Nonthermal Dark Matter Production

Manuel Drees

Bonn University & Bethe Center for Theoretical Physics

(1) Introduction

- (1) Introduction
- (2) The Simplest Case

- (1) Introduction
- (2) The Simplest Case
- (3) Thermalization

- (1) Introduction
- (2) The Simplest Case
- (3) Thermalization
- (4) Summary

(Almost) everybody knows we need Dark Matter (DM)

- (Almost) everybody knows we need Dark Matter (DM)
- Thermal DM (WIMP) in minimal cosmology is great; simple; quite predictive; little UV—sensitivity

- (Almost) everybody knows we need Dark Matter (DM)
- Thermal DM (WIMP) in minimal cosmology is great; simple; quite predictive; little UV—sensitivity
- But: WIMPs getting squeezed (not excluded) by negative results from direct and indirect searches

- (Almost) everybody knows we need Dark Matter (DM)
- Thermal DM (WIMP) in minimal cosmology is great; simple; quite predictive; little UV—sensitivity
- But: WIMPs getting squeezed (not excluded) by negative results from direct and indirect searches
- Look for alternatives!

- (Almost) everybody knows we need Dark Matter (DM)
- Thermal DM (WIMP) in minimal cosmology is great; simple; quite predictive; little UV—sensitivity
- But: WIMPs getting squeezed (not excluded) by negative results from direct and indirect searches
- Look for alternatives!
- ullet Here: out–of–equilibrium of heavy particle Φ !

- Corresponding field can attain large value during inflation

- Corresponding field can attain large value during inflation
- Field starts to oscillate when $H \simeq m_{\Phi}$: Behaves like ensemble of particles at rest!

- Corresponding field can attain large value during inflation
- Field starts to oscillate when $H \simeq m_{\Phi}$: Behaves like ensemble of particles at rest!
- Can dominate total energy density

- Corresponding field can attain large value during inflation
- Field starts to oscillate when $H \simeq m_{\Phi}$: Behaves like ensemble of particles at rest!
- Can dominate total energy density

The Simplest Case

Gelmini et al. 2006; Acharya et al. 2009; Kane et al. 2015; Arbey et al. 2018; . . .

$$\Gamma_{\Phi} = \lambda \frac{M_{\Phi}^3}{M_{\rm Pl}^2} \quad \lambda = {\rm const}$$

The Simplest Case

Gelmini et al. 2006; Acharya et al. 2009; Kane et al. 2015; Arbey et al. 2018; ...

$$\Gamma_{\Phi} = \lambda \frac{M_{\Phi}^3}{M_{\rm Pl}^2} \quad \lambda = {\rm const}$$

• ρ_{Φ} dominates energy density, until $T=T_R$ with

$$T_R = \sqrt{\Gamma_{\Phi} M_{\text{Pl}}} \left(\frac{45}{4\pi^3 g_*(T_R)} \right)^{1/4}$$

 $M_{\rm Pl} = 1.2 \cdot 10^{19} \; {\rm GeV}; \; g_*$: eff. number of d.o.f. in radiation

$$T(t) \propto a(t)^{-3/8}$$

Usually, $T \propto 1/a!$

$$T(t) \propto a(t)^{-3/8}$$

Usually, $T \propto 1/a!$

• $\rho(T)$, hence H(T), (much) higher than in minimal cosmology

$$T(t) \propto a(t)^{-3/8}$$

Usually, $T \propto 1/a!$

- $\rho(T)$, hence H(T), (much) higher than in minimal cosmology
- Entropy density s_R is *not* co–moving constant!

$$T(t) \propto a(t)^{-3/8}$$

Usually, $T \propto 1/a!$

- $\rho(T)$, hence H(T), (much) higher than in minimal cosmology
- Entropy density s_R is *not* co–moving constant!
- g_*, g_{*s} usually *not* constant over the relevant period

Boltzmann Equations:

$$\frac{d\rho_{\Phi}}{dt} + 3H\rho_{\Phi} = -\Gamma_{\Phi}\rho_{\Phi};$$

$$\frac{ds_R}{dt} + 3Hs_R = \frac{\rho_{\Phi}\Gamma_{\Phi}}{T};$$

$$\frac{dn_{\chi}}{dt} + 3Hn_{\chi} = \frac{B_{\chi}}{M_{\Phi}}\Gamma_{\Phi}\rho_{\Phi} - \langle \sigma v \rangle (n_{\chi}^2 - n_{\chi,EQ}^2).$$

