}+f_{67} f_{89}\right] \\
& =\tau_{9} V_{3} V_{4}\left[N+c_{2}\right]
\end{aligned}
$$

- DBI action only measures the total Chern numbers.
- 6D: $N, c_{1,45}, c_{1,67}, c_{1,89}, c_{2}$.

Small toron

- Brane and magnetized brane

$(1,0)+(0,1)$
$\mathrm{U}(1) \times \mathrm{U}(1)$

- Small (zero size) toron = D-brane

$$
F_{12}=2 \pi \delta^{(2)}(x, y)
$$

$$
F_{12}=\frac{2 \pi}{A}
$$

- Dual to small instanton transition [Witten] [Aspinwall, Morrison]

Global consistency condition

In string theory, anomaly cancellation is promoted to global consistency condition from one-loop diagram.

- Closed string:
- Vacuum-to-vacuum (torus) diagram modular invariance
- Open string:
- Cylinder and its twisted variants - RR tadpole cancellation.

- Condition between gauge symmetry F and geometry R.
- F, R in the low energy theory.
$\operatorname{tr} R \wedge R-\operatorname{tr} F \wedge F=0$
- Constrains the number of D-branes n.

Guaranteeing anomaly free theory. \# generations = Indices: local chirality that can change

Meaning

- On T^{6} compactification with $N=1$ SUSY in 4D:

The sum of total D-brane charges should be the same as O9 plane chargeor its T-duals.

- $\mathrm{O} p$ planes at the 2^{9-p} fixed points.
- ex. O8s on S / Z_{2}

- Type I string = type IIB with O9 and 16 D9s. SO(32)
- S-dual to $\mathrm{SO}(32)$ heterotic string.
- T-dual to $E_{8} \times E_{8}$ heterotic string.

Reid's fantasy

Math. Ann. 278,329 My fantasy: The moduli space of string vacua connected Cf. landscape vs swampland

Examples: intersecting branes, heterotic strings on orbifolds, some F-theory vacua

The Moduli Space of 3-Folds with $K=0$ may Nevertheless be Irreducible

Miles Reid
Mathematical Institute, University of Warwick, Coventry CV4 7AL, UK

To Friedrich Hirzebruch on his sixtieth birthday
This paper consists mainly of idle speculation. I apologise for having neither the time nor the ability to prepare a proper paper as a birthday tribute to Professor Hirzebruch. I should acknowledge that apart from Hirzebruch's beautiful constructions of many examples of 3 -folds with $K=0$, I have been prompted to a large extent by ideas of H . Clemens and R. Friedman.

Heterotic string

Orbifold limit of Calabi-Yau

- Singular limit of Calabi-Yau manifold. Ex. K3 $=T^{4} / \mathbf{Z}_{N}$.
- Each fixed point: ALE space $\mathbf{R}^{4} / \mathbf{Z}_{N}$.

- Blow up \rightarrow smooth ALE space.
- Flat background connection at "infinity" = shift vector.
- Structure group is $U(1)^{r}$:
- r rank of the maximal torus. $S O(16) \times S O(16)$ or $S O(32)$.
- $k_{\mathrm{U}}=3\left(n_{1}+n_{2}\right)\left(\mathbf{Z}_{3}\right)$ for $\mathrm{V}=1 / 3\left(0^{\mathrm{n} 0}, 1^{\mathrm{n} 1}, 2^{\mathrm{n} 2}\right)$
- $k_{\mathrm{T}}=\#$ twisted vectors of $S O\left(n_{0}\right)$
[Intriligator 97] [Blum, Intriligator 97] [KSC, Kobayashi 19]
- Gluing $\mathbf{R}^{4} / \mathbf{Z}_{N}$'s: shift vector with Wilson lines
- Modular invariance of the partition function
- Instanton number $k_{\mathrm{U}}+k_{\mathrm{T}}=24$

$$
\operatorname{tr} R \wedge R-\operatorname{tr} F \wedge F=0
$$

Transitions: example $S O$ (32) het on T^{4} / Z_{3}

Worldsheet CFT with 5-branes

- Every non-perturbative vacua are inherited from perturbative vacua.

