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Introduction

B In Quantum Mechanics, wavefunctions = probabilities
e Schrodinger equation
e Path integral

B [n Quantum Gravity, wavefunction of the universe

= probabilities favoring realistic aspects of the Universe?
o Wheeler-DeWitt equation ['62]: Ambiguity in its form

e Hartle-Hawking proposal for spatially closed universes with
cosmological constant A > 0 ['83]
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Euclidean path integral

Dy _1g
Ulh;:] = . SE (9]
[ig) / Vol(Diff) ¢

where the sum is over all compact four-manifolds of metric g and
having a single 3D boundary of metric h;;.

This is the “No-boundary proposal”

B Homogeneous and isotropic: Space is a 3-sphere

ds* = —N(t)2dt* + a(t)? dQ3

DNDa 1
\I/ = J— 775E [N,CL]
(ao) /g Vol(Diff) © "

i=0
£=ao
where Diff = Euclidean-time reparametrizations
U(ap) is the probability amplitude for creating a Universe of scale

factor ag from “nothing” [Vilenkin, ’82]
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B Fix consistently the gauge of Euclidean-time
reparametrization.

B Field redefinitions of the scale factor are symmetries of the
classical action but

a=A(q) == Da#Dgq
We obtain different results for the wavefunction.

B For each prescription we lift the ambiguity in the
Wheeler-DeWitt equation, at the semi-classical level.

B However, all prescriptions are equivalent: Same quantum
predictions, at least at the semi-classical level.

B They reproduce classical cosmology in the & — 0 limit.
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Gauge fixing of Euclidean-time reparametrizations

B The Euclidean action is

Tt da \2 A
0 ,— 00 3
Jp = br /900 dei Voo [ag (d:c%) - 3 “ ]

Ei

The potential has contributions from the scalar curvature and the
cosmological constant.

B It describes a non-linear o-model:
e There is a line segment [z%., 2%.] of metric gog = N?

e The target space is Ry parametrized by the scale factor a,
with metric G, = a.
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B Let us concentrate on the line-segment of Euclidean time:

All metrics gog are not equivalent up to a change of coordinate, since
the proper length ¢ of a line segment is invariant under a change of
coordinate.

—> To fix a gauge, we choose a metric Goo[¢] in each
equivalence class £, which is a modulus

+oo
/ Vol( D1ff / ﬂ[m ol(Diff) Arr{goolt

+oo

1 = Aep[doolf] /O at' [ e slamlt) - 351
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e Introducing

Arp|goolt] = /o(xEl )=0 /Db b, Q[f]) exp {4171' (b, Vc)}

c (fo):

where (f,h —/O i v/goo[f] f* ho-o

Ei

e By expanding in Fourrier modes on [2%;, %] and

Arp[goold]] =1

B The result is not always trivial: Replacing the line-segment by a
circle, the result is 1/¢
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Path integral over the scale factor

B Gauge joo[/] = ¢? defined on [, gt = [0, 1]

400 .
Wao) = [t [y Da i

a(1)=ap

where the action

a

SE[AG]:GW/OldT [£<d7)2+€V(a)] Vi =a-5a

B It is not quadratic = semi-classical approximation
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B In the literature, one often uses a gauge that depends on a

2 f()ldTa(T> 1
=" = So= [ g (+++) replaced by [ d¢(-+)
0 0

Problem : £ is no more the invariant length parametrizing correctly
the classes of equivalence of the metrics.

They use this gauge because ¢ = a? renders the action Gaussian and
thus the path integral exactly computable.
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B Steepest-descent method on

U(ag) / / o Da e~ 7 Sulta]

e Find instanton solutions: Two solutions (@, /), €= =+1

e Expand at quadratic order and integrate over fluctuations

1
B Sp[l,a] = §ﬁ+6ﬂ'2/ dré, [5@ Qcda+2da Vag( a) 3464 V( ) o+
0

€ 6
where Q= —= — — = — — — —Aa.

It is a self-adjoint operator acting in the Hilbert space of functions
vanishing at 0 and 1.

10/19



e Diagonalizing,

o

Déa exp {— W

(6a, Q. 5@}
/d(% exp {—’% 552} (1+ O(h))

1 Ge
~%5E

= ;;1 Tieo v LT om)

e To compute det Q, = H Ve, we improve the method of Affleck
k>1
and Coleman ['77]
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Field redefinitions

B Classically, the action is invariant under redefinitions a = A(q).

