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1.	Introduction	&	Motivation
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Problems	in	the	Standard	Model


The Standard Model (SM) is the best theory  in describing the 
nature of elementary particle physics, which is in excellent 
agreement with almost of all current experimental results 
(including LHC Run-2 results) as of TODAY


However,


New Physics beyond SM is strongly suggested by both 
experimental & theoretical points of view
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My	apologies:	

Although	SUSY	is	a	primary	candidate	of	New	Physics	
beyond	the	SM,	my	talk	today	is	not	on	SUSY
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Because	SUSY	has	been	sick	for	a	while	after	LHC	and	
Covid-19	pandemic
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Because	SUSY	has	been	sick	for	a	while	after	LHC	and	
Covid-19	pandemic

While	she	is	recovering,	let	me	discuss	Non-SUSY	things

We	have	many	supporting	messages	to	SUSY	in	the	plenary	
and	parallel	sessions!
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Five	Questions	that	the	Standard	Model	cannot	answer
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Five	Questions	that	the	Standard	Model	cannot	answer

1. Why	are	Neutrino	Masses	are	non-zero	and	so	tiny?
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Neutrino	Mass	problemNeutrino Mass Problem
42 14. Neutrino mixing
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Figure 14.9: The regions of squared-mass splitting and mixing angle favored or
excluded by various experiments based on two-flavor neutrino oscillation analyses.
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Five	Questions	that	the	Standard	Model	cannot	answer

1. Why	are	Neutrino	Masses	are	non-zero	and	so	tiny?


2. What	is	the	nature	of	Dark	Matter?
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Dark	Matter	Problem
Existence of Dark Matter has been established! 

Dark Matter particle:    non-baryonic 
electric charge neutral 
(quasi) stable            

Cosmological Dark Matter Problem 

No suitable DM candidate in the Standard Model

Energy budget of the 
Universe is precisely 
determined by recent CMB 
anisotropy observations 
(WMAP & Planck) 

28
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Cosmic	Infaltion
The	problems	of	Big-Bang	Cosmology

‣ Flatness	problem

‣ Horizon	problem

‣ Need	to	dilute	unwanted	topological	defects

‣ Origin	of	the	primordial	density	fluctuations

Problem of Big Bang Cosmology

Origin of primordial density fluctuations

Seeds of the large sale structure 
of the Universe

Solution: Cosmological Inflation before Big Bang

Inflation is driven by a scalar field (infalton) 
with a very flat potential 

30

δT
T

≃ 10−5

Seeds	of	the	large	scale	structure

Solution:	Cosmic	Inflation	before	Big-Bang	cosmology,	

driven	by	a	scalar	field	(inflaton)	which	has	a	very	flat	potential

No	suitable	inflaton	candidate	in	the	SM
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Five	Questions	that	the	Standard	Model	cannot	answer

1. Why	are	Neutrino	Masses	are	non-zero	and	so	tiny?


2. What	is	the	nature	of	Dark	Matter?


3. What	drives	Cosmic	Inflation	before	Big	Bang?


4. What	is	the	origin	of	Matter-Antimatter	asymmetry	in	

the	Universe?
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What	is	the	origin	of	Matter-Antimatter	Asymmetry?

*Baryogenesis	in	the	SM	context:	Electroweak	Baryogenesis	

Unfortunately,	it	doesn’t	work	with	the	125	GeV	Higgs	mass

Observations:		(1)	Big	asymmetry

	

																											(2)	Small	ratio	to	entropy

nB ≫ nB̄

nB

s
≃

nB − nB̄

s
≃ 10−10 ≪ 1

What	is	the	origin?
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Five	Questions	that	the	Standard	Model	cannot	answer

1. Why	are	Neutrino	Masses	are	non-zero	and	so	tiny?


2. What	is	the	nature	of	Dark	Matter?


3. What	drives	Cosmic	Inflation	before	Big	Bang?


4. What	is	the	origin	of	Matter-Antimatter	asymmetry	in	

the	Universe?


5. Why	is	CP-violation	in	QCD	so	negligible?
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Strong	CP	problem
Why is CP-violation in QCD so negligible? 

(Strong CP problem)

SU(3)C SU(2)L U(1)Y U(1)B−L

qiL 3 2 1/6 +1/3
ui
R 3 1 2/3 +1/3

diR 3 1 −1/3 +1/3
!iL 1 2 −1/2 −1
eiR 1 1 −1 −1

H 1 2 −1/2 0

Table 1: The particle content of the minimal U(1)X extended SM with Z2-parity. In
addition to the SM particle content (i = 1, 2, 3), the three RHNs (N j

R (j = 1, 2) and
NR) and the U(1)X Higgs field (Φ) are introduced. The unification into SU(5)×U(1)X is
achieved only for xH = −4/5, and xH is quantized in our model.

SU(3)C SU(2)L U(1)Y U(1)B−L

N i
R 1 1 0 −1
Φ 1 1 0 +2

Table 2: The particle content of the minimal U(1)X extended SM with Z2-parity. In
addition to the SM particle content (i = 1, 2, 3), the three RHNs (N j

R (j = 1, 2) and
NR) and the U(1)X Higgs field (Φ) are introduced. The unification into SU(5)×U(1)X is
achieved only for xH = −4/5, and xH is quantized in our model.

LSM ⊃ θ
8∑

a=1

εµνρσGa
µνG

a
ρσ (1)

η =
nB − nB̄

nγ
$ nB

nγ
$ 10−10 ηSM % 10−10 (2)

nB nB̄ nγ (3)

nB̄ % nB η $ 10−10 (4)

V ∝ a(t)3 ∝
[
eHt

]3
∆φ (5)

1

The SM gauge symmetry allows us to add a CP violating 
term: 

SU(3)C SU(2)L U(1)Y U(1)B−L

qiL 3 2 1/6 +1/3
ui
R 3 1 2/3 +1/3

diR 3 1 −1/3 +1/3
!iL 1 2 −1/2 −1
eiR 1 1 −1 −1

H 1 2 −1/2 0

Table 1: The particle content of the minimal U(1)X extended SM with Z2-parity. In
addition to the SM particle content (i = 1, 2, 3), the three RHNs (N j

R (j = 1, 2) and
NR) and the U(1)X Higgs field (Φ) are introduced. The unification into SU(5)×U(1)X is
achieved only for xH = −4/5, and xH is quantized in our model.

SU(3)C SU(2)L U(1)Y U(1)B−L

N i
R 1 1 0 −1
Φ 1 1 0 +2

Table 2: The particle content of the minimal U(1)X extended SM with Z2-parity. In
addition to the SM particle content (i = 1, 2, 3), the three RHNs (N j

R (j = 1, 2) and
NR) and the U(1)X Higgs field (Φ) are introduced. The unification into SU(5)×U(1)X is
achieved only for xH = −4/5, and xH is quantized in our model.

LSM ⊃ θ
8∑

a=1

εµνρσGa
µνG

a
ρσ (1)

η =
nB − nB̄

nγ
$ nB

nγ
$ 10−10 ηSM % 10−10 (2)

nB nB̄ nγ (3)

nB̄ % nB η $ 10−10 (4)

V ∝ a(t)3 ∝
[
eHt

]3
∆φ (5)

1

Gluon Field Strength: 

This term generates Neutron EDM at quantum level,  
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1

while the experimental upper bound is 

SU(3)C SU(2)L U(1)Y U(1)B−L

qiL 3 2 1/6 +1/3
ui
R 3 1 2/3 +1/3

diR 3 1 −1/3 +1/3
!iL 1 2 −1/2 −1
eiR 1 1 −1 −1

H 1 2 −1/2 0

Table 1: The particle content of the minimal U(1)X extended SM with Z2-parity. In
addition to the SM particle content (i = 1, 2, 3), the three RHNs (N j

R (j = 1, 2) and
NR) and the U(1)X Higgs field (Φ) are introduced. The unification into SU(5)×U(1)X is
achieved only for xH = −4/5, and xH is quantized in our model.

SU(3)C SU(2)L U(1)Y U(1)B−L

N i
R 1 1 0 −1
Φ 1 1 0 +2

Table 2: The particle content of the minimal U(1)X extended SM with Z2-parity. In
addition to the SM particle content (i = 1, 2, 3), the three RHNs (N j

R (j = 1, 2) and
NR) and the U(1)X Higgs field (Φ) are introduced. The unification into SU(5)×U(1)X is
achieved only for xH = −4/5, and xH is quantized in our model.

