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Motivating this talk

Much attention lately has been given to the anomalous 
magnetic moment of the muon (and the electron), which 
suggest the presence of new BSM physics. Also of interest 
are experimental limits on the electric dipole moment of 
the electron.

What about the anapole moment?

And why give this talk at a Supersymmetry meeting?



The following paper appeared in arXiv:1910.09545, but it was 
never published:

C. Aydin, Anapole Moment of Leptons in the Minimal    
Supersymmetric Standard Model

In my opinion, there were a number of deficiencies in the 
calculations presented in this paper.

Ø Some subtleties associated with the 𝛾 − 𝑍 system of the 
electroweak sector must be addressed to obtain a gauge-
invariant, physical result (Gongora-T. and Stuart, 1992). It 
is not clear whether these were correctly treated.

Ø Necessary pieces of the calculation appear to be absent.



Meanwhile, Herbi Dreiner, Steve Martin and I have (finally!) submitted 
our long overdue manuscript to Cambridge University Press, entitled 
From Spinors to Supersymmetry (to appear in Spring of 2023).

This book contains many explicit computations of Standard Model and 
supersymmetric processes (employing two-component spinor 
technology). After providing explicit details of the one-loop computation 
of the muon anomalous magnetic moment in softly-broken SUSY QED, we 
use the same methods to obtain the anapole moment of the muon.

Some details of this computation will be presented in this talk. 



Outline
1. The electromagnetic vertex structure

2. Interpretation of the form factors

3. Isolating the form factors via the projection operator technique

4. Computation of the anapole moment of a charged lepton in SUSY-QED
Ø The one loop vertex contribution
Ø Wave function renormalization

5. Challenges of a more complete computation

6. Will the anapole moment of the electron (or muon) ever be measured?



The Electromagnetic Vertex Structure

Consider the scattering of a negatively charged muon (with

electric charge Q = −e and mass m) off an external static EM

field, Aµ field. The first order S-matrix amplitude is given by,

〈p′, s′|S(1) |p, s〉 = ieū(~p ′, s′)Γµ(p, p′)u(~p, s)Ãµ(q) ,

where q ≡ p′ − p is the momentum transfer, p2 = p′ 2 = m2,

Ãµ(q) is the four-dimensional Fourier transform of Aµ(x), and

the effective electromagnetic vertex function is,

Γµ(p, p′) = F1(q
2)γµ +

i

2m
σµνqνF2(q

2) +
1

2m
γ5σ

µνqνF3(q
2)

+
1

4m2

(
qµqν − q2gµν

)
γνγ5F4(q

2) .



form factor name P C T chirality flip

F1 electric charge + + + no

F2 anomalous magnetic dipole + + + yes

F3 electric dipole − + − yes

F4 anapole − − + no

P, C and T properties of the terms of the effective vertex, ū(~p ′) Γµ(p, p′)u(~p)Aµ(q).

Chirality flip refers to the nature of the interaction in the ultrarelativistic limit.

For a static EM field,

Ãµ(q) =

∫ ∞

−∞
dt ei(E

′−E)t

∫
d3xAµ(~x)e

−i~q ·~x = 2πδ(E′ − E)Ãµ(~q) ,

where Ãµ(~q) is the three-dimensional Fourier transform of Aµ(~x),

Ãµ(~q) ≡

∫
d3xAµ(~x)e

−i~q ·~x .



Interpretation of the Form Factors

In nonrelativistic scattering theory, the S-matrix element is related to

the interaction potential V (~x) via

〈~p ′, s′|S |~p, s〉 = (2π)3 2E δ3(~p ′ −~p)δss′

−2πiδ(E′ −E) 〈~p ′, s′|V (~x)|~p (+), s〉 ,

using covariant normalization of the one particle momentum states,

where |~p (+)〉 is given by the Lippmann-Schwinger equation,

|~p (+), s〉 = |~p, s〉+ lim
ε→0+

1

E −H0 + iε
V |~p (+), s〉 ,

and the Hamiltonian is given by H = H0 + V . To leading order in V ,

〈~p ′, s′|V (~x) |~p, s〉 = −eū(~p ′, s′)Γµ(p, p′)u(~p, s)Ãµ(~q) .

The energy conserving delta function imposes q0 = E′ −E = 0.