- Worldsheet CFT

$$
\begin{aligned}
\frac{1}{2} m_{L}^{2} & =\frac{\left(P+V_{1}+V_{2}\right)^{2}}{2}+\tilde{N}+E_{0} \quad \text { perturbative } \\
& =\frac{\left(P+V_{1}\right)^{2}}{2}+\tilde{N}+E_{0}+\Delta E_{0} \text { non-perturbative }
\end{aligned}
$$

- GSO Projection

$$
\begin{aligned}
& e^{2 \pi i\left(\tilde{N}-N+(P+V) \cdot V-(s+\phi) \cdot \phi-\frac{1}{2}\left(V^{2}-\phi^{2}\right)\right)} \\
& e^{2 \pi i\left(\tilde{\mathrm{~N}}-\mathrm{N}+\left(P+V_{1}\right) \cdot V_{1}-(s+\phi) \cdot \phi-\frac{1}{2}\left(V_{1}^{2}-\phi^{2}\right)+\Delta E_{0}\right)}
\end{aligned}
$$

$$
\Delta E_{0}=V_{1} \cdot V_{2}+\frac{1}{2} V_{2}^{2}=\frac{n}{54}
$$

Modified zero point energy

- The same CFT description!
- Modular invariance

$$
\frac{V^{2}}{2}-\frac{\phi^{2}}{2}+\Delta E_{0} \equiv 0 \quad \bmod \frac{1}{N}
$$

- Instanton $\# k_{1}+k_{2}+n=24$.

Selection rule:
Most models having spinorial in the twisted sector, transition is forbidden.

$\frac{1}{3}\left(1^{14} 0^{2}\right)$	
$U(14) \times S O(4)$	$\ldots--->$
$\frac{1}{3}\left(21^{10} 0^{3}\right)$	
$U(11) \times S O(6)$	

$E_{8} \times E_{8}$ het on T^{4} / Z_{3}

In $E_{8} \times E_{8}$, no extra gauge group from 5-branes

F-theory

F-theory [Vafa] [Beasley, Heckman, Vafá] [Donagi; Wiinholt]...

- 7-branes of type IIB string lift to geometry of Calabi-Yau fourfold
- Intersection (6D): localized matter
- With 4-form flux $<\mathrm{G}>$, magnetic flux is induced on it.
- Yielding to 4D chiral fermion.

F-theory

- Global consistency condition requires D3 [Sethi, Vafa, Witten]

$$
d * d C=\frac{1}{24} c_{4}(Y)-\frac{1}{8 \pi^{2}} G \wedge G-\sum_{a=1}^{n} \delta^{(8)}\left(y-y_{a}\right)
$$

- D3 branes play no role in 4D chiral spectrum...
- Internal YM symmetry is converted to geometry
- F-theory on K3 is dual to heterotic string on torus E

$$
\frac{G}{2 \pi}=\sum_{I} F^{I} \wedge e_{I}, \quad e_{I} \in H^{1,1}(\mathrm{~K} 3)
$$

- Small instanton transition to vertical heterotic 5-brane

$$
\left.\frac{1}{2 h_{\mathrm{g}}^{\vee}} \operatorname{Tr} F \wedge F\right|_{B}=\left.\frac{1}{2 h_{\mathrm{g}^{\prime}}^{\vee}} \operatorname{Tr} F^{\prime} \wedge F^{\prime}\right|_{B}+\sum_{\text {vertical }} \delta^{(4)}(E)
$$

- Small instanton transition
- Heterotic small instanton -> G-flux in F-theory.
- Shrinking G-flux \rightarrow D3-branes

"G-instanton" transition

- G-instanton ${ }_{Y} G=G$ with $J \wedge G=0$
- Hermitian YM eq. for holomorphic vector bundle in the heterotic.
- Expansion of G-flux in terms of base curves which is self-dual $C^{a}=*_{B} C^{a}=C_{a}$

$$
\frac{G}{2 \pi}=\frac{G^{\prime}}{2 \pi}+P_{a} \wedge C_{a}
$$

- The coefficient is group theoretical factor

$$
P_{a}=\sum_{i} c_{a}^{i} E_{i}, \quad c_{a}^{i} \in \mathbb{Z}
$$

- Which is translated to geometry in the F-theory side.
- Small "G-instanton" to D3 transition

$$
\frac{1}{8 \pi^{2}} G \wedge G=\frac{1}{8 \pi^{2}} G^{\prime} \wedge G^{\prime}+\frac{1}{2} \pi^{*} C_{a} \wedge \pi^{*} C_{a} \wedge P_{a} \wedge P_{a}
$$