LSM ⊃ θ
8∑

a=1

εµνρσGa
µνG

a
ρσ (1)

|dn| ∼ |θ|× 10−13 e cm |dn| < 10−26 e cm (2)

η =
nB − nB̄

nγ
% nB

nγ
% 10−10 ηSM & 10−10 (3)
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Why	is	 	turned	to	be	extremely	small?θ



2.	Possible	solution	to	each	problem
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1.	Effective	Theory	for	Neutrino	Mass	Generation

Dim.	5	operators	(Weinberg	operator)	consistent	with	the	SM	
gauge	symmetry

ℒ5 = −
cab

Λ
ℓaℓbHH

After	the	electroweak	(EW)	symmetry	breaking,	


,	⟨H⟩ =
1

2 [ 0
vEW] ℒ5 → − mab

ν νaνb

Majorana	mass:	 ,	for	mab
ν = cabvEW ×

vEW

Λ
≪ vEW vEW ≪ Λ /cab

ℓa ℓb

H H
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For	Ultraviolet	(UV)	completion,	the	dim-5	operators	from	
integrating	out	heavy	states	(at	tree-level/loop-levels)

ℓa ℓb

H H
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For	Ultraviolet	(UV)	completion,	the	dim-5	operators	from	
integrating	out	heavy	states	(at	tree-level/loop-levels)

Ultraviolet	(UV)	
completion

ℓa ℓb

H H

ℓa ℓb

H H
New	particles
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2.	WIMP	scenario	for	Dark	Matter	Problem

DM	candidate:	Weakly	Interacting	Massive	Particle	(WIMP)	
with 	and	QX = 0 τX ≫ τU

Decoupling	from	

the	SM	thermal	plasma:	

dnX

dt
+ 3HnX

Boltzmann	equation

= − ⟨σXX̄vrel⟩(n2
X − (nEQ

X )
2)

YDM(x) =
nX

s

x =
mDM

T

Freeze-Out

YEQ
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The	DM	relic	density:	

This	should	reproduce	the	observed	DM	density	measured	
by	Planck	2018
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``WIMP	DM	Miracle”

With	a	given	annihilation	cross	section,	the	Boltzmann	equation	
is	easily	solved,	and	we	can	find	a	good	proximation	formula	to	
derive	the	observed	DM	density:		

	 		is	obtained	if	ΩDMh2 ∼ 0.1 ⟨σvrel⟩ ∼ 1 pb
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``WIMP	DM	Miracle”

With	a	given	annihilation	cross	section,	the	Boltzmann	equation	
is	easily	solved,	and	we	can	find	a	good	proximation	formula	to	
derive	the	observed	DM	density:		

We	may	parametrize ⟨σvrel⟩ =
g4

2

4π
1

m2
χ

For	the	SU(2)	gauge	coupling,	we	find

																												 	leads	to	mχ ∼ 1 TeV ⟨σvrel⟩ ∼ 1 pb

The	mass	(physics)	scale	of	WIMP	to	be	around	

1	TeV	is	suggested	by	the	observation!	

	 		is	obtained	if	ΩDMh2 ∼ 0.1 ⟨σvrel⟩ ∼ 1 pb
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3.	Slow-roll	inflation	to	drive	the	cosmic	inflation

0 5 10

0.0

0.5

1.0

1.5

�/MP

c N
×V

(�
)/M

P4
Slow-roll:	E ∼ VEnd	of	Inflation:	


									K ∼ V

Oscillation	->	decay	->	reheating

ϕ + δϕ

• Inflation	takes	place	during	slow-roll:	 

• Quantum	fluctuation	 	is	magnified	to	a	macroscopic	scale					
—>	primordial	density	fluctuation

a(t) ∝ eHinf t

δϕ
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FIG. 5. Constraints in the r vs. ns plane for the Planck
2018 baseline analysis, and when also adding BICEP/Keck
data through the end of the 2018 season plus BAO data to
improve the constraint on ns. The constraint on r tightens
from r0.05 < 0.11 to r0.05 < 0.035. This figure is adapted from
Fig. 28 of Ref. [2] with the green contours being identical.
Some additional inflationary models are added from Fig. 8 of
Ref. [35] with the purple region being natural inflation.
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PS
= r ≤ 0.036 (95%)

Constraints	on	inflation	scenario	from	CMB	observations

Tensor-to-scalar	ratio:

Power	spectrum	of	scalar

perturbation:

PS(k0) = 2.099 × 10−9

k0 = 0.05 Mpc−1

Spectral	index:

ns = 1 +
d ln PS

d ln k
≃ 0.965
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Inflationary	predictions	of	a	slow-roll	inflation

ℒinf =
1
2

ημν(∂μϕ)(∂νϕ) − V(ϕ)

Defining	the	slow-roll	parameters	(in	Planck	units	 )	MP = 1

Before we discuss the models, let’s recall the basic equations used to calculate the
inflationary parameters. The slow-roll parameters may be defined as (see ref. [18] for a
review and references):
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Here and below we use units mP = 2.4⇥ 1018 GeV = 1, and primes denote derivatives with
respect to the inflaton field �. The spectral index ns, the tensor to scalar ratio r and the
running of the spectral index ↵ ⌘ dns/d ln k are given in the slow-roll approximation by

ns = 1� 6✏+ 2⌘ , r = 16✏ , ↵ = 16✏⌘ � 24✏2 � 2⇣2 . (1.2)

The amplitude of the curvature perturbation �R is given by

�R =
1

2
p
3⇡

V
3/2

|V 0| , (1.3)

which should satisfy �2
R = 2.215 ⇥ 10�9 from the Planck measurement [19] with the pivot

scale chosen at k0 = 0.05 Mpc�1.
The number of e-folds is given by

N =

Z �0

�e

V d�

V 0 , (1.4)

where �0 is the inflaton value at horizon exit of the scale corresponding to k0, and �e is the
inflaton value at the end of inflation, defined by max(✏(�e), |⌘(�e)|, |⇣2(�e)|) = 1. The value
of N depends logarithmically on the energy scale during inflation as well as the reheating
temperature, and is typically around 50–60.

2 Radiatively corrected quadratic and quartic potentials

Inflation driven by scalar potentials of the type

V =
1

2
m

2
�
2 +

�

4!
�
4 (2.1)

provide a simple realization of an inflationary scenario [5]. However, the inflaton field �

must have couplings to ‘matter’ fields which allow it to make the transition to hot big bang
cosmology at the end of inflation. Couplings such as (1/2)h�N̄N or (1/2)g2�2

�
2 (to a

Majorana fermion N and a scalar � respectively) induce correction terms to the potential
which, to leading order, take the Coleman-Weinberg form [20]
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✓
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◆
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Here, µ is a renormalization scale which we set to µ = mP
1, and  = (2h4 � g

4)/(32⇡2) in
the one loop approximation.

1
For the radiatively corrected quartic potential the observable inflationary parameters do not depend on

the choice of the renormalization scale. However, this may not be the case for the radiatively corrected

quadratic potential, as discussed in ref. [21].
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the	spectral	index	&	tensor-to-scalar	ratio:

The	power	spectrum	of	scalar	perturbation:	 PS =
1

12π2

V3

(V′￼)2

The	number	of	e-folds:	

Here,	 	at	the	horizon	exit	&	the	end	of	inflation	ϕ = ϕ0 ϵ(ϕe) = 1

Ne = ∫
ϕ0

ϕe

dϕ
V
V′￼
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Inflationary	predictions	of	a	slow-roll	inflation

The	power	spectrum	of	scalar	perturbation:	


																														 	PS =
1

12π2

V3

(V′￼)2
→ 2.099 × 10−9

The	number	of	e-folds:	 Fix	(say,	50-60)	Ne = ∫
ϕ0

ϕe

dϕ
V
V′￼

→

predictions
ns & r
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Ex)	A	successful	inflation	scenario:	non-minimal	 	inflationλϕ4

Action	in	the	Jordan	frame: See,	for	example,	

NO,	Rehman	&	Shafi,	PRD	82	(2010)	04352	

• Non-minimal	gravitational	coupling

• Quartic	coupling	dominates	during	inflation
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Inflationary	Predictions	VS	Planck+BK18+BAO	results		

• Once	 	is	fixed,	only	1	free	parameter	( )	determines	the	predictions

• Predicted	GWs	are	

Ne ξ
r ≳ 0.003

Future	experiments	(CMB-S4,	LiteBIRD)	will	cover	the	region!

BK18+Planck+BAO
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CMB-S4
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Non-minimal	 	inflationλϕ4

• Simple	1-field	inflation	with	the	introduction	of	 

• Consistent	with	Planck	+	others	with	a	suitable	choice	of	
quartic	coupling	 


• Potentially,	any	scalar	can	play	the	role	of	inflaton	

ξ |ϕ |2 R

λ |ϕ |4
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4.	Affleck-Dine	(AD)	Baryogenesis	(Affleck-Dine,	1985)

• A	complex	scalar	field	carries	B/L	number


Φ =
1

2
(ϕ1 + iϕ2)
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4.	Affleck-Dine	(AD)	Baryogenesis	(Affleck-Dine,	1985)

• A	complex	scalar	field	carries	B/L	number


• AD	field	potential	includes	B/L	violating	term(s)


Φ =
1

2
(ϕ1 + iϕ2)

ℒ ⊃ ∂μΦ†∂μΦ − V with V = Vsym(Φ†Φ) + (Vasym(Φ, Φ†) + h . c . )
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4.	Affleck-Dine	(AD)	Baryogenesis	(Affleck-Dine,	1985)

• A	complex	scalar	field	carries	B/L	number


• AD	field	potential	includes	B/L	violating	term(s)


• A	suitable	initial	condition	of	the	AD	field	away	from	the	
potential	minimum


Φ =
1

2
(ϕ1 + iϕ2)

ℒ ⊃ ∂μΦ†∂μΦ − V with V = Vsym(Φ†Φ) + (Vasym(Φ, Φ†) + h . c . )
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4.	Affleck-Dine	(AD)	Baryogenesis	(Affleck-Dine,	1985)

• A	complex	scalar	field	carries	B/L	number


• AD	field	potential	includes	B/L	violating	term(s)


• A	suitable	initial	condition	of	the	AD	field	away	from	the	
potential	minimum


• During	the	evolution	of	the	AD	field,	the	B/L	number	is	
generated

Φ =
1

2
(ϕ1 + iϕ2)

ℒ ⊃ ∂μΦ†∂μΦ − V with V = Vsym(Φ†Φ) + (Vasym(Φ, Φ†) + h . c . )

mined by the decay width of the AD field will be
denoted by TR and will determine the amount of
baryon asymmetry generated. The big bang cosmol-
ogy era begins after this.

