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Introduction

� In Quantum Mechanics, wavefunctions =⇒ probabilities

• Schrödinger equation

• Path integral

� In Quantum Gravity, wavefunction of the universe

=⇒ probabilities favoring realistic aspects of the Universe?

• Wheeler-DeWitt equation [’62]: Ambiguity in its form

• Hartle-Hawking proposal for spatially closed universes with
cosmological constant Λ > 0 [’83]
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Euclidean path integral

Ψ[hij ] =

∫
Dg

Vol(Diff)
e−

1
~SE[g]

where the sum is over all compact four-manifolds of metric g and
having a single 3D boundary of metric hij.

This is the “No-boundary proposal”

� Homogeneous and isotropic: Space is a 3-sphere

ds2 = −N(t)2dt2 + a(t)2 dΩ2
3

Ψ(a0) =

∫
ai=0
af=a0

DN Da
Vol(Diff)

e−
1
~SE[N,a]

where Diff = Euclidean-time reparametrizations

Ψ(a0) is the probability amplitude for creating a Universe of scale
factor a0 from “nothing” [Vilenkin, ’82]
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Plan

� Fix consistently the gauge of Euclidean-time
reparametrization.

� Field redefinitions of the scale factor are symmetries of the
classical action but

a = A(q) =⇒ Da 6= Dq

We obtain different results for the wavefunction.

� For each prescription we lift the ambiguity in the
Wheeler-DeWitt equation, at the semi-classical level.

� However, all prescriptions are equivalent: Same quantum
predictions, at least at the semi-classical level.

� They reproduce classical cosmology in the ~→ 0 limit.
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Gauge fixing of Euclidean-time reparametrizations

� The Euclidean action is

SE = 6π

∫ x0Ef

x0Ei

dx0
E

√
g00

[
a g00

( da

dx0
E

)2
+ a− Λ

3
a3

]

The potential has contributions from the scalar curvature and the
cosmological constant.

� It describes a non-linear σ-model:

• There is a line segment [x0
Ei, x

0
Ef ] of metric g00 ≡ N2

• The target space is RR+ parametrized by the scale factor a,
with metric Gaa = a.
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� Let us concentrate on the line-segment of Euclidean time:

All metrics g00 are not equivalent up to a change of coordinate, since
the proper length ` of a line segment is invariant under a change of
coordinate.

=⇒ To fix a gauge, we choose a metric ĝ00[`] in each
equivalence class `, which is a modulus

∫
DN

Vol(Diff)
=

∫ +∞

0
d`

��������
∫

Diff

Dξ
Vol(Diff)

∆FP[ĝ00[`]]

� Fadeev-Popov determinant

1 = ∆FP[ĝ00[`]]

∫ +∞

0
d`′
∫

Diff
Dξ δ

[
ĝ00[`]− ĝξ00[`′]

]
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• Introducing anticommuting ghosts b00, c0

∆FP[ĝ00[`]] =

∫
c0(x̂0Ei)=0

c0(x̂0Ef)=0

Dc
∫
Db
(
b,
ĝ[`]

`

)
exp

{
4iπ (b, ∇̂c)

}

where (f, h) ≡
∫ x̂0Ef

x̂0Ei

dx̂0
E

√
ĝ00[`] f0···0 h0···0

• By expanding in Fourrier modes on [x̂0
Ei, x̂

0
Ei] and using gauge-

invariant measures,
∆FP[ĝ00[`]] = 1

� The result is not always trivial: Replacing the line-segment by a
circle, the result is 1/`
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Path integral over the scale factor

� Gauge ĝ00[`] = `2 defined on [x̂Ei, x̂Ef ] = [0, 1]

Ψ(a0) =

∫ +∞

0
d`

∫
a(0)=0
a(1)=a0

Da e−
1
~SE[`,a]

where the action

SE[`, a] = 6π

∫ 1

0
dτ

[
a

`

(da

dτ

)2
+ ` V (a)

]
, V (a) = a− Λ

3
a3

� It is not quadratic =⇒ semi-classical approximation
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� In the literature, one often uses a gauge that depends on a

g00 =
`2

a2
=⇒ SE =

∫ ∫ 1
0 dτ a(τ)

0
dζ ( · · · ) replaced by

∫ 1

0
dζ ( · · · )

Problem : ` is no more the invariant length parametrizing correctly
the classes of equivalence of the metrics.