H: Hubble parameter; s_R : entropy density;

 B_{χ} : number of χ particles per Φ decay

Boltzmann Equations:

$$\frac{d\rho_{\Phi}}{dt} + 3H\rho_{\Phi} = -\Gamma_{\Phi}\rho_{\Phi};$$

$$\frac{ds_R}{dt} + 3Hs_R = \frac{\rho_{\Phi}\Gamma_{\Phi}}{T};$$

$$\frac{dn_{\chi}}{dt} + 3Hn_{\chi} = \frac{B_{\chi}}{M_{\Phi}}\Gamma_{\Phi}\rho_{\Phi} - \langle \sigma v \rangle (n_{\chi}^2 - n_{\chi,EQ}^2).$$

H: Hubble parameter; s_R : entropy density;

 B_{χ} : number of χ particles per Φ decay

Can open up the allowed parameter space!

Example of Resulting DM Density

MD, F. Hajkarim, 1711.05007

Contribution from Direct Decay

For negligible χ annihilation:

$$\frac{m_{\chi}n_{\chi}(T_R)}{s_R(T_R)} = \frac{m_{\chi}B_{\chi}n_{\Phi}(T_R)}{s_R(T_R)} = \frac{m_{\chi}B_{\chi}\rho_{\Phi}(T_R)}{M_{\Phi}s_R(T_R)}$$

$$\implies \Omega_{\chi} h^2 \propto \frac{m_{\chi} B_{\chi} T_R}{M_{\Phi}}$$

Contribution from Direct Decay

For negligible χ annihilation:

$$\frac{m_{\chi}n_{\chi}(T_R)}{s_R(T_R)} = \frac{m_{\chi}B_{\chi}n_{\Phi}(T_R)}{s_R(T_R)} = \frac{m_{\chi}B_{\chi}\rho_{\Phi}(T_R)}{M_{\Phi}s_R(T_R)}$$

$$\Longrightarrow \Omega_{\chi} h^2 \propto \frac{m_{\chi} B_{\chi} T_R}{M_{\Phi}}$$

Using
$$T_R \propto \sqrt{\Gamma_\Phi} \propto \sqrt{\lambda M_\Phi^3}$$
:

$$\Omega_{\chi} h^2 \propto m_{\chi} B_{\chi} \sqrt{\lambda M_{\Phi}}$$

Application to SUSY

MD, F. Hajkarim, 1808.05076

Use full (effective) annihilation cross section from Micromegas, supplemented with extended Boltzmann eqs., using $\lambda=1$:

Good Bino-like DM for:

$$m_{\tilde{B}} \simeq 100 \; {\rm GeV} \cdot \left\{ \begin{array}{l} \frac{1.5 \cdot 10^{-4}}{B_{\chi}} \left(\frac{5 \cdot 10^{5} \; {\rm GeV}}{M_{\Phi}} \right)^{1/2}, \; {\rm pure \; nonthermal} \\ \left(\frac{M_{\Phi}}{5 \cdot 10^{6} \; {\rm GeV}} \right)^{3/2} \left(\frac{10^{-13} \; {\rm GeV}^{-2}}{\langle \sigma v \rangle} \right)^{1/3}, \; {\rm thermal} \end{array} \right.$$

First option: $M_{\Phi} \leq 10^6$ GeV or $\langle \sigma v \rangle$ very small;

Second option: $B_{\chi} \leq 10^{-5}, \ M_{\Phi} > 10^{6}$ GeV: Bino equlibrates

at $T \gg T_R$, not at T_R !

- $\langle \sigma v \rangle$ and B_χ can be varied independently, even if $B_\chi \ll 1$

- $\langle \sigma v \rangle$ and B_χ can be varied independently, even if $B_\chi \ll 1$

In this approximation, almost any WIMP can be given the right relic density (Gelmini et al. 2006)

- $\langle \sigma v \rangle$ and B_χ can be varied independently, even if $B_\chi \ll 1$

In this approximation, almost any WIMP can be given the right relic density (Gelmini et al. 2006)

Both assumptions are, strictly speaking, incorrect!