Case 1: Static electric field with Aµ(x) =
(
φ(x) ; ~0)

For covariantly normalized states, 〈~x|~p〉 =
√
2E~p ei~p·~x. In the

nonrelativistic limit, ~p, ~p ′ → ~0, and we obtain

〈~p ′, s′|V (~x) |~p, s〉 = −eF1(0) 〈~p ′, s′|φ(~x) |~p, s〉

−
eF3(0)

2m
〈~p ′, s′

∣∣σ ·~E(~x)
∣∣~p, s〉,

after an integration by parts and using ~E = −~∇φ. That is,

V (~x) = −eφ(~x)−~d·~E(~x) ,

where

Q = −eF1(0) , ~d =
e

m
F3(0)~S ,

and ~S = 1
2~σ is the nonrelativistic spin operator.

That is, F1(0) = 1 and F3(0) yield the muon electric dipole moment.



Case 2: Static magnetic field with Aµ(x) =
(
0 ; ~A(~x)

)
.

We use the Fourier transform of the magnetic field, ~B = ~∇ × ~A,

~̃B(~q) =

∫
(~∇ × ~A)e−i~q ·~x d3x = i~q × ~̃A ,

after an integration by parts. The end result is

V (~x) =
e

2m
F1(0)

(
~P ·~A + ~A·~P

)
+

e

2m

[
F1(0) + F2(0)

]
σ ·~B(~x)

+
e

4m2
F4(0)~σ·

(
~∇ × ~B(~x)

)
.

The second term above corresponds to V = −~m·~B, where

~m = −
e

m

[
1 + F2(0)

]
~S = −

eg

2m
~S ,

after putting F1(0) = 1. That is, the anomalous magnetic moment is

F2(0) =
1
2(g − 2) .



Some details on the term proportional to F4(0)

In the nonrelativistic limit, the term in the potential proportional to

the form factor F4 is given by,

〈~p ′, s′|V (~x) |~p, s〉 ⊃ −
e

2m
F4(0)Ã

i(~q)
(
qiqj − |~q|2δij

)
χ†
s′σ

jχs

= −
e

2m
F4(0)

[
~̃A·~q χ†

s′~σ ·~q χs − |~q|2χ†
s′~σ · ~̃Aχs

]

=
ie

2m
F4(0)

[
χ†
s′ ~σ ·(~q× ~̃B)χs

]

=
e

4m2
F4(0) 〈~p ′, s′|~σ ·

(
~∇ × ~B(~x)

)
|~p, s〉 ,

where χs is the non-relativistic two-component spinor.

In analogy with the magnetic and electric dipole vectors, one can

define the anapole vector ~a,

~a = −
e

2m2
F4(0)~S .



Thus, the P-violating interaction potential of a particle of charge −e

with anapole moment ~a moving in a static magnetic field is given by,

V (~x) =
e

4m2
F4(0)~σ·

(
~∇ × ~B(~x)

)
= −~a·~J(~x) ,

where ~J(~x) = ~∇ × ~B(~x) is the external current that produces the

static magnetic field.

In summary, the interaction energy of a particle with a magnetic,

electric and anapole moment is given by

V = −~m·~B −~d·~E − ~a·~J .

The contribution of the anapole moment vanishes unless the source of

the magnetic field ~J is nonzero. That is, the coupling of the anapole

moment to the external electromagnetic fields is of relevance only in

matter [M. Nowakowski et al., Eur. J. Phys. 26, 545 (2005)].



Isolating the Form Factors via projection

To isolate the form factors, the following identities are useful:

F2(q
2) = Tr

{(
g1(q

2)γµ +
g2(q

2)

2m
(p+ p′)µ

)
(/p′ +m)Γµ(p, p′)(/p+m)

}
,

F3(q
2) = −

ig3(q
2)

2m
(p+ p′)µTr

{
γ5(/p

′ +m)Γµ(p, p′)(/p+m)
}
,

F4(q
2) = g4(q

2) Tr
{
γµγ5(/p

′ +m)Γµ(p, p′)(/p+m)
}
,

where,

g1(q
2) =

m2

(
1
2d− 1

)
q2(4m2 − q2)

, g2(q
2) = −

2m2
[
2m2 +

(
1
2d− 1

)
q2
]

(
1
2d− 1

)
q2(4m2 − q2)2

,

g3(q
2) =

2m2

q2(4m2 − q2)
, g4(q

2) =
m2

(
1
2d− 1

)
q2(4m2 − q2)

.

Here, we perform the Dirac algebra in d = 4− 2ǫ dimensions.