To calculate the baryon asymmetry of the universe, one
can make the so-called threshold approximation as has
been done in [30] and then one can solve the time evolution
equations for the real and imaginary parts of the Φ field,
i.e., ϕ1;2=

ffiffiffi
2

p ≡ Re½Φ"; Im½Φ". We have solved these time
evolution equations numerically to calculate the baryon
asymmetry and we are in broad agreement with the
conclusions of Ref. [30]. We first summarize the basic
contents of the analytic solutions in the threshold approxi-
mation [30]. For ϕ1;2 ≳ ϕ# ≡mΦ=

ffiffiffi
λ

p
, the quartic term in

the potential dominates. When that happens, one can see as
follows that ϕ1;2 decrease with the expansion of the
universe as ϕ1;2 ∝ 1=a. To see this, note that

_ρþ 3Hðρþ pÞ ¼ 0 ð5Þ

where ρ ¼ _Φ† _Φþ V and p ¼ _Φ† _Φ − V are the energy
density and pressure of the universe at early times. It is
known that when the quartic term dominates the potential
during the inflaton oscillation, the equation of state behaves
like the radiation dominated era, p ¼ ρ=3, leading to

_ρþ 4Hρ ¼ 0 ð6Þ

and _Φ† _Φ ∼ 2V. This gives ρa4 ∼ 3Va4 ∼ 3λðΦ†ΦÞ2a4 ¼
constant, which implies jΦj ∝ 1=a. Since jΦj ∝ 1=a as the
universe expands, the jΦjvalue goes down and at some point
for

ffiffiffi
2

p
jΦj ¼ ϕ# ¼ mΦ=

ffiffiffi
λ

p
and the quadratic term starts

dominating the potential. The field amplitudes at a#, which
is the expansion rate when

ffiffiffi
2

p
jΦj ¼ ϕ#, are expressed as

ϕi;# ¼
"
aI
a#

#
ϕi;I ¼

"
ϕ#
ϕI

#
ϕi;I ; ð7Þ

where ϕi;I is the initial values of ϕi at a ¼ aI, and

ϕI ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðϕ1;IÞ2 þ ðϕ2;IÞ2

q
. To follow the evolution of ϕ1;2

after this point ϕ#, we use the quadratic term to solve the
evolution equation as will be done in the next section.

IV. EVOLUTION OF AD FIELD AFTER STAGE 2
AND BARYOGENESIS

To study baryogenesis, we look at the time evolution of
the real and imaginary parts of the field Φ by using the
following equations of motion,

ϕ̈1 þ 3H _ϕ1 ¼ −m2
1ϕ1 − λðϕ2

1 þ ϕ2
2Þϕ1;

ϕ̈2 þ 3H _ϕ2 ¼ −m2
2ϕ2 − λðϕ2

1 þ ϕ2
2Þϕ2; ð8Þ

where m2
1 ¼ m2

Φ − 2A and m2
2 ¼ m2

Φ þ 2A. We also follow
this evolution numerically. To get an analytical solution, we
can neglect the quartic terms since as argued above at this
stage the contribution of the quartic term is very small
compared to the quadratic term. Then forH ≪ mΦ, one can
write approximate solutions for ϕ1;2 components of the
fields to be:

ϕiðtÞ ≃ ϕi;#

"
a#
a

#
3=2

cosðmiðt − t#ÞÞ

¼ ϕi;I

"
ϕI

ϕ#

#
1=2

"
aI
a

#
3=2

cosðmiðt − t#ÞÞ: ð9Þ

Note the difference between the evolution equations for the
real and imaginary parts of Φ. Because of this difference
(and the initial value of θ ¼ Oð1Þ ≠ π=2), nonzero baryon
number of the universe will be generated. In what follows,
we parameterize A ¼ ϵM2

Φ with 0 < ϵ ≪ 1. Baryon num-
ber asymmetry is given by nBðtÞ ¼ QΦð _ϕ1ϕ2 − _ϕ2ϕ1Þ. We
can then rewrite the time evolution of nBðtÞ using the above
equations of motion as

_nB þ 3HnB ¼ 2QΦIm
" ∂V
∂Φ†Φ

†
#

¼ 4QΦAϕ1ðtÞϕ2ðtÞ

≃ 4QΦAϕ1;Iϕ2;I

"
ϕI

ϕ#

#"
aI
aðtÞ

#
3

cosðm1ðt − t#ÞÞ cosðm2ðt − t#ÞÞ: ð10Þ

The baryon asymmetry is generated for t > t#. Defining the co-moving asymmetry NB ¼ ðaðtÞaI
Þ3nBðtÞ, we evaluate the

baryon asymmetry by

NBðtÞ ≃ 2QΦ

Z
t

t#
dt0

"
aðt0Þ
aI

#
3

Im
" ∂V
∂Φ†Φ

†
#
e−ΓΦðt0−t#Þ

≃ 4QΦAϕ1;Iϕ2;I

"
ϕI

ϕ#

# Z
t

t#
dt0 cosðm1ðt0 − t#ÞÞ cosðm2ðt0 − t#ÞÞe−ΓΦðt0−t#Þ; ð11Þ
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we parameterize A ¼ ϵM2

Φ with 0 < ϵ ≪ 1. Baryon num-
ber asymmetry is given by nBðtÞ ¼ QΦð _ϕ1ϕ2 − _ϕ2ϕ1Þ. We
can then rewrite the time evolution of nBðtÞ using the above
equations of motion as

_nB þ 3HnB ¼ 2QΦIm
" ∂V
∂Φ†Φ

†
#

¼ 4QΦAϕ1ðtÞϕ2ðtÞ

≃ 4QΦAϕ1;Iϕ2;I

"
ϕI

ϕ#

#"
aI
aðtÞ

#
3

cosðm1ðt − t#ÞÞ cosðm2ðt − t#ÞÞ: ð10Þ

The baryon asymmetry is generated for t > t#. Defining the co-moving asymmetry NB ¼ ðaðtÞaI
Þ3nBðtÞ, we evaluate the

baryon asymmetry by

NBðtÞ ≃ 2QΦ

Z
t

t#
dt0

"
aðt0Þ
aI

#
3

Im
" ∂V
∂Φ†Φ

†
#
e−ΓΦðt0−t#Þ

≃ 4QΦAϕ1;Iϕ2;I

"
ϕI

ϕ#

# Z
t

t#
dt0 cosðm1ðt0 − t#ÞÞ cosðm2ðt0 − t#ÞÞe−ΓΦðt0−t#Þ; ð11Þ

RABINDRA N. MOHAPATRA and NOBUCHIKA OKADA PHYS. REV. D 104, 055030 (2021)

055030-4



38

"

"d*']?4*7 *3 t(?* u $7+ >7 =S5 u

Sample:	AD	field	evolution	&	baryon	number	generation	
(

0$;H*7 7]%C(; D(7(;$?4*7

Q

g? I >

QE( U ?*?$' C$;H*7 7]%C(; U *3 ?E( ]74d(;9( U 49 34#(+

$? U ? I U ?*9$ U 7 ?E? c e7*?
Z

`*; ?E( 12 34('+ &*?(7?4$' K $7 $&&;*#4%$?4*7 U 3*;%]'$ 3*; k01

49 V7*87
Z

E49 g*9( / = )H S56
K
8E(;( *E

U 49 U ?E( 12 U 34('+ d$'](

$? U ? =

= ?*9:
Z

U v SZ6 c g>Q )& g g*9( /

Comoving	frame	BAU

Illustration	purpose		(not	a	realistic	value)



39

"

"d*']?4*7 *3 t(?* u $7+ >7 =S5 u

Sample:	AD	field	evolution	&	baryon	number	generation	
(

0$;H*7 7]%C(; D(7(;$?4*7

Q

g? I >

QE( U ?*?$' C$;H*7 7]%C(; U *3 ?E( ]74d(;9( U 49 34#(+

$? U ? I U ?*9$ U 7 ?E? c e7*?
Z

`*; ?E( 12 34('+ &*?(7?4$' K $7 $&&;*#4%$?4*7 U 3*;%]'$ 3*; k01

49 V7*87
Z

E49 g*9( / = )H S56
K
8E(;( *E

U 49 U ?E( 12 U 34('+ d$'](

$? U ? =

= ?*9:
Z

U v SZ6 c g>Q )& g g*9( /

• Generated	B/L	asymmetry	is	transferred	the	SM	thermal	
plasma	by	the	AD	field	decay	with	B/L	conserving	
interactions:	 ℒint ∼ Φ𝒪SM or Φ𝒪BSM

Comoving	frame	BAU

Illustration	purpose		(not	a	realistic	value)
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Can	AD	field	play	another	important	role	in	particle	physics?	
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It	is	interesting	to	ask	the	following	questions:

Can	AD	field	play	another	important	role	in	particle	physics?	

Recently,	the	models	in	which	the	AD	field	is	identified	with	
inflaton	have	been	proposed	several	groups:

Chang,	Lee,	Leung	&	Ng	(2009);

Hertzberg	&	Karouby	(2014);

Takeda	(2015);

Babichev,	Gorbunov	&	Ramazanov	(2019);

Cline,	Puel	&	Toma	(2020);	

Lloyd-Stubbs	&	McDonald	(2021);

Kawasaki	&	Ueda	(2021);

Barrie,	Han	&	Murayama	(2021)

AD	field	=	Inflaton?
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A	simple	idea:	Introduce	non-minimal	gravitational	coupling	to	
the	AD	field:	

provides the best opportunity for obtaining the adequate
baryogenesis as in the model of Ref. [19] which provides a
GUT-setting for our scenario and also discuss the viable
100 TeV scale scenario. We elaborate a bit more on the
So(10) model in Sec. VIII and Sec. IX is devoted to a new
ΔB ¼ 4 process induced in the AD scenario we pursue and
then we conclude our discussion in Sec. X.