Thermalization

How does an energetic particle, with initial $E\gg T$, thermalize, i.e. turn into $\sim E/T$ particles with energy per particle $\sim T$?

Thermalization

How does an energetic particle, with initial $E\gg T$, thermalize, i.e. turn into $\sim E/T$ particles with energy per particle $\sim T$?

Assume there already is a thermal background, with which the energetic particle can interact!

$2 \rightarrow 2$ scattering

$2 \rightarrow 2$ scattering

After IR regularizations: $\sigma \sim \frac{\alpha^2}{\alpha T^2} \sim \frac{\alpha}{T^2}$ Typical energy loss per scattering $\Delta E \sim \sqrt{\alpha} T$

After IR regularizations: $\sigma \sim \frac{\alpha^2}{\alpha T^2} \sim \frac{\alpha}{T^2}$ Typical energy loss per scattering $\Delta E \sim \sqrt{\alpha} T$

Energy loss rate: $\sigma n_b \Delta E \sim \alpha^{3/2} T^2$

After IR regularizations: $\sigma \sim \frac{\alpha^2}{\alpha T^2} \sim \frac{\alpha}{T^2}$ Typical energy loss per scattering $\Delta E \sim \sqrt{\alpha} T$

Energy loss rate: $\sigma n_b \Delta E \sim \alpha^{3/2} T^2$ Thermalization time

$$t_{\rm therm} \sim \frac{M_{\Phi}}{\alpha^{3/2}T^2}$$

Can have large energy loss, $E_{s'} \sim E_{s''} \sim E_s/2$, without any large virtuality, if emission is colinear!

Can have large energy loss, $E_{s'} \sim E_{s"} \sim E_s/2$, without any large virtuality, if emission is colinear!

Naive guess: $\frac{d\sigma}{dE_{s"}} \sim \frac{\alpha^3}{\alpha T^2} \frac{1}{E_{s"}}$

Can have large energy loss, $E_{s'} \sim E_{s"} \sim E_s/2$, without any large virtuality, if emission is colinear!

Naive guess:
$$\frac{d\sigma}{dE_{s"}} \sim \frac{\alpha^3}{\alpha T^2} \frac{1}{E_{s"}}$$

$$\frac{dE_s}{dt} \sim \alpha^2 T \int_0^{E_s/2} E \, dE \, \frac{1}{E} \sim \alpha^2 E_s T$$

Can have large energy loss, $E_{s'} \sim E_{s"} \sim E_s/2$, without any large virtuality, if emission is colinear!

Naive guess:
$$\frac{d\sigma}{dE_{s"}} \sim \frac{\alpha^3}{\alpha T^2} \frac{1}{E_{s"}}$$

$$\frac{dE_s}{dt} \sim \alpha^2 T \int_0^{E_s/2} E \, dE \, \frac{1}{E} \sim \alpha^2 E_s T$$

$$t_{
m therm} \sim {\ln(M_\Phi/T)\over lpha^2 T}$$
: $2 \to 3$ splittings dominate! (Davidson & Sarkar, 2000)

Landau & Pomeranchuk 1953; Migdal 1956: for QED; Harigaya et al. 2013: in present context

Particle s after scatter still nearly on—shell, for colinear emission

Landau & Pomeranchuk 1953; Migdal 1956: for QED; Harigaya et al. 2013: in present context

- Particle s after scatter still nearly on—shell, for colinear emission
- Lives a "long time"

Landau & Pomeranchuk 1953; Migdal 1956: for QED; Harigaya et al. 2013: in present context

- Particle s after scatter still nearly on—shell, for colinear emission
- Lives a "long time"
- Will undergo multiple scatters: destructive interference

Landau & Pomeranchuk 1953; Migdal 1956: for QED; Harigaya et al. 2013: in present context

- Particle s after scatter still nearly on—shell, for colinear emission
- Lives a "long time"
- Will undergo multiple scatters: destructive interference
- For splitting $s(p) \to s'(k)s"(p-k)$: rate suppressed by $\sqrt{\frac{T}{\min(k,p-k)}}$

$$\implies t_{\rm therm} \sim \frac{\sqrt{M_{\Phi}}}{\alpha^2 T^{3/2}}$$

Still much faster than $2 \rightarrow 2$ scattering!

