Wavefunction of the universe: Diffeomeorphism invariance and field redefinitions #### Hervé Partouche CNRS and Ecole Polytechnique June 28, 2022 Based on H.P., N. Toumbas, B. de Vaulchier, Nucl. Phys. B 973 (2021), 115600 A. Kehagias, H.P., N. Toumbas JHEP 12 (2021), 165 SUSY 2022, Ioannina, June 26-July 2, 2022 #### Introduction - In Quantum Mechanics, wavefunctions ⇒ probabilities - Schrödinger equation - Path integral - In Quantum Gravity, wavefunction of the universe - ⇒ probabilities favoring realistic aspects of the Universe? - Wheeler-DeWitt equation ['62]: Ambiguity in its form - Hartle-Hawking proposal for spatially closed universes with cosmological constant $\Lambda>0$ ['83] ## Euclidean path integral $$\Psi[h_{ij}] = \int \frac{\mathcal{D}g}{\text{Vol(Diff)}} e^{-\frac{1}{\hbar}S_{E}[g]}$$ where the sum is over all compact four-manifolds of metric g and having a single 3D boundary of metric h_{ij} . This is the "No-boundary proposal" ■ Homogeneous and isotropic: Space is a 3-sphere $$ds^{2} = -N(t)^{2}dt^{2} + a(t)^{2} d\Omega_{3}^{2}$$ $$\Psi(a_0) = \int_{\substack{a_i = 0 \\ a_f = a_0}} \frac{\mathcal{D}N \,\mathcal{D}a}{\text{Vol(Diff)}} \,e^{-\frac{1}{\hbar}S_{\text{E}}[N,a]}$$ where Diff = Euclidean-time reparametrizations $\Psi(a_0)$ is the probability amplitude for creating a Universe of scale factor a_0 from "nothing" [Vilenkin, '82] #### Plan - Fix consistently the gauge of Euclidean-time reparametrization. - Field redefinitions of the scale factor are symmetries of the classical action but $$a = A(q) \implies \mathcal{D}a \neq \mathcal{D}q$$ We obtain different results for the wavefunction. - For each prescription we lift the ambiguity in the Wheeler-DeWitt equation, at the semi-classical level. - However, all prescriptions are equivalent: Same quantum predictions, at least at the semi-classical level. - They reproduce classical cosmology in the $\hbar \to 0$ limit. ## Gauge fixing of Euclidean-time reparametrizations ■ The Euclidean action is $$S_{\rm E} = 6\pi \int_{x_{\rm Ei}^0}^{x_{\rm Ef}^0} dx_{\rm E}^0 \sqrt{g_{00}} \left[a g^{00} \left(\frac{da}{dx_{\rm E}^0} \right)^2 + a - \frac{\Lambda}{3} a^3 \right]$$ The potential has contributions from the scalar curvature and the cosmological constant. - It describes a non-linear σ -model: - There is a line segment $[x_{\rm Ei}^0, x_{\rm Ef}^0]$ of metric $g_{00} \equiv N^2$ - The target space is \mathbb{R}_+ parametrized by the scale factor a, with metric $G_{aa} = a$. #### ■ Let us concentrate on the line-segment of Euclidean time: All metrics g_{00} are not equivalent up to a change of coordinate, since the proper length ℓ of a line segment is invariant under a change of coordinate. \implies To fix a gauge, we choose a metric $\hat{g}_{00}[\ell]$ in each equivalence class ℓ , which is a modulus $$\int \frac{\mathcal{D}N}{\mathrm{Vol}(\mathrm{Diff})} = \int_0^{+\infty} \mathrm{d}\ell \int_{\mathrm{Diff}} \frac{\mathcal{D}\xi}{\mathrm{Vol}(\mathrm{Diff})} \Delta_{\mathrm{FP}}[\hat{g}_{00}[\ell]]$$ #### ■ Fadeev-Popov determinant $$1 = \Delta_{\text{FP}}[\hat{g}_{00}[\ell]] \int_{0}^{+\infty} d\ell' \int_{\text{Diff}} \mathcal{D}\xi \, \delta[\hat{g}_{00}[\ell] - \hat{g}_{00}^{\xi}[\ell']]$$ • Introducing anticommuting ghosts b^{00} , c_0 $$\Delta_{\mathrm{FP}}[\hat{g}_{00}[\ell]] = \int_{\substack{c^0(\hat{x}_{\mathrm{Ei}}^0) = 0 \\ c^0(\hat{x}_{\mathrm{Ef}}^0) = 0}} \mathcal{D}c \int \mathcal{D}b \left(b, \frac{\hat{g}[\ell]}{\ell} \right) \, \exp\left\{ 4i\pi \left(b, \hat{\nabla}c \right) \right\}$$ where $$(f, h) \equiv \int_{\hat{x}_{\text{Ei}}^0}^{\hat{x}_{\text{Ef}}^0} d\hat{x}_{\text{E}}^0 \sqrt{\hat{g}_{00}[\ell]} f^{0\cdots 0} h_{0\cdots 0}$$ • By expanding in Fourrier modes on $[\hat{x}_{\rm Ei}^0, \hat{x}_{\rm Ei}^0]$ and using gauge-invariant measures, $$\Delta_{\rm FP}[\hat{g}_{00}[\ell]] = 1$$ \blacksquare The result is not always trivial: Replacing the line-segment by a circle, the result is $1/\ell$ ## Path integral over the scale factor ■ Gauge $\hat{g}_{00}[\ell] = \ell^2$ defined on $[\hat{x}_{Ei}, \hat{x}_{Ef}] = [0, 1]$ $$\Psi(a_0) = \int_0^{+\infty} d\ell \int_{\substack{a(0)=0 \ a(1)=a_0}} \mathcal{D}a \ e^{-\frac{1}{\hbar}S_{\rm E}[\ell,a]}$$ where the action $$S_{\rm E}[\ell, a] = 6\pi \int_0^1 d\tau \left[\frac{a}{\ell} \left(\frac{\mathrm{d}a}{\mathrm{d}\tau} \right)^2 + \ell V(a) \right], \qquad V(a) = a - \frac{\Lambda}{3} a^3$$ \blacksquare It is not quadratic \Longrightarrow semi-classical approximation \blacksquare In the literature, one often uses a gauge that depends on a $$g_{00} = \frac{\ell^2}{a^2} \implies S_{\rm E} = \int_0^{\int_0^1 \mathrm{d}\tau \, a(\tau)} \mathrm{d}\zeta \, (\cdots) \text{ replaced by } \int_0^1 \mathrm{d}\zeta \, (\cdots)$$ **Problem :** ℓ is no more the invariant length parametrizing correctly the classes of equivalence of the metrics. They use this gauge because $q=a^2$ renders the action Gaussian and thus the path integral exactly computable. \blacksquare Steepest-descent method on $$\Psi(a_0) = \int_0^{+\infty} d\ell \int_{\substack{a(0)=0 \\ a(1)=a_0}} \mathcal{D}a \ e^{-\frac{1}{\hbar}S_{\rm E}[\ell,a]}$$ - Find instanton solutions: Two solutions $(\bar{a}_{\epsilon}, \bar{\ell}_{\epsilon}), \quad \epsilon = \pm 1$ - Expand at quadratic order and integrate over fluctuations $$\blacksquare S_{\mathrm{E}}[\ell, a] = \bar{S}_{\mathrm{E}}^{\epsilon} + 6\pi^{2} \int_{0}^{1} d\tau \bar{\ell}_{\epsilon} \left[\frac{\delta a}{\delta a} \mathcal{Q}_{\epsilon} \frac{\delta a}{\delta a} + 2 \frac{\delta a}{\bar{\ell}_{\epsilon}} \frac{V_{a}(\bar{a})}{\bar{\ell}_{\epsilon}} \delta \ell + \delta \ell \frac{V(\bar{a})}{\bar{\ell}_{\epsilon}^{2}} \delta \ell \right] + \cdots$$ where $$Q_{\epsilon} = -\frac{\bar{a}_{\epsilon}}{\bar{\ell}_{\epsilon}^{2}} \frac{\mathrm{d}^{2}}{\mathrm{d}\tau^{2}} - \frac{1}{\bar{\ell}_{\epsilon}^{2}} \frac{\mathrm{d}\bar{a}_{\epsilon}}{\mathrm{d}\tau} \frac{\mathrm{d}}{\mathrm{d}\tau} - \frac{2}{3} \Lambda \bar{a}_{\epsilon}$$ It is a self-adjoint operator acting in the Hilbert space of functions vanishing at 0 and 1. • Diagonalizing, $$\Psi(a_0) = \sum_{\epsilon = \pm 1} e^{-\frac{1}{\hbar} \bar{S}_{E}^{\epsilon}} \int_{\substack{\delta a(0) = 0 \\ \delta a(1) = 0}} \mathcal{D} \delta a \exp\left\{-\frac{6\pi^2}{\hbar} \left(\delta a, \mathcal{Q}_{\epsilon} \delta a\right)\right\}$$ $$\int d\delta \ell \exp\left\{-\frac{\mathcal{K}_{\epsilon}}{\hbar} \delta \ell^2\right\} (1 + \mathcal{O}(\hbar))$$ $$= \sum_{\epsilon = \pm 1} \frac{e^{-\frac{1}{\hbar}S_{\rm E}^{\epsilon}}}{\sqrt{\det \mathcal{Q}_{\epsilon}} \sqrt{\mathcal{K}_{\epsilon}}} (1 + \mathcal{O}(\hbar))$$ • To compute det $Q_{\epsilon} \equiv \prod_{k \geq 1} \nu_{\epsilon,k}$ we improve the method of Affleck and