II. THE MODEL

While there are different ways to implement AD bar-
yognesis, the model presented here is a generalization of
the work in [30] which uses scalar field Φ with the
appropriate B or L quantum number, both as the inflaton
and the AD field. We, non-minimally, couple the AD field
to gravity so that it is consistent with CMB observations.
Let us start by reviewing the results of Ref. [30]. The
starting Lagrangian for Φ in this case is given by:

S ¼
Z

d4x
ffiffiffiffiffiffi−gp

"
−
1

2
M2

PfRþ ∂μΦ†∂μΦ − VðΦÞ
#
; ð1Þ

whereMP ¼ 2.44 × 1018 GeV is the reduced Planck mass,
f ¼ 1þ 2ξ Φ†Φ

M2
P

with ξ being non-minimal coupling to

gravity.We choose VðΦÞ as in [30]

VðΦÞ ¼ m2
ΦΦ†Φ − AðΦ2 þΦ†2Þ þ λðΦ†ΦÞ2: ð2Þ

To discuss inflation in the model, we make transforma-
tion of the fields to go to the Einstein frame by gEμν ¼ gμν=f,
which then leads to the following action SE in the Einstein
frame,

SE ¼
Z

d4x
"
−
1

2
M2

PRE

þ
$
1

f
þ 12ξ2

f2
Φ†Φ
M2

P

%
∂μΦ†∂μΦ − VEðΦÞ

#
; ð3Þ

where

VEðΦÞ ¼ VðΦÞ
ð1þ 2ξ Φ†Φ

M2
P
Þ2
: ð4Þ

To study the inflation picture and the AD mechanism, we
switch to radial parametrization of Φ ¼ 1ffiffi

2
p jΦjeiθ. The jΦj

field is then the inflaton field. It is now clear that for large
values of the field jΦj≳MP=

ffiffiffi
ξ

p
in the early stage of the

universe, the potential flattens out and is a constant to a
good approximation driving the exponential expansion of
the universe—the inflationary phase. The inflation is
essentially controlled by one free parameter ξ. The fits
to observations such as the spectral index ns as well as the
tensor-to-scalar ratio r for a fixed number of e-folds Ne in
such a model have been carried out in [33,34]. The initial
value of the inflaton field jΦj is appropriately chosen to fit

observations. For example, one bench mark choice of
parameters that fits data is ξ ∼ 1600 and λ ∼ 10−3 so that
one gets ns ¼ 0.968 and r ¼ 0.003 for Ne ¼ 60, which
are fully consistent with observations [33]. The jΦjint ∼
0.23MP for inflaton value at horizon exit and jΦjend ∼
0.029MP at the end of inflation. We choose jΦjend as the
initial value for the inflaton field in AD baryogenesis. The
initial value of the phase of the Φ field can be chosen at
random and we choose it to be θ ¼ Oð1Þ ≠ π=2. Note the
large value of the ξ above. Clearly it raises the question of
unitarity violation above a certain mass scale. This question
has been analyzed for generic non-minimally coupled
inflaton in Refs. [35,36] and it has been noted that there
is no real issue: since during inflation the inflaton value is
around the Planck scale, we estimate the effective cutoff to
satisfy the unitarity by expanding the inflaton around its
background value, so that the effective cutoff is found to be
the Planck scale. The second point we want to emphasize is
that the presence of the A term breaks the global baryon
number symmetry carried by the rest of the Lagrangian and
plays a crucial role in the baryon asymmetry generation.
This is also required by Sakharov’s conditions for baryo-
genesis. It splits the masses of the real and imaginary parts
of the Φ field. We will see later (Eq. (10), (11) and below)
that indeed nB is proportional to A.

III. EVOLUTION OF THE UNIVERSE
IN OUR PICTURE

In this model, there are four stages of the evolution of the
early universe:
(1) For jΦj≳MP=

ffiffiffi
ξ

p
when the nonminimal coupling in

the Einstein frame leads to a constant VðΦÞ, it drives
inflation as just noted in the previous section.

(2) In the second phase, the value of jΦj is still large but
not large enough to make the nonminimal gravity
coupling dominate; instead the dominant term driv-
ing the evolution of the jΦj is the λjΦj4 term. Since
the field jΦj has rolled down the potential and its
value has become less than MP=

ffiffiffi
ξ

p
the effect of the

nonminimal coupling becomes unimportant and
inflation ends. At the beginning of this stage, the
real and imaginary parts of the field are already
different due to the CP-violating A term in the
potential. This asymmetry leads eventually to the
baryon asymmetry of the universe and is the key idea
in AD baryogenesis.

(3) The third stage is where the quadratic term in the
potential dominates over the quartic term leading to
an oscillatory behavior of jΦj (see below) and the
universe behaves like it is matter dominated. This
approximation of transition of the potential from
being quartic dominated to quadratic dominated is
called the threshold approximation in [30].

(4) The fourth stage is when the AD field decays and
reheat takes place. The reheat temperature deter-
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100 TeV scale scenario. We elaborate a bit more on the
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To study the inflation picture and the AD mechanism, we
switch to radial parametrization of Φ ¼ 1ffiffi
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p jΦjeiθ. The jΦj

field is then the inflaton field. It is now clear that for large
values of the field jΦj≳MP=

ffiffiffi
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in the early stage of the

universe, the potential flattens out and is a constant to a
good approximation driving the exponential expansion of
the universe—the inflationary phase. The inflation is
essentially controlled by one free parameter ξ. The fits
to observations such as the spectral index ns as well as the
tensor-to-scalar ratio r for a fixed number of e-folds Ne in
such a model have been carried out in [33,34]. The initial
value of the inflaton field jΦj is appropriately chosen to fit

observations. For example, one bench mark choice of
parameters that fits data is ξ ∼ 1600 and λ ∼ 10−3 so that
one gets ns ¼ 0.968 and r ¼ 0.003 for Ne ¼ 60, which
are fully consistent with observations [33]. The jΦjint ∼
0.23MP for inflaton value at horizon exit and jΦjend ∼
0.029MP at the end of inflation. We choose jΦjend as the
initial value for the inflaton field in AD baryogenesis. The
initial value of the phase of the Φ field can be chosen at
random and we choose it to be θ ¼ Oð1Þ ≠ π=2. Note the
large value of the ξ above. Clearly it raises the question of
unitarity violation above a certain mass scale. This question
has been analyzed for generic non-minimally coupled
inflaton in Refs. [35,36] and it has been noted that there
is no real issue: since during inflation the inflaton value is
around the Planck scale, we estimate the effective cutoff to
satisfy the unitarity by expanding the inflaton around its
background value, so that the effective cutoff is found to be
the Planck scale. The second point we want to emphasize is
that the presence of the A term breaks the global baryon
number symmetry carried by the rest of the Lagrangian and
plays a crucial role in the baryon asymmetry generation.
This is also required by Sakharov’s conditions for baryo-
genesis. It splits the masses of the real and imaginary parts
of the Φ field. We will see later (Eq. (10), (11) and below)
that indeed nB is proportional to A.

III. EVOLUTION OF THE UNIVERSE
IN OUR PICTURE

In this model, there are four stages of the evolution of the
early universe:
(1) For jΦj≳MP=

ffiffiffi
ξ
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when the nonminimal coupling in

the Einstein frame leads to a constant VðΦÞ, it drives
inflation as just noted in the previous section.

(2) In the second phase, the value of jΦj is still large but
not large enough to make the nonminimal gravity
coupling dominate; instead the dominant term driv-
ing the evolution of the jΦj is the λjΦj4 term. Since
the field jΦj has rolled down the potential and its
value has become less than MP=

ffiffiffi
ξ

p
the effect of the

nonminimal coupling becomes unimportant and
inflation ends. At the beginning of this stage, the
real and imaginary parts of the field are already
different due to the CP-violating A term in the
potential. This asymmetry leads eventually to the
baryon asymmetry of the universe and is the key idea
in AD baryogenesis.

(3) The third stage is where the quadratic term in the
potential dominates over the quartic term leading to
an oscillatory behavior of jΦj (see below) and the
universe behaves like it is matter dominated. This
approximation of transition of the potential from
being quartic dominated to quadratic dominated is
called the threshold approximation in [30].

(4) The fourth stage is when the AD field decays and
reheat takes place. The reheat temperature deter-
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Φ†Φ
M2

P

Identify	the	AD	field	with	the	inflaton	in	the	non-minimal	 	
inflation	scenario

λϕ4

• During	the	inflation,	the	inflation	potential	is	dominated	
by																													 		


• The	AD	baryogengesis	takes	place	after	inflation
V ∼ λΦ(Φ†Φ)2
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We	follow	a	simple	AD=Inflaton	scenario	by	Lloyd-Stubbs	&	
McDonald	(2021):	AD=Inflaton	carries	B/L	number


V(Φ) = m2
ΦΦ†Φ + ϵm2

Φ(Φ2 + Φ†2) + λ(Φ†Φ)2

Explicit	B/L	violating	term:	0 < ϵ ≪ 1
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We	follow	a	simple	AD=Inflaton	scenario	by	Lloyd-Stubbs	&	
McDonald	(2021):	AD=Inflaton	carries	B/L	number

mined by the decay width of the AD field will be
denoted by TR and will determine the amount of
baryon asymmetry generated. The big bang cosmol-
ogy era begins after this.