- \# D3-branes guided by group theory

$$
\begin{aligned}
-\frac{1}{2} \int_{\mathrm{K} 3} P_{a} \wedge P_{a} & =-\frac{1}{2} \int_{\mathrm{K} 3}\left(\sum_{i}\left(c_{a}^{i}\right)^{2} E_{i} \wedge E_{i}+2 \sum_{i<j} c_{a}^{i} c_{a}^{j} E_{i} \wedge E_{j}\right) \\
& =\sum_{i}\left(c_{a}^{i}\right)^{2}-\sum_{i<j} c_{a}^{i} c_{a}^{j} A_{i j}
\end{aligned}
$$

Small " G-instanton" transition

- Chiral spectrum
- Ex. $\mathrm{SU}(5)$ G-flux on an $\mathrm{SU}(5)$ brane

$$
G^{S U(5)} \cdot E_{i} \cdot D_{a}=0, \quad i=1,2,3,4, \quad \alpha^{(i)} \in \Phi_{\mathrm{s}}(S U(5))
$$

E_{i} : root divisors of $S U(5)$ related to the roots $\alpha^{(i)}$ D_{a} : base diviosor

- $\mathrm{SU}(5)$-> $\mathrm{SU}(3) \times \mathrm{SU}(2)$

$$
\begin{array}{rlr}
& \frac{G_{\text {tot }}^{(i)}}{2 \pi}=\frac{G_{\lambda^{\prime}}^{S U(5)}}{2 \pi}+5 \Lambda_{(i)} \cdot\left(a c_{1}\left(B^{\prime}\right)+b B\right) & \begin{array}{l}
\Lambda_{i} \text { : fundamental weight divisors of } S U(5) \\
B^{\prime}: \text { base of elliptic fibration } \\
B: \text { Section of K3-base }
\end{array} \\
\mathbf{2 4} \rightarrow(\mathbf{8}, \mathbf{1})_{0}+(\mathbf{1}, \mathbf{3})_{0}+(\mathbf{1}, \mathbf{1})_{0}+(\mathbf{3}, \mathbf{2})_{-5 / 6}+(\overline{\mathbf{3}}, \mathbf{2})_{5 / 6}, & \\
\overline{\mathbf{5}} \rightarrow(\overline{\mathbf{3}}, \mathbf{1})_{1 / 3}+(\mathbf{1}, \mathbf{2})_{-1 / 2}, & \\
\mathbf{1 0} \rightarrow(\mathbf{3}, \mathbf{2})_{1 / 6}+(\overline{\mathbf{3}}, \mathbf{1})_{-2 / 3}+(\mathbf{1}, \mathbf{1})_{1} . &
\end{array}
$$

Reprs.	Highest weight	Matter surfaces
$(\overline{\mathbf{3}}, \mathbf{1})_{1 / 3}$	$\mu_{\overline{\mathbf{5}}}$	$\mathcal{S}_{\overline{\mathbf{5}}}$
$(\mathbf{1}, \mathbf{2})_{-1 / 2}$,	$\mu_{\overline{\mathbf{5}}}-\alpha^{(1)}-\alpha^{(2)}-\alpha^{(3)}$	$\mathcal{S}_{\overline{\mathbf{5}}}+\left(E_{1}+E_{2}+E_{3}\right) \cdot\left(8 c_{1}\left(B^{\prime}\right)-5 B\right)$
$(\overline{\mathbf{3}}, \mathbf{1})_{-2 / 3}$	$\mu_{\mathbf{1 0}}$	$\mathcal{S}_{\mathbf{1 0}}$
$(\mathbf{3}, \mathbf{2})_{1 / 6}$	$\mu_{\mathbf{1 0}}-\alpha^{(1)}-\alpha^{(2)}-\alpha^{(3)}$	$\mathcal{S}_{\mathbf{1 0}}-\left(E_{1}+E_{2}+E_{3}\right) \cdot c_{1}\left(B^{\prime}\right)$
$(\mathbf{1}, \mathbf{1})_{1}$	$\mu_{\mathbf{1 0}}-\alpha^{(1)}-2 \alpha^{(2)}-2 \alpha^{(3)}-\alpha^{(4)}$	$\mathcal{S}_{\mathbf{1 0}}-\left(E_{1}+2 E_{2}+2 E_{3}+E_{4}\right) \cdot c_{1}\left(B^{\prime}\right)$