Coleman ['77] $$\Psi(a_0) = \sum_{\epsilon = \pm 1} \frac{1}{\sqrt{\epsilon}} \frac{\exp\left[\epsilon \frac{12\pi^2}{\hbar \Lambda} \left(1 - \frac{\Lambda}{3} a_0^2\right)^{\frac{3}{2}}\right]}{a_0^{\frac{1}{8}} \left(1 - \frac{\Lambda}{2} a_0^2\right)^{\frac{1}{4}}} \left(1 + \mathcal{O}(\hbar)\right)$$ ### Field redefinitions \blacksquare Classically, the action is invariant under redefinitions a = A(q). At the quantum level $\mathcal{D}a \neq \mathcal{D}q$ due to a Jacobian $$\widetilde{\Psi}(q_0) = \int_0^{+\infty} \! \mathrm{d}\ell \int_{\substack{q(0) = q_i \\ q(1) = q_0}} \! \mathcal{D}q \; e^{-\frac{1}{\hbar}S_{\mathrm{E}}[\ell^2, q]} \quad \text{ where } \quad a_0 = A(q_0) \,, \quad 0 = A(q_i)$$ $$= \sum_{\epsilon=\pm 1} \frac{1}{\sqrt{\epsilon}} \frac{\exp\left[\epsilon \frac{12\pi^2}{\hbar\Lambda} \left(1 - \frac{\Lambda}{3}a_0^2\right)^{\frac{3}{2}}\right]}{|A'(q_0)|^{-\frac{1}{4}} a_0^{\frac{1}{8}} \left(1 - \frac{\Lambda}{3}a_0^2\right)^{\frac{1}{4}}} (1 + \mathcal{O}(\hbar))$$ There are infinitely many different choices of wavefunctions! ## Wheeler-DeWitt equation ■ For each prescription $\mathcal{D}q$, all possible states/wavefunctions satisfy an equation similar to Schrödinger in quantum mechanics. To derive it, $$0 = \int \frac{\mathcal{D}N \,\mathcal{D}q}{\text{Vol(Diff)}} \,\frac{\delta}{\delta N} \,e^{iS[N,q]} = -i \int \frac{\mathcal{D}N \,\mathcal{D}q}{\text{Vol(Diff)}} \,\frac{\mathcal{H}}{N} \,e^{iS[N,q]} \tag{1}$$ where the classical Hamiltonian is $$\frac{\mathcal{H}}{N} = -\frac{1}{24\pi} \frac{\pi_q^2}{AA'^2} - 6\pi V$$ where $\pi_q = -12\pi^2 \frac{AA'^2}{N} \dot{q}$ ⇒ The quantum Hamiltonian vanishes on all states of the Hilbert space ⇔ Wheeler-DeWitt equation ■ Classically, we have for arbitrary functions $\rho_1(q)$, $\rho_2(q)$ $$\pi_q^2 = \frac{1}{\rho_1 \, \rho_2} \, \pi_q \, \rho_1 \, \pi_q \, \rho_2$$ • canonical quantization $$q \longrightarrow q_0, \qquad \pi_q \longrightarrow -i\hbar \frac{\mathrm{d}}{\mathrm{d}q_0}$$ yields an ambiguity $$\frac{\hbar^2}{24\pi} \frac{1}{AA'^2} \frac{1}{\rho} \frac{\mathrm{d}}{\mathrm{d}q_0} \left(\rho \frac{\mathrm{d}\Phi}{\mathrm{d}q_0} \right) + \left(\hbar^2 \omega - 6\pi V \right) \Phi = 0$$ where Φ is a generic wavefunction of the Hilbert space. \blacksquare We can find ρ by solving this equation at the semi-classical level using the **WKB method** $$\Phi(q_0) = \sum_{\epsilon = \pm 1} N_{\epsilon} \frac{\exp\left[\epsilon s \frac{12\pi^2}{\hbar \Lambda} \left(1 - \frac{\Lambda}{3} a_0^2\right)^{\frac{3}{2}}\right]}{\sqrt{a_0 \, \rho(q_0) |A'(q_0)|} \left(1 - \frac{\Lambda}{3} a_0^2\right)^{\frac{1}{4}}} \left(1 + \mathcal{O}(\hbar)\right)$$ Comparing with a particular wavefunction, the "no-boundary state" $$\implies \rho(q_0) = a_0^{-\frac{3}{4}} |A'(q_0)|^{-\frac{3}{2}}$$ ## Universality at the semi-classical - lacktriangle Different wavefunction prescriptions $\mathcal{D}q$ and Wheeler-DeWitt equations - \implies different quantum gravities with same classical limits? - To discuss probabilities, we define an inner product in each Hilbert space. Denoting $$\Phi(q_0) \equiv \Phi_A(a_0)$$, (where $a_0 = A(q_0)$) $\langle \Phi_{A1}, \Phi_{A2} \rangle = \int_0^{+\infty} da_0 \, \mu(a_0) \, \Phi_{A1}(a_0)^* \, \Phi_{A2}(a_0)$ • Imposing Hermiticity of the Hamiltnonian $$\left\langle \Phi_{A1}, \frac{\mathcal{H}}{N} \Phi_{A2} \right\rangle = \left\langle \frac{\mathcal{H}}{N} \Phi_{A1}, \Phi_{A2} \right\rangle$$ \implies Differential equation $\implies \mu = a_0 \rho |A'|$ $$\implies \sqrt{\mu(a_0)} \, \Phi_A(a_0) = \sum_{\epsilon = \pm 1} N_\epsilon \, \frac{\exp\left[\epsilon \, \frac{12\pi^2}{\hbar \, \Lambda} \left(1 - \frac{\Lambda}{3} a_0^2\right)^{\frac{3}{2}}\right]}{\left(1 - \frac{\Lambda}{3} a_0^2\right)^{\frac{1}{4}}} \left(1 + \mathcal{O}(\hbar)\right)$$ is independent of ρ and A *i.e.