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Introduction

(Almost) everybody knows we need Dark Matter (DM)

Thermal DM (WIMP) in minimal cosmology is great;
simple; quite predictive; little UV–sensitivity

But: WIMPs getting squeezed (not excluded) by
negative results from direct and indirect searches

Look for alternatives!

Here: out–of–equilibrium of heavy particle Φ!
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Supergravity and Superstring scenarios ( Polonyi field,
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Basic Mechanism

Long–lived, massive particle Φ quite generic in
Supergravity and Superstring scenarios ( Polonyi field,
moduli, . . . )

Corresponding field can attain large value during
inflation

Field starts to oscillate when H ≃ mΦ: Behaves like
ensemble of particles at rest!

Can dominate total energy density

DM particle can be produced as Φ decay product!
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The Simplest Case

Gelmini et al. 2006; Acharya et al. 2009; Kane et al. 2015; Arbey et al. 2018; . . .

Assume Φ decays via Planck–suppressed dim–5
operator:

ΓΦ = λ
M3

Φ

M2
Pl

λ = const
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The Simplest Case

Gelmini et al. 2006; Acharya et al. 2009; Kane et al. 2015; Arbey et al. 2018; . . .

Assume Φ decays via Planck–suppressed dim–5
operator:

ΓΦ = λ
M3

Φ

M2
Pl

λ = const

ρΦ dominates energy density, until T = TR with

TR =
√

ΓΦMPl

(

45

4π3g∗(TR)

)1/4

,

MPl = 1.2 · 1019 GeV; g∗: eff. number of d.o.f. in radiation
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At T > TR:

T (t) ∝ a(t)−3/8

Usually, T ∝ 1/a!
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At T > TR:

T (t) ∝ a(t)−3/8

Usually, T ∝ 1/a!

ρ(T ), hence H(T ), (much) higher than in minimal
cosmology

Entropy density sR is not co–moving constant!

g∗, g∗s usually not constant over the relevant period
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Boltzmann Equations:

dρΦ

dt
+ 3HρΦ = −ΓΦρΦ ;

dsR

dt
+ 3HsR =

ρΦΓΦ

T
;

dnχ

dt
+ 3Hnχ =

Bχ

MΦ
ΓΦρΦ − 〈σv〉(n2

χ − n2
χ,EQ) .

H : Hubble parameter; sR: entropy density;
Bχ: number of χ particles per Φ decay
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Boltzmann Equations:

dρΦ

dt
+ 3HρΦ = −ΓΦρΦ ;

dsR

dt
+ 3HsR =

ρΦΓΦ

T
;

dnχ

dt
+ 3Hnχ =

Bχ

MΦ
ΓΦρΦ − 〈σv〉(n2

χ − n2
χ,EQ) .

H : Hubble parameter; sR: entropy density;
Bχ: number of χ particles per Φ decay
Can open up the allowed parameter space!
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Example of Resulting DM Density

MD, F. Hajkarim, 1711.05007
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Contribution from Direct Φ Decay

For negligible χ annihilation:

mχnχ(TR)

sR(TR)
=

mχBχnΦ(TR)

sR(TR)
=

mχBχρΦ(TR)

MΦsR(TR)

=⇒ Ωχh2 ∝ mχBχTR

MΦ
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Contribution from Direct Φ Decay

For negligible χ annihilation:

mχnχ(TR)

sR(TR)
=

mχBχnΦ(TR)

sR(TR)
=

mχBχρΦ(TR)

MΦsR(TR)

=⇒ Ωχh2 ∝ mχBχTR

MΦ

Using TR ∝
√

ΓΦ ∝
√

λM3
Φ:

Ωχh2 ∝ mχBχ

√

λMΦ
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Application to SUSY

MD, F. Hajkarim, 1808.05076

Use full (effective) annihilation cross section from
MicrOMEGAs, supplemented with extended Boltzmann
eqs., using λ = 1:

Dark Matter Theory – p. 10/25



Good Bino–like DM for:

mB̃ ≃ 100 GeV ·











1.5·10−4

Bχ

(

5·105 GeV
MΦ

)1/2
, pure nonthermal

(

MΦ

5·106 GeV

)3/2
(

10−13 GeV−2

〈σv〉

)1/3
, thermal

First option: MΦ ≤ 106 GeV or 〈σv〉 very small;
Second option: Bχ ≤ 10−5, MΦ > 106 GeV: Bino equlibrates
at T ≫ TR, not at TR!
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Assumptions Made

Φ decay products thermalize instantaneously
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Assumptions Made

Φ decay products thermalize instantaneously

〈σv〉 and Bχ can be varied independently, even if Bχ ≪ 1

In this approximation, almost any WIMP can be given the
right relic density (Gelmini et al. 2006)

Both assumptions are, strictly speaking, incorrect!
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Thermalization

How does an energetic particle, with initial E ≫ T ,
thermalize, i.e. turn into ∼ E/T particles with energy per
particle ∼ T?
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Thermalization

How does an energetic particle, with initial E ≫ T ,
thermalize, i.e. turn into ∼ E/T particles with energy per
particle ∼ T?

Assume there already is a thermal background, with which
the energetic particle can interact!
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2 → 2 scattering

b

s
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2 → 2 scattering

b

s

After IR regularizations: σ ∼ α2

αT 2 ∼ α
T 2

Typical energy loss per scattering ∆E ∼ √
αT

Energy loss rate: σnb∆E ∼ α3/2T 2

Thermalization time

ttherm ∼ MΦ

α3/2T 2
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2 → 3 scattering

b

s s′

s”

Can have large energy loss, Es′ ∼ Es” ∼ Es/2, without any
large virtuality, if emission is colinear!
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2 → 3 scattering

b

s s′

s”

Can have large energy loss, Es′ ∼ Es” ∼ Es/2, without any
large virtuality, if emission is colinear!

Naive guess: dσ
dEs”

∼ α3

αT 2
1

Es”

dEs

dt ∼ α2T
∫ Es/2
0 E dE 1

E ∼ α2EsT
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2 → 3 scattering

b

s s′

s”

Can have large energy loss, Es′ ∼ Es” ∼ Es/2, without any
large virtuality, if emission is colinear!

Naive guess: dσ
dEs”

∼ α3

αT 2
1

Es”

dEs

dt ∼ α2T
∫ Es/2
0 E dE 1

E ∼ α2EsT

ttherm ∼ ln(MΦ/T )
α2T : 2 → 3 splittings dominate! (Davidson & Sarkar,

2000)
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Complication: LPM Effect

Landau & Pomeranchuk 1953; Migdal 1956: for QED; Harigaya et al. 2013: in present

context

Particle s after scatter still nearly on–shell, for colinear
emission
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Complication: LPM Effect

Landau & Pomeranchuk 1953; Migdal 1956: for QED; Harigaya et al. 2013: in present

context

Particle s after scatter still nearly on–shell, for colinear
emission

Lives a “long time”

Will undergo multiple scatters: destructive interference

For splitting s(p) → s′(k)s”(p − k):

rate suppressed by
√

T
min(k,p−k)

=⇒ ttherm ∼
√

MΦ

α2T 3/2

Still much faster than 2 → 2 scattering!
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Thermalization (cont’d)

Gives rise to spectrum of non–thermal particles with

T ≪ E ≤ MΦ

2
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Thermalization (cont’d)

Gives rise to spectrum of non–thermal particles with

T ≪ E ≤ MΦ

2

Can be source of non–thermal relics, through scattering on
the thermal background (“hard–soft”) or between two
non–thermal particles (“hard–hard”) R. Allahverdi & MD,

hep–ph/0205246
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Boltzmann equation

MD, B. Najjari, 2105.01935

Let ñ(p) = dn/dp:

∂ñ

∂t
− 3Hp

∂ñ

∂p
= Cinj − Cdep

Cinj: From Φ decay, and feed–down from k > p;
Cdep: Energy loss by radiation
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Boltzmann equation