To calculate the baryon asymmetry of the universe, one
can make the so-called threshold approximation as has
been done in [30] and then one can solve the time evolution
equations for the real and imaginary parts of the Φ field,
i.e., ϕ1;2=

ffiffiffi
2

p ≡ Re½Φ"; Im½Φ". We have solved these time
evolution equations numerically to calculate the baryon
asymmetry and we are in broad agreement with the
conclusions of Ref. [30]. We first summarize the basic
contents of the analytic solutions in the threshold approxi-
mation [30]. For ϕ1;2 ≳ ϕ# ≡mΦ=

ffiffiffi
λ

p
, the quartic term in

the potential dominates. When that happens, one can see as
follows that ϕ1;2 decrease with the expansion of the
universe as ϕ1;2 ∝ 1=a. To see this, note that

_ρþ 3Hðρþ pÞ ¼ 0 ð5Þ

where ρ ¼ _Φ† _Φþ V and p ¼ _Φ† _Φ − V are the energy
density and pressure of the universe at early times. It is
known that when the quartic term dominates the potential
during the inflaton oscillation, the equation of state behaves
like the radiation dominated era, p ¼ ρ=3, leading to

_ρþ 4Hρ ¼ 0 ð6Þ

and _Φ† _Φ ∼ 2V. This gives ρa4 ∼ 3Va4 ∼ 3λðΦ†ΦÞ2a4 ¼
constant, which implies jΦj ∝ 1=a. Since jΦj ∝ 1=a as the
universe expands, the jΦjvalue goes down and at some point
for

ffiffiffi
2

p
jΦj ¼ ϕ# ¼ mΦ=

ffiffiffi
λ

p
and the quadratic term starts

dominating the potential. The field amplitudes at a#, which
is the expansion rate when

ffiffiffi
2

p
jΦj ¼ ϕ#, are expressed as

ϕi;# ¼
"
aI
a#

#
ϕi;I ¼

"
ϕ#
ϕI

#
ϕi;I ; ð7Þ

where ϕi;I is the initial values of ϕi at a ¼ aI, and

ϕI ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðϕ1;IÞ2 þ ðϕ2;IÞ2

q
. To follow the evolution of ϕ1;2

after this point ϕ#, we use the quadratic term to solve the
evolution equation as will be done in the next section.

IV. EVOLUTION OF AD FIELD AFTER STAGE 2
AND BARYOGENESIS

To study baryogenesis, we look at the time evolution of
the real and imaginary parts of the field Φ by using the
following equations of motion,

ϕ̈1 þ 3H _ϕ1 ¼ −m2
1ϕ1 − λðϕ2

1 þ ϕ2
2Þϕ1;

ϕ̈2 þ 3H _ϕ2 ¼ −m2
2ϕ2 − λðϕ2

1 þ ϕ2
2Þϕ2; ð8Þ

where m2
1 ¼ m2

Φ − 2A and m2
2 ¼ m2

Φ þ 2A. We also follow
this evolution numerically. To get an analytical solution, we
can neglect the quartic terms since as argued above at this
stage the contribution of the quartic term is very small
compared to the quadratic term. Then forH ≪ mΦ, one can
write approximate solutions for ϕ1;2 components of the
fields to be:

ϕiðtÞ ≃ ϕi;#

"
a#
a

#
3=2

cosðmiðt − t#ÞÞ

¼ ϕi;I

"
ϕI

ϕ#

#
1=2

"
aI
a

#
3=2

cosðmiðt − t#ÞÞ: ð9Þ

Note the difference between the evolution equations for the
real and imaginary parts of Φ. Because of this difference
(and the initial value of θ ¼ Oð1Þ ≠ π=2), nonzero baryon
number of the universe will be generated. In what follows,
we parameterize A ¼ ϵM2

Φ with 0 < ϵ ≪ 1. Baryon num-
ber asymmetry is given by nBðtÞ ¼ QΦð _ϕ1ϕ2 − _ϕ2ϕ1Þ. We
can then rewrite the time evolution of nBðtÞ using the above
equations of motion as

_nB þ 3HnB ¼ 2QΦIm
" ∂V
∂Φ†Φ

†
#

¼ 4QΦAϕ1ðtÞϕ2ðtÞ

≃ 4QΦAϕ1;Iϕ2;I

"
ϕI

ϕ#

#"
aI
aðtÞ

#
3

cosðm1ðt − t#ÞÞ cosðm2ðt − t#ÞÞ: ð10Þ

The baryon asymmetry is generated for t > t#. Defining the co-moving asymmetry NB ¼ ðaðtÞaI
Þ3nBðtÞ, we evaluate the

baryon asymmetry by

NBðtÞ ≃ 2QΦ

Z
t

t#
dt0

"
aðt0Þ
aI

#
3

Im
" ∂V
∂Φ†Φ

†
#
e−ΓΦðt0−t#Þ

≃ 4QΦAϕ1;Iϕ2;I

"
ϕI

ϕ#

# Z
t

t#
dt0 cosðm1ðt0 − t#ÞÞ cosðm2ðt0 − t#ÞÞe−ΓΦðt0−t#Þ; ð11Þ
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EOM	after	inflation: Φ =
1

2
(ϕ1 + iϕ2)

V(Φ) = m2
ΦΦ†Φ + ϵm2

Φ(Φ2 + Φ†2) + λ(Φ†Φ)2

Explicit	B/L	violating	term:	0 < ϵ ≪ 1

	where	 	,	and	m2
1 = (1−2ϵ)m2

Φ m2
2 = (1+2ϵ)m2

Φ

mined by the decay width of the AD field will be
denoted by TR and will determine the amount of
baryon asymmetry generated. The big bang cosmol-
ogy era begins after this.

To calculate the baryon asymmetry of the universe, one
can make the so-called threshold approximation as has
been done in [30] and then one can solve the time evolution
equations for the real and imaginary parts of the Φ field,
i.e., ϕ1;2=

ffiffiffi
2

p ≡ Re½Φ"; Im½Φ". We have solved these time
evolution equations numerically to calculate the baryon
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conclusions of Ref. [30]. We first summarize the basic
contents of the analytic solutions in the threshold approxi-
mation [30]. For ϕ1;2 ≳ ϕ# ≡mΦ=

ffiffiffi
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, the quartic term in

the potential dominates. When that happens, one can see as
follows that ϕ1;2 decrease with the expansion of the
universe as ϕ1;2 ∝ 1=a. To see this, note that

_ρþ 3Hðρþ pÞ ¼ 0 ð5Þ
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known that when the quartic term dominates the potential
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this evolution numerically. To get an analytical solution, we
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Note the difference between the evolution equations for the
real and imaginary parts of Φ. Because of this difference
(and the initial value of θ ¼ Oð1Þ ≠ π=2), nonzero baryon
number of the universe will be generated. In what follows,
we parameterize A ¼ ϵM2

Φ with 0 < ϵ ≪ 1. Baryon num-
ber asymmetry is given by nBðtÞ ¼ QΦð _ϕ1ϕ2 − _ϕ2ϕ1Þ. We
can then rewrite the time evolution of nBðtÞ using the above
equations of motion as

_nB þ 3HnB ¼ 2QΦIm
" ∂V
∂Φ†Φ

†
#

¼ 4QΦAϕ1ðtÞϕ2ðtÞ

≃ 4QΦAϕ1;Iϕ2;I

"
ϕI

ϕ#

#"
aI
aðtÞ

#
3

cosðm1ðt − t#ÞÞ cosðm2ðt − t#ÞÞ: ð10Þ

The baryon asymmetry is generated for t > t#. Defining the co-moving asymmetry NB ¼ ðaðtÞaI
Þ3nBðtÞ, we evaluate the

baryon asymmetry by

NBðtÞ ≃ 2QΦ

Z
t

t#
dt0

"
aðt0Þ
aI

#
3

Im
" ∂V
∂Φ†Φ

†
#
e−ΓΦðt0−t#Þ

≃ 4QΦAϕ1;Iϕ2;I

"
ϕI

ϕ#

# Z
t

t#
dt0 cosðm1ðt0 − t#ÞÞ cosðm2ðt0 − t#ÞÞe−ΓΦðt0−t#Þ; ð11Þ

RABINDRA N. MOHAPATRA and NOBUCHIKA OKADA PHYS. REV. D 104, 055030 (2021)
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AD=Inflaton	field	evolution	in	the	early	Universe
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AD=Inflaton	field	evolution	in	the	early	Universe

ϕ1 = ϕinf cos θ & ϕ2 = ϕinf sin θ

Step	1:	non-minimal	 	inflationV(Φ) ∼ λ(Φ†Φ)2
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AD=Inflaton	field	evolution	in	the	early	Universe

ϕ1 = ϕinf cos θ & ϕ2 = ϕinf sin θ

Step	2:	End	of	inflation	&	oscillation	with	V(Φ) ∼ λ(Φ†Φ)2

ϕ1,2 ∝
1

a(t)
, θ(t) ≃ const

Step	1:	non-minimal	 	inflationV(Φ) ∼ λ(Φ†Φ)2
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AD=Inflaton	field	evolution	in	the	early	Universe

ϕ1 = ϕinf cos θ & ϕ2 = ϕinf sin θ

Step	2:	End	of	inflation	&	oscillation	with	V(Φ) ∼ λ(Φ†Φ)2

ϕ1,2 ∝
1

a(t)
, θ(t) ≃ const

Step	3:	Damped	harmonic	oscillation	for			 			with	ϕi ≲ mΦ/ λ

V(Φ) ∼ m2
Φ(Φ†Φ)+ϵm2

Φ(Φ2 + Φ†2)

Step	1:	non-minimal	 	inflationV(Φ) ∼ λ(Φ†Φ)2
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AD=Inflaton	field	evolution	in	the	early	Universe

ϕ1 = ϕinf cos θ & ϕ2 = ϕinf sin θ

Step	2:	End	of	inflation	&	oscillation	with	V(Φ) ∼ λ(Φ†Φ)2

ϕ1,2 ∝
1

a(t)
, θ(t) ≃ const

Step	3:	Damped	harmonic	oscillation	for			 			with	ϕi ≲ mΦ/ λ

V(Φ) ∼ m2
Φ(Φ†Φ)+ϵm2

Φ(Φ2 + Φ†2)

ϕi ∝ a(t)−3/2 cos(mi(t − t*))Asymmetric	oscillations:	

—>	Generation	of	B/L	asymmetry	

Step	1:	non-minimal	 	inflationV(Φ) ∼ λ(Φ†Φ)2
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Simple	expression	for	the	resultant	B/L	asymmetry:

	for	ΓΦ/mΦ ≪ ϵ ≪ 1

Suitable	choice	of	the	model	parameters,	the	successful	
inflation	and	the	observed	baryon	asymmetry	can	be	achieved!	