They use this gauge because q = a2 renders the action Gaussian and
thus the path integral exactly computable.
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� Steepest-descent method on

Ψ(a0) =

∫ +∞

0
d`

∫
a(0)=0
a(1)=a0

Da e−
1
~SE[`,a]

• Find instanton solutions: Two solutions (āε, ¯̀
ε), ε = ±1

• Expand at quadratic order and integrate over fluctuations

� SE[`, a] = S̄εE+6π2

∫ 1

0
dτ ¯̀

ε

[
δaQε δa+2 δa

Va(ā)
¯̀
ε

δ`+δ`
V (ā)

¯̀2
ε

δ`
]
+· · ·

where Qε = − āε¯̀2
ε

d2

dτ2
− 1

¯̀2
ε

dāε
dτ

d

dτ
− 2

3
Λ āε

It is a self-adjoint operator acting in the Hilbert space of functions
vanishing at 0 and 1.
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• Diagonalizing,

Ψ(a0) =
∑
ε=±1

e−
1
~ S̄

ε
E

∫
δa(0)=0
δa(1)=0

Dδa exp
{
− 6π2

~
(δa,Qε δa)

}
∫

dδ` exp
{
−Kε

~
δ`2
}

(1 +O(~))

=
∑
ε=±1

e−
1
~ S̄

ε
E

√
detQε

√
Kε

(1 +O(~))

• To compute detQε ≡
∏
k≥1

νε,k we improve the method of Affleck

and Coleman [’77]

Ψ(a0) =
∑
ε=±1

1√
ε

exp
[
ε 12π2

~Λ

(
1− Λ

3 a
2
0

) 3
2

]
a

1
8
0

(
1− Λ

3 a
2
0

) 1
4

(1 +O(~))
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Field redefinitions

� Classically, the action is invariant under redefinitions a = A(q).

At the quantum level Da 6= Dq due to a Jacobian

Ψ̃(q0) =

∫ +∞

0
d`

∫
q(0)=qi
q(1)=q0

Dq e−
1
~SE[`2,q] where a0 = A(q0) , 0 = A(qi)

=
∑
ε=±1

1√
ε

exp
[
ε 12π2

~Λ

(
1− Λ

3 a
2
0

) 3
2

]
|A′(q0)|−

1
4 a

1
8
0

(
1− Λ

3 a
2
0

) 1
4

(1 +O(~))

There are infinitely many different choices of wavefunctions!

12 / 19



Wheeler-DeWitt equation

� For each prescription Dq, all possible states/wavefunctions
satisfy an equation similar to Schrödinger in quantum mechanics.

To derive it,

0 =

∫
DN Dq

Vol(Diff)

δ

δN
eiS[N,q] = −i

∫
DN Dq

Vol(Diff)

H
N
eiS[N,q] (1)

where the classical Hamiltonian is

H
N

= − 1

24π

π2
q

AA′2
− 6πV where πq = −12π2 AA

′2

N
q̇

=⇒ The quantum Hamiltonian vanishes on all states of the
Hilbert space ⇔ Wheeler-DeWitt equation

� Classically, we have for arbitrary functions ρ1(q), ρ2(q)

π2
q =

1

ρ1 ρ2
πq ρ1 πq ρ2
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• canonical quantization

q −→ q0 , πq −→ −i~
d

dq0

yields an ambiguity

~2

24π

1

AA′2
1

ρ

d

dq0

(
ρ

dΦ

dq0

)
+
(
~2 ω − 6πV

)
Φ = 0

where Φ is a generic wavefunction of the Hilbert space.