MD, B. Najjari, 2105.01935

Let ñ(p) = dn/dp:

∂ñ

∂t
− 3Hp

∂ñ

∂p
= Cinj − Cdep

Cinj: From Φ decay, and feed–down from k > p;
Cdep: Energy loss by radiation

ttherm ≪ 1/H =⇒ set H = 0;
quickly reach quasi steady–state, where injection and
depletion balance! (Depends on T )
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Boltzmann equation (cont’d)

2nΦΓΦδ(p − MΦ

2
) +

∫ MΦ/2

p+κT
ñ(k)

dΓsplit(k → p)

dp
dk

=

∫ p/2

κT
ñ(p)

dΓsplit(p → k)

dk
dk .

κ: O(1) IR regulator, does not affect result for
p ≫ T, Mφ/2 − p ≫ T .
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Boltzmann equation (cont’d)

2nΦΓΦδ(p − MΦ

2
) +

∫ MΦ/2

p+κT
ñ(k)

dΓsplit(k → p)

dp
dk

=

∫ p/2

κT
ñ(p)

dΓsplit(p → k)

dk
dk .

κ: O(1) IR regulator, does not affect result for
p ≫ T, Mφ/2 − p ≫ T .

Switch to dimensionless quantities:
x = p/T, xM = MΦ/(2T ), ñ(x) = T ñ(p = xT )
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Boltzmann equation (cont’d)

2nΦΓΦδ(p − MΦ

2
) +

∫ MΦ/2

p+κT
ñ(k)

dΓsplit(k → p)

dp
dk

=

∫ p/2

κT
ñ(p)

dΓsplit(p → k)

dk
dk .

κ: O(1) IR regulator, does not affect result for
p ≫ T, Mφ/2 − p ≫ T .

Switch to dimensionless quantities:
x = p/T, xM = MΦ/(2T ), ñ(x) = T ñ(p = xT )

Normalize to NM = 2nΦΓΦ

Γsplit(MΦ/2)

n̄(x) = ñ(x)/NM is independent of nΦΓΦ!
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Results

For single species cascade (e.g. pure glue):
n̄(x) ≃ g(x/xM )/

√
xM + δ(x − xM )
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Effect of LPM Suppression

Depends on energy
=⇒ changes the shape of the spectrum
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Effect of LPM Suppression

Depends on energy
=⇒ changes the shape of the spectrum

Reduces the thermalization rate
=⇒ increases normalization of spectrum of
non–thermal particles!
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Impact on Production of Relics

For MΦ = 1013 GeV, αχ = 0.01, α = 0.05, TR = 105 GeV:
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�

soft-soft

hard-soft - primary particles

hard-hard - primary particles

hard-soft - full spectrum

hard-hard - full spectrum

total - primary particles

total - full spectrum
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Refinements

MD, B. Najjari, 2205.07741

Include full spectrum of SM particles in the cascade:
Leads to set of coupled Boltzmann eqs. (one per
species)
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Refinements

MD, B. Najjari, 2205.07741

Include full spectrum of SM particles in the cascade:
Leads to set of coupled Boltzmann eqs. (one per
species)

Include full p−dependence of LPM suppression,
including “Coulomb logs” (using results from heavy ion
physics Arnold et al)

There will be non–thermal χ production whenever 〈σv〉 6= 0!
E.g Φ → gg only, but your relic couples only to ℓR:
Need g → q → B → ℓR splitting cascade!
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xM = 104, Φ → gg only
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Summary and Outlook
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Summary and Outlook

Period of early matter domination not unlikely in
SUGRA, superstring scenarios

Greatly affects predicted DM relic density!

Refinements:
Proper treatment of g∗(T ), hence T (t), sR(T ): done.
Spectrum of non–thermal particles: (done)

Still missing: showering of primary decay products
(software exists); Higher–order Φ decays: generally
exist if 〈σv〉 6= 0 R. Allahverdi, MD, hep-ph/0203118
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