Step	4:	Created	B/L	asymmetry	is	transferred	to	the	SM	sector	
by	the	inflaton/AD	field	decay	at	the	reheating	

The baryon asymmetry is generated for t > t⇤. Defining the co-moving asymmetry NB =
⇣
a(t)
aI

⌘3
nB(t), we evaluate the baryon asymmetry by

NB(t) ' 2Q�

Z t

t⇤
dt

0
 
a(t0)

aI

!3

Im

 
@V

@�†�
†
!

e
���(t0�t⇤)

' 4Q� A�1,I �2,I

 
�I

�⇤

!Z t

t⇤
dt

0 cos(m1(t
0
� t⇤)) cos(m2(t

0
� t⇤)) e

���(t0�t⇤), (11)

where we have introduced the decay factor e
���(t0�t⇤) since the inflaton decays to the SM

particles with its decay width �� and its amplitude exponentially damps for t > 1/��. In

fact, we have a simple expression of the time-integral for t > 1/��
1:

I ⌘

Z t

t⇤
dt

0 cos(m1(t
0
� t⇤)) cos(m2(t

0
� t⇤)) e

���(t0�t⇤)

'
�

2m�

 
1

2 + �2 � 2
p
1� 4✏2

+
1

2 + �2 + 2
p
1� 4✏2

!

, (12)

where � ⌘ ��/m� ⌧ 1 for a narrow decay width. We can see that for 2✏ � � (or,

equivalently, 2A � ��m�), I '
�

8✏2m�
while I '

1
2�m�

for 2✏ ⌧ �. Since NB is proportional

to A = ✏m
2
� with ✏ ⌧ 1, we consider the case of 2✏ � � to obtain the resultant baryon

asymmetry as much as possible.

The total baryon asymmetry transferred to the SM thermal plasma at the time of re-

heating is given by

nB = NB

✓
aI

aR

◆3

= NB

✓
aI

a⇤

◆3 ✓ a⇤

aR

◆3

' NB

 
�⇤

�I

!3 ✓
HR

H⇤

◆2

, (13)

where we have used a / t
2/3

/ H
�2/3 for the inflaton oscillations of Eq. (9). Using the

Friedmann equation, we have H
2
R = ⇡2

90g⇤
T 4
R

M2
P

with g⇤ ' 100 is the relativistic degrees of

freedom of the SM thermal plasma and H
2
⇤ '

m2
��

2
⇤

6M2
P
. We now obtain the final expression for

nB/s with the entropy density of the SM thermal plasma, s = 2⇡2

45 g⇤T
3
R, to be

nB

s
'

3

8

s
⇡2

90
g⇤
Q�

✏

T
3
R

m
2
�MP

sin(2✓) ' 10�13 Q�

✏

✓
TR

1012 GeV

◆3
 
1015 GeV

m�

!2

. (14)

For ✏ = 10�3 and sin(2✓) ⇠ 12, this gives the right order of magnitude for nB/s ' 10�10. We

emphasize that we cannot make ✏ too small since in the limit of ✏ = 0, the baryon asymmetry

1 This analytic expression is our new finding, which allows us to evaluate the resultant baryon asymmetry

for any choice of ✏, � ⌧ 1.
2 A very small initial ✓ may generate iso-curvature fluctuation which is too large to be consistent with the

CMB observations [32].

9
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5.	QCD	axion	model	for	solving	the	strong	CP	problem

A	solution	proposed	by	Peccei	&	Quinn	(1977)

• 	Extend	the	SM	to	incorporate	a	global	PQ	symmetry	and	
a	complex	scalar,	which	is	spontaneously	broken	at		 


• 	Nambu-Goldstone	boson	(axion	`` ”)	arises	and	has	a	
coupling:

fa
a

ℒ ⊃
g2

s

32π2

a
fa

8

∑
c=1

Gc
μνG̃cμν

• The	CP-violating	parameter	 	is	replaced	by	the	field	axion

• 	is	realized	at	the	axion	potential	minimum

θ
⟨a⟩ = 0



3.	A	unified	Model
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Particle	content	(only	relevant	fields)

	lepton	number	U(1)L :

New	fermions

AD=Inflaton

J
H
E
P
0
3
(
2
0
2
2
)
0
9
2

Field U(1)L SM quantum number Z ′
2

Fermion

!a +1 (2, −1) +

ec
a −1 (1, +2) +

Di 0 (2, −1) −
D̄i 0 (2, +1) −
χi 0 (1, 0) −

Scalar

H 0 (2, +1) +

Φ −1 (1, 0) −

Table 1. Particle content of the model responsible for one loop neutrino mass and dark matter. Di,
D̄i and χi are new fermionic fields as stated in the text. H is the SM Higgs doublet. The subscript
a goes over lepton flavors and i goes over D flavors with a, i = 1, 2, 3. The lepton number of the
different fields under U(1)L are shown in the second column. The SM SU(2)L × U(1)Y quantum
numbers are in the third column. The Z ′

2 quantum numbers in the table are guaranteed by the
U(1)L symmetry. The SU(3)c group has been suppressed and all fields shown are color singlets.
We have also omitted the quark fields.

The Lagrangian of the model is given by

L = LSM + Linf(Φ, R) + (YΦ)ai!aD̄iΦ + (YD)ijDiχjH

+(YD̄)ijD̄iχjH̃ + µijχiχj + (mD)ijDiD̄j + h.c.

+(∂µΦ)†(∂µΦ) −
(

m2
Φ|Φ|2 + λ|Φ|4 + εm2

Φ(Φ2 + Φ†2)
)

, (2.1)

where H̃ = iτ2H∗, and m2
Φ > 0; LSM is the SM Lagrangian, Linf denotes the non-minimal

Φ coupling to gravity of the form Linf = −1
2
(M2

P + ξ|Φ|2)R (see, for example, refs. [25, 26])

that plays a crucial role for the successful inflation, where R is the Ricci scalar, and

MP = 2.4 × 1018 GeV is the reduced Planck mass. As shown in table I, the Lagrangian

has the global symmetry U(1)L explicitly broken by the ε term. The model also has an

additional Z ′
2 symmetry under which the fields Φ,χ, D, D̄ are odd and the rest of the fields

are even.This Z ′
2 symmetry allows for the existence of a fermionic dark matter, which is a

linear combination of the neutral components of the lightest of the Di fields D0
1, D̄0

1 and χ

fields. We discuss this in a subsequent section.

We will also see in a subsequent section, that this Lagrangian leads to a one loop Majo-

rana mass for neutrinos proportional to ε whereas the baryon to entropy ratio generated by

the AD mechanism gives nB/s is inversely proportional to ε thereby relating the neutrino

mass with the lepton asymmetry in a way different from leptogenesis.

3 Inflation and evolution of the AD field

To implement AD leptogenesis in the model, we need to study the evolution of the AD

field till the epoch when it H # mΦ. This has been discussed earlier in [18, 22].
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We will also see in a subsequent section, that this Lagrangian leads to a one loop Majo-

rana mass for neutrinos proportional to ε whereas the baryon to entropy ratio generated by

the AD mechanism gives nB/s is inversely proportional to ε thereby relating the neutrino

mass with the lepton asymmetry in a way different from leptogenesis.
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To implement AD leptogenesis in the model, we need to study the evolution of the AD
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*	 	is	guaranteed	by	the	lepton	number	(not	by	hand)Z′￼2
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Lagrangian	of	the	model

	ℒ − ℒSM = ℒinf + ℒAD + ℒY + ℒfm

	ℒinf = −
1
2

(M2
P + 2ξ |Φ |2 )R

• Non-minimal	gravitational	coupling	for	inflation

ℒAD = (∂μΦ)†(∂μΦ) − (m2
Φ |Φ |2 + λ |Φ |4 + ϵm2

Φ(Φ2 + Φ†2))
• Suitable	potential	for	the	AD/Inflation	field
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Lagrangian	of	the	model

	ℒ − ℒSM = ℒinf + ℒAD + ℒY + ℒfm

	ℒinf = −
1
2

(M2
P + 2ξ |Φ |2 )R

ℒY = − (YΦ)aiℓaD̄iΦ − (YD)ijDi χjH − (YD̄)ijD̄i χjH̃ + h . c .

• Non-minimal	gravitational	coupling	for	inflation

• Yukawa	couplings	with	 	and	Φ H

ℒAD = (∂μΦ)†(∂μΦ) − (m2
Φ |Φ |2 + λ |Φ |4 + ϵm2

Φ(Φ2 + Φ†2))
• Suitable	potential	for	the	AD/Inflation	field
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Lagrangian	of	the	model

	ℒ − ℒSM = ℒinf + ℒAD + ℒY + ℒfm

	ℒinf = −
1
2

(M2
P + 2ξ |Φ |2 )R

ℒY = − (YΦ)aiℓaD̄iΦ − (YD)ijDi χjH − (YD̄)ijD̄i χjH̃ + h . c .