* is independent of the choice of field redefinition, at the semi-classical level. So is the inner product $$\langle \Phi_{A1}, \Phi_{A2} \rangle = \int_0^{+\infty} da_0 \, \mu \, \Phi_{A1}^* \, \Phi_{A2}$$ \Rightarrow All probabilities are independent of the choice of measure $\mathcal{D}q$, at least at the semi-classical level. ■ If we assume this statement is exact in \hbar , we can lift completely the remaining ambiguity in the Wheeler-DeWitt equation $$\implies \omega = -\frac{1}{24\pi^2 a_0} \left[\frac{5}{16} \frac{1}{a_0^2} + \frac{1}{4} \left(\frac{\rho'}{\rho} \right)^2 - \frac{\rho''}{\rho} \right]$$ # Recovering the classical cosmology ■ Generalize to the case where the universe is filled with a perfect fluid of state equation [A.Kehagias, H.P., N. Toumbas, '21] $$p_m = w\rho_m$$ where $-1 \le w \le 1$ (not only $w = -1$) \blacksquare Classical cosmology for $w > -\frac{1}{3}$: To compare with Quantum Gravity which provides probabilities, we define **classical probability** = duration the scale factor lies in the range [a, a + da], divided by the total duration of the cosmological evolution $$P_{cl}(a) da = \frac{1}{\sqrt{\pi}} \frac{\left| \Gamma\left(\frac{1}{3w+1}\right) \right|}{\Gamma\left(\frac{1}{2} + \frac{1}{3w+1}\right)} \frac{a^{\frac{3w+1}{2}} da}{a_m \sqrt{a_m^{3w+1} - a^{3w+1}}}$$ 17 / 19 ■ For the choice of field a the Hilbert space measure is $\mu = a\rho$ (In the literature, one often takes incorrectly ρ alone.) We solve the Wheeler-DeWitt equation at the semiclassical level using the WKW method For $$a < a_m$$: $P(a) \equiv \mu |\Phi|^2 \longrightarrow P_{cl}(a)$ when $\hbar \to 0$ For $$a > a_m$$ (classically forbiden): $P(a) \equiv \mu |\Phi|^2 \longrightarrow 0$ when $\hbar \to 0$ $\blacksquare \text{ For } w < -\frac{1}{3}:$ The classical trajectory has an infinite duration \Longrightarrow The "classical probability" cannot be normalized, but ratios of it (at different values of the scale factor) can be understood as relative probabilities. probabilities. The quantum wavefunction is non-normalizable. Relative probabilities are well defined and reproduce the classical ones when $\hbar \to 0$. #### Conclusion - We have considered the **Hartle-Hawking wavefunction for** spatially closed universes, homogeneous and isotropic. - \blacksquare The system can be seen as a non-linear σ -model with a line segment of Euclidean time and a target space parametrized by the scale factor. - The gauge fixing of time reparametrization is done by: - Integrating over the proper length of the line-segment. - The Faddeev-Popov determinant is trivial. - Using gauge invariant measures. - The field redefinitions of the scale factor yield different path-integral measures and wavefunctions, but the Hilbert spaces are equivalent at least semi-classically. - The quantum probabilities reproduce in the $\hbar \to 0$ limit the classical cosmological evolution.