At the quantum level Da # Dq due to a Jacobian

~ +oo
U(qo) = / ds —y Dq e~ #%elal where ap = A(q), 0= A(g)
0 _

There are infinitely many different choices of wavefunctions!
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Wheeler-DeWitt equation

B For each prescription Dg, all possible states/wavefunctions
satisfy an equation similar to Schrodinger in quantum mechanics.

To derive it,
- DNDq 0 ising - DNDq H ising

)= | ——— — —_— 1
| Vol(Diff) 6 Vol(Diff) \ (1)
where the classical Hamiltonian is
1 w2 AA”
H = L _6nV where Tg = —127? q

N 241 AA”?

—> The quantum Hamiltonian vanishes on all states of the
Hilbert space < Wheeler-DeWitt equation

B Classically, we have for arbitrary functions p1(q), p2(q)

2
Ty = ——— Mg P1 Tq P2
1 P1 P2 9P1 ™
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e canonical quantization
q— qo, Tg — —ih —
yields an ambiguity

2
L@;(&)(p(ﬁ) + (th—67rV)<I>:O

where ® is a generic wavefunction of the Hilbert space.

B We can find p by solving this equation at the semi-classical level
using the WKB method

1272 A 2\3

exp[esh—A (1 - 3a ) ]

Pa0) = 3 Ne——! (1 o)

e=x1 /a0 p(q)|A(qo)] (1 — 4ad)*

Comparing with a particular wavefunction, the “no-boundary state”

_3
— plao) = ag " |A'(q0)|?
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Universality at the semi-classical

B Different wavefunction prescriptions Dqg and
Wheeler-DeWitt equations

— different quantum gravities with same classical limits?

e To discuss probabilities, we define an inner product in each
Hilbert space.

Denoting ®(qp) = P 4(ao), (where ag = A(qo))

—+o00
(Pa1, Paz) :/ dag 11(an) Pai(ag)” Paz(ao)
0

e Imposing Hermiticity of the Hamiltnonian

H H
(a1, — Paz) =

N N D1, Paz)

— Differential equation = 1 = ayp|A|
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1272 A 2\3

exp|e (1 — fao) 2

= ulag) ®a(ag) = > N [ = ; ]
4

(1 4ap)t

is independent of p and A i.e. is independent of the choice of
field redefinition, at the semi-classical level.

—+00
So is the inner product (P41, Pa2) = / dag %y Pao
0

= All probabilities are independent of the choice of measure
Dgq, at least at the semi-classical level.

B If we assume this statement is exact in A, we can lift
completely the remaining ambiguity in the Wheeler-DeWitt equation

/!

N 1 5 1 +1(p’)2 p
w=———s—|—=5+=(=) ——
2472%ap |16 a3 p )
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Recovering the classical cosmology

B Generalize to the case where the universe is filled with a perfect

fluid of state equation [A.Kehagias, H.P., N. Toumbas, ’21]
Pm = Wpy where —1<w<1 (not only w = —1)
7
B Classical cosmology for w > ——:
Qi
[ il

To compare with Quantum Gravity which provides probabilities, we
define

classical probability = duration the scale factor lies in the range
[a,a + da], divided by the total duration of the cosmological evolution

L C=) | I

- T, 1 /3wl 3wil
ﬁr(2+3w+l) A, an$}+ — gdwtl 17/19
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B For the choice of field a the Hilbert space measure is u = ap
(In the literature, one often takes incorrectly p alone.)

We solve the Wheeler-DeWitt equation at the semiclassical level using
the WKW method

For a < am: P(a) = p|®|> — Py(a) when h—0
For a > a,, (classically forbiden):  P(a) = u|®|*> — 0 when A —0

=

1
B For w < ——: KJ
3

QA

g
The classical trajectory has an infinite duration = The “classical
probability” cannot be normalized, but

The quantum wavefunction is non-normalizable. Relative probabilities
are well defined and reproduce the classical ones when 2 — 0. 18719



Conclusion

B We have considered the Hartle-Hawking wavefunction for
spatially closed universes, homogeneous and isotropic.

B The system can be seen as a non-linear o-model with a line segment
of Euclidean time and a target space parametrized by the scale factor.

B The gauge fixing of time reparametrization is done by:
e Integrating over the proper length of the line-segment.
e The Faddeev-Popov determinant is trivial.
e Using gauge invariant measures.

B The field redefinitions of the scale factor yield different
path-integral measures and wavefunctions, but the Hilbert
spaces are equivalent at least semi-classically.

B The quantum probabilities reproduce in the 7 — 0 limit the
classical cosmological evolution.
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