Local chirality change

- Local chiralities change but still anomaly free.
- Ex. $\mathrm{SU}(5)->\mathrm{SU}(3) \times \mathrm{SU}(2)$

$$
\begin{aligned}
\mathbf{2 4} & \rightarrow(\mathbf{8}, \mathbf{1})_{0}+(\mathbf{1}, \mathbf{3})_{0}+(\mathbf{1}, \mathbf{1})_{0}+(\mathbf{3}, \mathbf{2})_{-5 / 6}+(\overline{\mathbf{3}}, \mathbf{2})_{5 / 6}, \\
\overline{\mathbf{5}} & \rightarrow(\overline{\mathbf{3}}, \mathbf{1})_{1 / 3}+(\mathbf{1}, \mathbf{2})_{-1 / 2}, \\
\mathbf{1 0} & \rightarrow(\mathbf{3}, \mathbf{2})_{1 / 6}+(\overline{\mathbf{3}}, \mathbf{1})_{-2 / 3}+(\mathbf{1}, \mathbf{1})_{1} .
\end{aligned}
$$

$$
\begin{aligned}
-\chi\left((\overline{\mathbf{3}}, \mathbf{1})_{1 / 3}\right)- & \chi\left((\overline{\mathbf{3}}, \mathbf{1})_{-2 / 3}\right)+2 \chi\left((\mathbf{3}, \mathbf{2})_{1 / 6}\right)+2 \chi\left((\mathbf{3}, \mathbf{2})_{-5 / 6}\right) \\
= & -\chi(\overline{\mathbf{5}})-\frac{2}{5} \int_{B}\left(8 c_{1}-3 t\right) \wedge \mathcal{F}-\chi(\mathbf{1 0})+\frac{4}{5} \int_{B}\left(c_{1}-t\right) \wedge \mathcal{F} \\
& +2 \chi(\mathbf{1 0})+2 \cdot \frac{1}{5} \int_{B}\left(c_{1}-t\right) \wedge \mathcal{F}+2 \int_{B} c_{1} \wedge \mathcal{F} \\
= & 0
\end{aligned}
$$

Conclusion

- Connected vacua
- Brane recombination dual to small instanton transition
- In heterotic string on orbifolds: non-perturbative correction to CFT, 5-branes
- In F-theory: the role of D3-branes in chirality
- Selection rules given by group theory.
- Outlook:
- Due to quantization condition for the flux, not every decomposition possible.
- The instanton is generalized to stable (Hermitian Yang-Mills) bundle on threefo ld.

\# generations from extra dimension

- Dirac equation in higher dimensions with torus

$$
D_{(6)} f\left(x, y^{4}, y^{5}\right)=\left(D_{(4)}+D_{(2)}\right) f(x) f\left(y^{4}, y^{5}\right)=0
$$

- Eigenvalue of $D_{(2)}\left(A_{4}, A_{5}\right)$ looks life 4D mass
- With magnetic flux F_{45}
- Torus boundary condition: F_{45} is quantized
- Zero eigenstates are chiral [Landau]: either +1 or -1 representation exclusively survives
- \# zero eigenstates of $D_{(2)}=\#$ generations in 4D
- Ex. 3 generations from $F_{45} / 2 \pi=3$

\# generations is topological quantity

- Dirac operator $D_{(2)}$ for the extra dim.
- $D_{(2)}^{2}=H$ nonzero eigenstates always pair R and R^{*}.
- Chiral: Not necessarily true for zero eigenstates: unpaired R or R^{*}
- The number of 4D massless field is given by

$$
n_{R}-n_{\bar{R}}=\frac{1}{2 \pi} \int d^{2} x \operatorname{tr} F_{45}
$$

- Topological index:
- the index does not depends on smooth deformation of geometry and vector potential.
- cf. anomaly cancellation
- A constant field strength F_{45} on torus is quantized due to periodic B.C.

Generalization to higher dimension

- $D \psi(x, y)=\Gamma^{\mu} \partial_{\mu}+\Gamma^{m}\left(\partial_{m}-i A_{m}+\frac{1}{2} \omega_{m}\right) \psi=0$ bg.gauge geometry
- Vector bundles are generalized to 'characteristic classes' which are integrally quantized:
- F or R (2D, aka magnetic flux, vortex, monopole or toron number)
- $F \wedge F=\varepsilon F F$ or $R \wedge R$ (4D aka instanton number)
- $F \wedge F \wedge F$ or $F \wedge R \wedge R(6 \mathrm{D}) .$.

$$
n_{R}-n_{R^{*}}=\frac{1}{3!(4 \pi)^{3}} \int_{M}\left[\operatorname{tr}_{Q} F \wedge F \wedge F-\frac{1}{3} \operatorname{tr}_{Q} F \wedge \operatorname{tr} R \wedge R\right] .
$$

- They classify topology of the internal manifold.