We shall evaluate Γµ at one-loop order using dimensional

regularization. Two important checks of our calculations are:

• The singularities of the gi at q
2 = 0 and q2 = 4m2 must cancel in

the final result.

• The final result must be UV finite in which case one can set ǫ = 0.

Moreover, the intermediate steps of the calculation will not produce

a finite term that can potentially result from ǫ·ǫ−1.

Remark: For a (neutral) Majorana fermion, the form factors F1(q
2) =

F2(q
2) = F3(q

2) = 0. Thus, the only nonzero form factor is F4(q
2).

This is relevant in the study of Majorana fermion dark matter.

See Merlin Reichard’s talk in Monday’s parallel sessions entitled

“Anapole Moment of Majorana Fermions and Implications for Direct

Detection of Neutralino Dark Matter.”



One-loop vertex contributions to F4(q
2)

√
2iePL

√
2iePR

⊗

µ(p) µ(p′)

γ̃(−k)

q

φL(k + p) φL(k + p′)

(a)

−
√
2iePR −

√
2iePL

⊗

γ̃(−k)

q

µ(p) µ(p′)

φR(k + p) φR(k + p′)

(b)

ieF4(q
2
)vertex =

2m2e3

q2(4m2 − q2)

∫

ddk

(2π)d
(p + p′ + 2k)µ

(k2 − M 2)[(k + p)2 − m2
L][(k + p′)2 − m2

L]

×Tr
[

(/p + m)γµγ5(/p
′
+ m)/kPL

]

+ (L ↔ R) ,

where M is the photino mass, mL and mR are the masses of µ̃L and

µ̃R, respectively (smuon mixing is neglected), and PR,L ≡ 1
2
(1 + γ5).



After evaluating the trace and replacing e → eµǫ, where µ is the scale

of DimReg,

F4(q
2)vertex =

−4im2e2µ2ǫ

q2(4m2 − q2)

∫
ddk

(2π)d
[
k2(4m2−q2)−4p·k p′·k

]( 1

DL

−
1

DR

)
,

where DL,R ≡ (k2 −M 2)[(k + p)2 −m2
L,R][(k + p′)2 −m2

L,R].

In terms of the Passarino-Veltman C functions,

F4(q
2)vertex =

αm2

πq2(4m2 − q2)

{
m2q2

[
C21 + 4C22 − 4C23

]

+
[
4m2(d− 1)− q2(d− 2)

]
C24 − (L → R)

}
,

where α ≡ e2/(4π). After setting p2 = p′ 2 = m2, the arguments of the

C-functions above are (m2, q2,m2;M 2,m2
L,m

2
L). In the “(L → R)”

terms, one simply makes the replacement m2
L → m2

R.



The Passarino-Veltman loop functions

The loop functions are evaluated in d = 4 − 2ǫ dimensions.

B1(p
2
;m

2
a,m

2
b)p

µ
= −16π

2
iµ

2ǫ
∫

ddq

(2π)d
qµ

(q2 − m2
a + iε)[(q + p)2 − m2

b + iε]
,

C21p
µ
1 p

ν
1 + C22p

µ
2 p

ν
2 + C23(p

µ
1 p

ν
2 + p

µ
2 p

ν
1 ) + C24g

µν
= −16π

2
iµ

2ǫ
∫

ddq

(2π)d
qµqν

DC

,

where Cij ≡ Cij(p
2
1, p

2
2, p

2;m2
a,m

2
b,m

2
c) and

DC ≡ (q
2 − m

2
a + iε)[(q + p1)

2 − m
2
b + iε][(q + p1 + p2)

2 − m
2
c + iε] .

C21, C22 and C23 are finite as ǫ → 0, whereas B1 and C24 are divergent,

[B1]div = −
1

2ǫ
,

[C24]div =
1

4ǫ
.



Wave function renormalization contributions to F4(q
2)

⊗

µ(p) µ(p′)

γ̃(−k)

q

φL(k + p)

(a)

⊗
q

µ(p) µ(p′)

γ̃(−k)

φR(k + p)

(b)

plus two diagrams where the self-energy insertions appear on the outgoing muon.

Self-energy corrections to external on-shell fermion lines are

implemented by making the following replacements:

• u(~p, s) → Z1/2u(~p, s) for an incoming fermion line.

• ū(~p, s) → ū(~p, s)Z 1/2 for an outgoing fermion line.