ℒfm = − μi χi χi − (mD)iDiD̄i + h . c .

• Non-minimal	gravitational	coupling	for	inflation

• Yukawa	couplings	with	 	and	Φ H

• New	fermion	mass	terms	

ℒAD = (∂μΦ)†(∂μΦ) − (m2
Φ |Φ |2 + λ |Φ |4 + ϵm2

Φ(Φ2 + Φ†2))
• Suitable	potential	for	the	AD/Inflation	field
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• With	the	particle	contents,	no	tree-level	neutrino	mass

• Neutrino	mass	at	1-loop	level	(radiative	seesaw)

J
H
E
P
0
3
(
2
0
2
2
)
0
9
2

D̄

Φ

!

×

× !

χ

Φ

H

χ

D̄

H

Figure 2. Feynman diagram responsible for one loop neutrino mass. Arrows indicate the flow of
the lepton number. The upper cross denotes the Majorana mass insertion of (µ)ij while the lower
cross is for the insertion of εmΦ.

the one loop level from the diagram shown in figure 2.1 To discuss this contribution, we

choose a basis without loss of generality. In this basis, YD and µ are diagonal and YΦ is a

full matrix with all non-zero elements. By a suitable choice of basis we can also make mD

diagonal. In this case, the one loop induced neutrino mass can be written as (see figure 2)

(mν)ab !

(

YΦYDµY T
D Y T

Φ

)

ab

16π2

v2
wk

m2
Φ

, (5.1)

where vwk is the SM Higgs vev, and we have assumed mD2,3 is the same order of mΦ. For

simplicity, we make a further assumption that YD and µ are flavor universal together with

choice µ ! mΦI (I being the unit matrix) and (YD)ij = YDδij . We can then write the

neutrino mass matrix as

(mν)ab !
ε v2

wk

16π2mΦ

(YΦY T
Φ )ab Y 2

D. (5.2)

Using eq. (4.2), we can write the above expression for the neutrino mass matrix mν as

(mν)ab !
1010K3v2

wk

16π2MP
(YΦY T

Φ )ab Y 2
D. (5.3)

From the neutrino oscillation data, we set the light neutrino mass eigenvalue to be m2,3 ∼
10−10 GeV for the normal hierarchy, so that eq. (5.3) has the implications that the Yukawa

couplings satisfy the following condition:

(YΦY T
Φ )ab(YD)2 !

10−4

K3
. (5.4)

where YΦ couplings in eq. (5.4), refer to the Yukawa couplings of the second and third

generation leptons. The requirement from perturbativity i.e. all YΦ,D ! 1 implies that

K3 " 10−4.

1There is another one loop diagram with the Yukawa coupling (YD̄)ij in eq. (2.1). For simplicity, we

assume (YD̄)ij is negligibly small.

– 6 –

YD YD

YΦ YΦ

μ

ϵm2
Φ

ℓa ℓb

H H

1.	Neutrino	Mass	Generation
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the lepton number. The upper cross denotes the Majorana mass insertion of (µ)ij while the lower
cross is for the insertion of εmΦ.
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choice µ ! mΦI (I being the unit matrix) and (YD)ij = YDδij . We can then write the

neutrino mass matrix as

(mν)ab !
ε v2

wk

16π2mΦ

(YΦY T
Φ )ab Y 2

D. (5.2)

Using eq. (4.2), we can write the above expression for the neutrino mass matrix mν as

(mν)ab !
1010K3v2

wk

16π2MP
(YΦY T

Φ )ab Y 2
D. (5.3)

From the neutrino oscillation data, we set the light neutrino mass eigenvalue to be m2,3 ∼
10−10 GeV for the normal hierarchy, so that eq. (5.3) has the implications that the Yukawa

couplings satisfy the following condition:

(YΦY T
Φ )ab(YD)2 !

10−4

K3
. (5.4)

where YΦ couplings in eq. (5.4), refer to the Yukawa couplings of the second and third

generation leptons. The requirement from perturbativity i.e. all YΦ,D ! 1 implies that

K3 " 10−4.

1There is another one loop diagram with the Yukawa coupling (YD̄)ij in eq. (2.1). For simplicity, we

assume (YD̄)ij is negligibly small.

– 6 –

YD YD

YΦ YΦ

μ

ϵm2
Φ

Radiative	seesaw	mechanism
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the one loop level from the diagram shown in figure 2.1 To discuss this contribution, we

choose a basis without loss of generality. In this basis, YD and µ are diagonal and YΦ is a

full matrix with all non-zero elements. By a suitable choice of basis we can also make mD

diagonal. In this case, the one loop induced neutrino mass can be written as (see figure 2)
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(
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ab
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, (5.1)

where vwk is the SM Higgs vev, and we have assumed mD2,3 is the same order of mΦ. For

simplicity, we make a further assumption that YD and µ are flavor universal together with

choice µ ! mΦI (I being the unit matrix) and (YD)ij = YDδij . We can then write the
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• For	simplicity,	 	and	 


• 	insertion	is	crucial,	which	is	also	crucial	for	the	
AD	mechanism

μij = mΦδij (YD)ij = YDδij

ϵm2
Φ
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One	Benchmark	parameter	set

For	our	benchmarks,	we	find	the	light	neutrino	mass	eigenvalues:	

m1 ≪ m2 ∼ m3 ∼ 0.1 eV
The	neutrino	oscillation	data	can	be	reproduced.	

parameter value
ε 10−5

mΦ 106 GeV
TR 105 GeV
mD1 103 GeV
mD2,3 3× 106 GeV

(YΦ)a1 (a = 1, 2, 3) ∼ 10−6.5

(YΦ)ai (a = 1, 2, 3; i #= 1) ∼ 10−0.5

Table 1: Two sets of benchmark parameters that satisfy all the constraints considered in
the model. They cover all points in between and thus represent a broad parameter space
of the model.
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2.	WIMP	DM

• The	lightest	 -odd	particle	is	stable	

• In	our	benchmarks,	a	mixture	of	fermions	is	the	DM	
candidate	(singlet-doublet	fermion	DM	scenario)

Z′￼2

breaking and their mass matrix is given by

M =
(
D0

1 D̄0
1 χ

)



0 mD1 YDvwk

mD1 0 YDvwk

YDvwk YDvwk µ








D0

1

D̄0
1

χ



 (7.1)

It is clear from this mass matrix that the eigenstates are Majorana fermions and in the

situation under consideration, mD, vwk ! µ so that we can write the lightest eigenstate as

ψDM " 1√
2
D0

1 +
1√
2
D̄0

1 + δ χ, (7.2)

where δ ∼ vwk/µ, is a very small number since vwk ! µ ∼ mΦ in our choice of param-

eters. The structure is similar to the Higgsino-like neutralino DM in MSSM in the Wino

and Bino decoupling limit. Thus the properties of our DM is essentially the same as the

MSSM Higgsino-like DM scenario. One implication of this is that, the annihilation process

that gives the relic density is of the form ψDMψDM → W+W−, ZZ, hh. We estimate the

thermally averaged cross section times relative velocity for this DM annihilation process as

〈σvrel〉 ∼
g4

4π

1

m2
DM

, (7.3)

where g is the SU(2)L gauge coupling. This cross section must be roughly one pico-barn to

give the correct relic density implying that the mDM ∼ 1 TeV.

We can now discuss the direct detection cross section. The DM can scatter off a nucleus

via the exchange of a Z boson or Higgs boson of SM. Since the DM is a Majorana fermion,

the Z-exchange contribution is spin dependent and the bounds on this are very weak. On

the other hand, the Higgs boson exchange cross section is spin independent and can be large.

The Feynman diagram for the Higgs exchange contribution to direct detection involves the

D-component in the initial (or final) state and the χ component in the DM in the final (or

initial) state, leading to the suppression factor δ in the amplitude. This cross section is

therefore suppressed since it is proportional to δ2 in the parameter range of interest to us i.e.

mD1 , vwk ! µ. This parameter region is called the “blind spot” region where the one loop

graph is more important [25].

8 Comments

In this section, we make several comments on the model:

1. The one loop correction to the dynamics of the scalar field Φ comes from the couplings

Φ&D or YΦ in Eq. (2.1) and is of order Y 4
Φ/16π

2. We can choose YΦ ∼ 1/3,, which

is quite compatible with Eq. (5.4) of the paper. In this case the one loop induced Φ4

coupling is of order 10−4. For CMB fits, we may fix the tree-level λΦ4 coupling to be

of order 10−3. Therefore the one loop corrections are small and do not affect the scalar

field dynamics.
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For	our	benchmarks,		

ψDM ≃
1

2
D0

1 +
1

2
D̄0

1 +
vEW

μ
χ

The	DM	particle	is	a	Majorana	fermion	from	mostly	the	
SU(2)	doublet	components:	similar	to	Higgsino-like	DM	in	
the	MSSM:		 	for	 	mDM ≃ 1 TeV ΩDMh2 = 0.12
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3	&	4.	AD/Inflaton

	ℒ − ℒSM ⊃ ℒinf + ℒAD

	ℒinf = −
1
2

(M2
P + ξ |Φ |2 )R

ℒAD = (∂μΦ)†(∂μΦ) − (m2
Φ |Φ |2 + λ |Φ |4 + ϵm2

Φ(Φ2 + Φ†2))

• Non-minimal	gravitational	coupling	for	inflation

• AD/Inflation	field

nB

s
∼

nL

s
≃

T3
R

ϵ m2
Φ MP

≃ 10−10

For	our	benchmark,		
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four	major	puzzles	of	the	Standard	Model
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We	have	proposed	a	unified	framework	for	solving	
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1. Inflation	driven	by	Inflaton/AD	field	

2.	Lepton	asymmetry	generation	during	
oscillation	after	inflation

3.	Reheating	&	Lepton	asymmetry	
transmission	to	the	SM	sector	by	
inflaton/AD	decay

Φ
ℓa

D1

Φ

Φ

Φ

4.	Doublet-singlet	fermion	DM
χi

⟨H⟩

ϵ m2
Φ

D1
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5.	Combining	all	diagrams

J
H
E
P
0
3
(
2
0
2
2
)
0
9
2

D̄

Φ

!