� We can find ρ by solving this equation at the semi-classical level
using the WKB method

Φ(q0) =
∑
ε=±1

Nε

exp
[
εs 12π2

~Λ

(
1− Λ

3 a
2
0

) 3
2

]
√
a0 ρ(q0)|A′(q0)|

(
1− Λ

3 a
2
0

) 1
4

(1 +O(~))

Comparing with a particular wavefunction, the “no-boundary state”

=⇒ ρ(q0) = a
− 3

4
0 |A′(q0)|−

3
2
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Universality at the semi-classical

� Different wavefunction prescriptions Dq and
Wheeler-DeWitt equations
=⇒ different quantum gravities with same classical limits?

• To discuss probabilities, we define an inner product in each
Hilbert space.

Denoting Φ(q0) ≡ ΦA(a0),
(
where a0 = A(q0)

)
〈ΦA1,ΦA2〉 =

∫ +∞

0
da0 µ(a0) ΦA1(a0)∗ΦA2(a0)

• Imposing Hermiticity of the Hamiltnonian〈
ΦA1,

H
N

ΦA2

〉
=
〈H
N

ΦA1,ΦA2

〉
=⇒ Differential equation =⇒ µ = a0 ρ |A′|
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=⇒
√
µ(a0) ΦA(a0) =

∑
ε=±1

Nε

exp
[
ε 12π2

~Λ

(
1− Λ

3 a
2
0

) 3
2

]
(
1− Λ

3 a
2
0

) 1
4

(1 +O(~))

is independent of ρ and A i.e. is independent of the choice of
field redefinition, at the semi-classical level.

So is the inner product 〈ΦA1,ΦA2〉 =

∫ +∞

0
da0 µΦ∗A1 ΦA2

=⇒ All probabilities are independent of the choice of measure
Dq, at least at the semi-classical level.

� If we assume this statement is exact in ~, we can lift
completely the remaining ambiguity in the Wheeler-DeWitt equation

=⇒ ω = − 1

24π2a0

[
5

16

1

a2
0

+
1

4

(ρ′
ρ

)2
− ρ′′

ρ

]
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Recovering the classical cosmology

� Generalize to the case where the universe is filled with a perfect
fluid of state equation [A.Kehagias, H.P., N. Toumbas, ’21]

pm = wρm where − 1 ≤ w ≤ 1 (not only w = −1)

� Classical cosmology for w > −
1

3
:

To compare with Quantum Gravity which provides probabilities, we
define

classical probability = duration the scale factor lies in the range
[a, a+ da], divided by the total duration of the cosmological evolution

Pcl(a) da =
1√
π

∣∣∣Γ( 1
3w+1

)∣∣∣
Γ
(

1
2 + 1

3w+1

) a
3w+1

2 da

am
√
a3w+1
m − a3w+1
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� For the choice of field a the Hilbert space measure is µ = aρ
(In the literature, one often takes incorrectly ρ alone.)

We solve the Wheeler-DeWitt equation at the semiclassical level using
the WKW method

For a < am: P (a) ≡ µ|Φ|2 −→ Pcl(a) when ~→ 0

For a > am (classically forbiden): P (a) ≡ µ|Φ|2 −→ 0 when ~→ 0

� For w < −
1

3
:

The classical trajectory has an infinite duration =⇒ The “classical
probability” cannot be normalized, but ratios of it (at different
values of the scale factor) can be understood as relative
probabilities.
The quantum wavefunction is non-normalizable. Relative probabilities
are well defined and reproduce the classical ones when ~→ 0. 18 / 19



Conclusion

� We have considered the Hartle-Hawking wavefunction for
spatially closed universes, homogeneous and isotropic.

� The system can be seen as a non-linear σ-model with a line segment
of Euclidean time and a target space parametrized by the scale factor.

� The gauge fixing of time reparametrization is done by:
• Integrating over the proper length of the line-segment.
• The Faddeev-Popov determinant is trivial.
• Using gauge invariant measures.

� The field redefinitions of the scale factor yield different
path-integral measures and wavefunctions, but the Hilbert
spaces are equivalent at least semi-classically.

� The quantum probabilities reproduce in the ~→ 0 limit the
classical cosmological evolution.
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