Here, Z is the wave function renormalization constant of the fermion

and Z ≡ γ0Z∗γ0. In general, Z and Z can be decomposed into

left-handed and right-handed contributions,

Z = PLZL + PRZR , Z = PRZ
∗
L + PLZ

∗
R .

Note that ZL,R = 1 + δZL,R, where δZL,R represent the loop

corrections. Hence, to one loop accuracy,

ū(~p, s)γµu(~p, s) → ū(~p, s)γµu(~p, s)+
1
2ū(~p, s)

[
δZγµ+ γµδZ

]
u(~p, s).

That is, the one-loop self-energy diagrams yield

1
2ū(~p, s)

[
(δZL + δZ∗

L)γµPL + (δZR + δZ∗
R)γµPR

]
u(~p, s).

One can compute δZL and δZR by evaluating the 1PI self-energy

function of the fermion in the on-shell renormalization scheme.



Here, we shall (mostly) follow the analysis of B.A. Kniehl and

A. Pilaftsis, Nucl. Phys. B 474, 286 (1996).

p

−iΣ(p)

Σ(p) = /p
[
PLΣL(p

2) + PRΣR(p
2)
]
+ PLΣD(p

2) + PRΣD(p
2)

One can then show that

1
2(δZL + δZ∗

L) = ΣL(m
2) +D ,

1
2(δZR + δZ∗

R) = ΣR(m
2) +D ,

where

D ≡ m2
[
Σ′

L(m
2) + Σ′

R(m
2)
]
+m

[
Σ′

D(m
2) +Σ′

D(m
2)
]
.

and Σ′(m2) ≡ (dΣ(p2)/dp2)p2=m2.



Contribution of the photino–smuon loop to the muon self-energy

p pγ̃(−k)

φL(k + p)

−iΣ(p) =

√
2iePL

√
2iePR

+ (L → R and e → −e)

= −2e
2
µ

2ǫ
γµPL

∫

ddk

(2π)d
kµ

(k2 − M2)[(k + p)2 − mL]
+ (L → R)

In light of the decomposition of Σ(p) given previously,

ΣL(p
2) =

α

2π
B1(p

2;M 2,m2
L)

ΣR(p
2) =

α

2π
B1(p

2;M 2,m2
R)

ΣD(p
2) = ΣD(p

2) = 0 .



It follows that

F4(q
2)self-energy =

m2

q2(4m2 − q2)

×Tr
[
γµγ5(/p

′ +m)(cLγ
µPL + cRγ

µPR)(/p+m)
]
,

where cL ≡ 1
2(δZL + δZ∗

L) and cR ≡ 1
2(δZR + δZ∗

R).

Plugging in the expressions for cL and cR obtained previously and

evaluating the trace, the end result is proportional to cL−cR. Explicitly,

F4(q
2)self-energy =

m2

q2(4m2 − q2)

[
4m2(d−1)−q2(d−2)

](
ΣL(m

2)−ΣR(m
2)
)
.

We thus obtain,

F4(q
2)self-energy =

αm2

2πq2(4m2 − q2)

[
4m2(d− 1)− q2(d− 2)

]

×
[
B1(m

2;M 2,m2
L)−B1(m

2;M 2,m2
R)

]
.



Full one-loop SUSY QED contribution to F4(q
2)

Adding up the contributions from the vertex and self-energies yields,

F4(q
2) =

αm2

πq2(4m2 − q2)

{
m2q2

[
C21 + 4C22 − 4C23

]

+
[
4m2(d− 1)− q2(d− 2)

][
C24 +

1
2B1(m

2;M 2,m2
L)
]
− (L → R)

}
,

Note that C24 +
1
2B1 is UV finite!

A nicer expression emerges by using the following two identities:

C21(m
2, q2,m2;M 2,m2

L,m
2
L) = 2C23(m

2, q2,m2;M 2,m2
L,m

2
L)

2C24(m
2, q2,m2;M 2,m2

L,m
2
L) +B1(m

2;M 2,m2
L)

= q2
[
C23(m

2, q2,m2;M 2,m2
L,m

2
L)− 2C22(m

2, q2,m2;M 2,m2
L,m

2
L)
]
.



Thus, we arrive at our final result (setting d = 4),

F4(q
2) =

αm2

π

{
C23(m

2, q2,m2;M 2,m2
L,m

2
L)

−2C22(m
2, q2,m2;M 2,m2

L,m
2
L)− (L → R)

}
.