×

× !

χ

Φ

H

χ

D̄

H

Figure 2. Feynman diagram responsible for one loop neutrino mass. Arrows indicate the flow of
the lepton number. The upper cross denotes the Majorana mass insertion of (µ)ij while the lower
cross is for the insertion of εmΦ.

the one loop level from the diagram shown in figure 2.1 To discuss this contribution, we

choose a basis without loss of generality. In this basis, YD and µ are diagonal and YΦ is a

full matrix with all non-zero elements. By a suitable choice of basis we can also make mD

diagonal. In this case, the one loop induced neutrino mass can be written as (see figure 2)

(mν)ab !

(

YΦYDµY T
D Y T

Φ

)

ab

16π2

v2
wk

m2
Φ

, (5.1)

where vwk is the SM Higgs vev, and we have assumed mD2,3 is the same order of mΦ. For

simplicity, we make a further assumption that YD and µ are flavor universal together with

choice µ ! mΦI (I being the unit matrix) and (YD)ij = YDδij . We can then write the

neutrino mass matrix as

(mν)ab !
ε v2

wk

16π2mΦ

(YΦY T
Φ )ab Y 2

D. (5.2)

Using eq. (4.2), we can write the above expression for the neutrino mass matrix mν as

(mν)ab !
1010K3v2

wk

16π2MP
(YΦY T

Φ )ab Y 2
D. (5.3)

From the neutrino oscillation data, we set the light neutrino mass eigenvalue to be m2,3 ∼
10−10 GeV for the normal hierarchy, so that eq. (5.3) has the implications that the Yukawa

couplings satisfy the following condition:

(YΦY T
Φ )ab(YD)2 !

10−4

K3
. (5.4)

where YΦ couplings in eq. (5.4), refer to the Yukawa couplings of the second and third

generation leptons. The requirement from perturbativity i.e. all YΦ,D ! 1 implies that

K3 " 10−4.

1There is another one loop diagram with the Yukawa coupling (YD̄)ij in eq. (2.1). For simplicity, we

assume (YD̄)ij is negligibly small.
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choose a basis without loss of generality. In this basis, YD and µ are diagonal and YΦ is a

full matrix with all non-zero elements. By a suitable choice of basis we can also make mD

diagonal. In this case, the one loop induced neutrino mass can be written as (see figure 2)

(mν)ab !

(

YΦYDµY T
D Y T

Φ

)

ab

16π2

v2
wk

m2
Φ

, (5.1)

where vwk is the SM Higgs vev, and we have assumed mD2,3 is the same order of mΦ. For

simplicity, we make a further assumption that YD and µ are flavor universal together with

choice µ ! mΦI (I being the unit matrix) and (YD)ij = YDδij . We can then write the

neutrino mass matrix as

(mν)ab !
ε v2

wk

16π2mΦ

(YΦY T
Φ )ab Y 2

D. (5.2)

Using eq. (4.2), we can write the above expression for the neutrino mass matrix mν as

(mν)ab !
1010K3v2

wk

16π2MP
(YΦY T

Φ )ab Y 2
D. (5.3)

From the neutrino oscillation data, we set the light neutrino mass eigenvalue to be m2,3 ∼
10−10 GeV for the normal hierarchy, so that eq. (5.3) has the implications that the Yukawa

couplings satisfy the following condition:

(YΦY T
Φ )ab(YD)2 !

10−4

K3
. (5.4)

where YΦ couplings in eq. (5.4), refer to the Yukawa couplings of the second and third

generation leptons. The requirement from perturbativity i.e. all YΦ,D ! 1 implies that

K3 " 10−4.

1There is another one loop diagram with the Yukawa coupling (YD̄)ij in eq. (2.1). For simplicity, we

assume (YD̄)ij is negligibly small.
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Radiative	seesaw	mechanism

⟨H⟩ ⟨H⟩
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New	paper	in	preparation	(Mohapatra	&	NO)

Towards	a	solution	to	the	Strong	CP	problem

A	way	to	implement	Axion	model

	ℒ − ℒSM ⊃ ℒAD

ℒAD = (∂μΦ)†(∂μΦ) − (m2
Φ |Φ |2 + λ |Φ |4 +ϵm2

Φ(Φ2 + Φ†2))
• AD/Inflation	field

• Identification	of	 	with	 	


• 


• A	complex	scalar	 	in	the	invisible	axion	models

U(1)L U(1)PQ

ϵm2
ϕ = M⟨φ⟩

φ
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for your attention!
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Reheating	after	inflation	and	AD	mechanism

• Reheating	by	the	AD/Inflaton	decay

J
H
E
P
0
3
(
2
0
2
2
)
0
9
2

Let us now discuss the total Φ decay width which is clearly related to the neutrino

mass matrix. Note that we have from mν = U∗DνU †,

(YΦ)ai =
1√
X

(U∗√

Dν)ai, (5.5)

where X =
εv2

wk

16π2mΦ
Y 2

D, and Dν = diag(m1, m2, m3). From this equation, we find

ΓΦ =
∑

a

ΓΦ→$aD1
= (Y †

ΦYΦ)11

mΦ

4π
=

mΦ

4πX
m1. (5.6)

We then use TR " KmΦ =
√

ΓΦMP to get

m1(eV) " 10−6 × Y 2
D εK2. (5.7)

We thus see that for YD ∼ 1, the lightest neutrino mass has to be m1 % 10−6 eV for ε % 1

and K < 1.

6 Collection of constraints and two benchmark sets of parameters

In this section, we collect the constraints on the various parameters of the model that follow

from neutrino mass generation, adequate leptogenesis and acceptable reheat temperature

TR . The constraints are:

mΦ " 10−10 ε

K3
MP (6.1)

and the one loop neutrino masses that are expected from oscillation data for the case of

normal hierarchy and perturbativity of Yukawa couplings is given by

K3 ! 10−4. (6.2)

Once this condition is satisfied, any choice of K, ε % 1 and mΦ works to yield the right

nB/s and required mν values.

For our parameterization, the no washout condition in eq. (4.3) translates to

mΦ ! K3 Y 4
Φε

2

4π
MP "

10−8ε2

4πK3
MP (6.3)

by using eq. (5.4) with YD ∼ 1. This lower limit for Φ mass is in terms of parameters ε

and K; so combining it with eq. (4.2), we get

ε " 4π × 10−2, (6.4)

which is consistent with our assumption of ε % 1 in the model. In table 2, we give two sets

of benchmark points (and clearly, the points in between) that satisfies the requirements of

the model. We see that the model has an ample parameter space where all the physical

requirements can be satisfied.
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• Yukawa	coupling	from	the	radiative	seesaw	formula
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Thus,	the	lightest	neutrino	mass	should	be	very	small,	
	m1(eV) ≪ 10−6
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Phenomenological	viability/consistency	checks	

	K ≡
TR

mΦ
≳ 0.046

• 	and	 	are	closely	related,	and	
the	perturbativity	of	the	Yukawa	couplings	leads	to
nB /s ∼ 10−10 mν ∼ 0.1 eV

• No	washout:	the	following	washing-out	process	must	be	
out-of-equilibrium	
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0
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2

D̄

Φ

!

×

!

Φ

D̄

Figure 1. Feynman diagram responsible for washout of lepton asymmetry. The arrows indicate
the flow of the lepton number.

We first note that in such a leptogenesis scenario, the lepton number to entropy ratio

is given by [18]
nL

s
!

T 3
R

εm2
Φ MP

! 10−10. (4.1)

The conditions under which this equation holds are that ε " 1 and εmΦ/ΓΦ # 1. Both

these conditions are satisfied in our model.

An important input into this estimate of nB/s is the reheat temperature TR = KMP ,

which must be less than the AD field mass mΦ, i.e. K < 1 as already noted. This implies

the following relation between mΦ, ε and K i.e.

mΦ ! 10−10 ε

K3
MP . (4.2)

The model has explicit lepton number violating interaction given by ε and can cause

the lepton asymmetry generated to be washed out unless its value is small enough. We

determine this value below. The lepton asymmetry washout in our model can be caused

by the lepton number breaking term in eq. (2.1) proportional to ε. Let us now look at the

constraints imposed on the model by the fact that some interactions such as εm2
Φ term in

the potential breaks L = 2 and can cause washout unless it is out of equilibrium above TR.

To establish the constraints on the model due to this, we look at the scattering "D ↔ "∗D∗

mediated by the Φ exchange and the ε term (see figure 1) since it breaks L by two units.

We demand that this process be out of equilibrium above TR and find the condition,

T 3
R ×

Y 4
Φ

4π

ε2T 2
R

m4
Φ

< H =

√

π2

90
g∗

T 2
R

MP
, (4.3)

where g∗ ! 100 is the effective degrees of freedom of the SM thermal plasma. We discuss

the implication of this constraint for parameters of the model in section 6.

5 One loop neutrino mass

We now discuss how neutrino masses and mixings can arise in this model and the consis-

tency with observations. There is no tree level neutrino mass in this model. It arises at
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ϵm2
Φ

mΦ ≳
10−8ϵ2

4πK3
MP

Combining	with	 ,		nB /s ∼ 10−10 ϵ ≲ 4π × 10−2

Our	benchmarks	salsify	all	conditions	