Notice that the singularities at q2 = 0 and q2 = 4m2 have indeed

canceled, and the loop corrections induced by µ̃L and µ̃R are separately

UV finite.

Moreover, the anapole form factor vanishes exactly when mL = mR,

as expected, since in this limit SUSY QED is parity invariant.



The static anapole moment of the muon is obtained by setting q2 = 0.

Using the integral representations of the C-functions and assuming

that m ≪ mL,R, it follows that

F4(0) =
αm2

6π

∫ 1

0

(
1

(m2
L −M 2)x+M 2

−
1

(m2
R −M 2)x+M 2

)
x3 dx .

As an example, in the limit of M = 0,

F4(0) =
αm2

18π

(
1

m2
L

−
1

m2
R

)
.

In compressed SUSY, m2
L = M 2 + δm2

L and m2
R = M 2 + δm2

R where

δm2
L, δm

2
R ≪ M 2. In this limit,

F4(0) =
αm2

30π

(
δm2

R − δm2
L

M 4

)
.



Challenges of a more complete calculation

A more complete calculation should incorporate the full electroweak

sector, which will contribute to the anapole moment due to the parity-

violating couplings of W and Z to the fermions. But, the literature is

quite confusing on this matter.

“The gauge dependence of the static (q2 = 0) characteristics of charged leptons in the framework

of the GSW (Glashow-Salam-Weinberg) model was studied. It was found that the anapole moments

of leptons are gauge dependent and hence cannot be considered as observables.”

H. Czyk et al., Is the anapole moment a physical observable?, Can. J. Phys. 66 (1988) 132.

“In contrast with the charge, magnetic [dipole] moment, and EDM, the anapole moment is not an

intrinsic and well-defined property of an elementary particle.”

M.J. Musolf and B.R. Holstein, Observability of the anapole moment and neutrino charge

radius, Phys. Rev. D 43, 2956 (1991).



“We derive an expression for the charge radius and anapole moment of a free fermion induced at

one loop in the standard Glashow-Salam-Weinberg model of electroweak interactions. The result,

despite earlier claims to the contrary, is demonstrably gauge-invariant and observable in principle.”

A. Góngora-T. and R.G. Stuart, Z. Phys. C 55, 101 (1992).

“The neutrino anapole moment and neutrino charge radius have finite gauge-invariant expressions

in the SM; they define the axial vector (anapole) and the vector (NCR) contact interactions of

any fermion with an external electromagnetic current, respectively. The situation with the anapole

was also unclear because of the wrong statements of various authors about the electromagnetic

interaction induced by the anapole moment of the particle.”

V.M. Dubovik and V.E. Kuznetsov, The Toroid Dipole Moment of the Neutrino,

Int. J. Mod. Phys. A 13, 5257 (1998).

“Using the pinch technique we construct at one-loop order a neutrino charge radius, which is finite,

depends neither on the gauge-fixing parameter nor on the gauge-fixing scheme employed, and is

process independent.”

J. Bernabéu et al., Charge radius of the neutrino, Phys. Rev. D 62, 113012 (2000).



Will the anapole moment of the electron
(or muon) ever be measured?

• First, one must clarify the definition of a physical gauge invariant

anapole moment of a point particle. This will dictate the type

of experiment needed to measure it. For example, in J. Erler,

A. Kurylov and M.J. Ramsey-Musolf, Phys. Rev. D 68, 016006

(2003), a formula is displayed for the weak charge of the proton

that depends on one term called ∆′
e.

“The latter, which corresponds to the anapole moment of the electron, depends

on the choice of EW gauge and is not by itself a physical observable.”

• The nuclear anapole moment of 133Cs has been extracted

successfully from a measurement of the hyperfine dependence

of the atomic parity violation (expected from the hadronic weak

interaction). For more details, see W.C. Haxton and C.E. Wieman,

Ann. Rev. Nucl. Part. Sci. 51, 261 (2001).



Conclusions

1. It is desirable to clarify the meaning of a physical (gauge

invariant) anapole moment of a (pointlike) charged lepton.

Assuming such a process-independent quantity exists, it would

be a universal property of the lepton as important as its charge

and electric and magnetic dipole moments.

2. The anapole moment of the muon (or electron) in softly-

broken SUSY QED, computed at one-loop order, is a finite

gauge invariant quantity, which is physically meaningful.

3. Extension to the full MSSM requires addressing point 1 above.