Thermalization (cont'd)

Gives rise to spectrum of non-thermal particles with

$$T \ll E \le \frac{M_{\Phi}}{2}$$

Thermalization (cont'd)

Gives rise to spectrum of non-thermal particles with

$$T \ll E \le \frac{M_{\Phi}}{2}$$

Can be source of non-thermal relics, through scattering on the thermal background ("hard-soft") or between two non-thermal particles ("hard-hard") R. Allahverdi & MD,

hep-ph/0205246

Boltzmann equation

MD, B. Najjari, 2105.01935

Let $\tilde{n}(p) = dn/dp$:

$$\frac{\partial \tilde{n}}{\partial t} - 3Hp \frac{\partial \tilde{n}}{\partial p} = \mathcal{C}_{\text{inj}} - \mathcal{C}_{\text{dep}}$$

 \mathcal{C}_{inj} : From Φ decay, and feed-down from k > p;

 $\mathcal{C}_{\mathrm{dep}}$: Energy loss by radiation

Boltzmann equation

MD, B. Najjari, 2105.01935

Let $\tilde{n}(p) = dn/dp$:

$$\frac{\partial \tilde{n}}{\partial t} - 3Hp \frac{\partial \tilde{n}}{\partial p} = \mathcal{C}_{\text{inj}} - \mathcal{C}_{\text{dep}}$$

 C_{inj} : From Φ decay, and feed-down from k > p;

 $\mathcal{C}_{\mathrm{dep}}$: Energy loss by radiation

 $t_{\rm therm} \ll 1/H \Longrightarrow {\sf set}\ H = 0;$ quickly reach quasi steady-state, where injection and depletion balance! (Depends on T)

Boltzmann equation (cont'd)

$$2n_{\Phi}\Gamma_{\Phi}\delta(p - \frac{M_{\Phi}}{2}) + \int_{p+\kappa T}^{M_{\Phi}/2} \tilde{n}(k) \frac{d\Gamma^{\text{split}}(k \to p)}{dp} dk$$
$$= \int_{\kappa T}^{p/2} \tilde{n}(p) \frac{d\Gamma^{\text{split}}(p \to k)}{dk} dk.$$

 κ : $\mathcal{O}(1)$ IR regulator, does *not* affect result for $p\gg T,\ M_\phi/2-p\gg T$.

Boltzmann equation (cont'd)

$$2n_{\Phi}\Gamma_{\Phi}\delta(p - \frac{M_{\Phi}}{2}) + \int_{p+\kappa T}^{M_{\Phi}/2} \tilde{n}(k) \frac{d\Gamma^{\text{split}}(k \to p)}{dp} dk$$
$$= \int_{\kappa T}^{p/2} \tilde{n}(p) \frac{d\Gamma^{\text{split}}(p \to k)}{dk} dk.$$

 κ : $\mathcal{O}(1)$ IR regulator, does *not* affect result for $p\gg T,\ M_\phi/2-p\gg T$.

Switch to dimensionless quantities:

$$x = p/T, \ x_M = M_{\Phi}/(2T), \ \tilde{n}(x) = T\tilde{n}(p = xT)$$

Boltzmann equation (cont'd)

$$2n_{\Phi}\Gamma_{\Phi}\delta(p - \frac{M_{\Phi}}{2}) + \int_{p+\kappa T}^{M_{\Phi}/2} \tilde{n}(k) \frac{d\Gamma^{\text{split}}(k \to p)}{dp} dk$$
$$= \int_{\kappa T}^{p/2} \tilde{n}(p) \frac{d\Gamma^{\text{split}}(p \to k)}{dk} dk.$$

 κ : $\mathcal{O}(1)$ IR regulator, does *not* affect result for $p\gg T,\ M_\phi/2-p\gg T$.

Switch to dimensionless quantities:

$$x = p/T, \ x_M = M_{\Phi}/(2T), \ \tilde{n}(x) = T\tilde{n}(p = xT)$$

Normalize to
$$N_M = rac{2n_\Phi\Gamma_\Phi}{\Gamma^{\mathrm{split}}(M_\Phi/2)}$$

 $\bar{n}(x) = \tilde{n}(x)/N_M$ is independent of $n_{\Phi}\Gamma_{\Phi}!$

Results

For single species cascade (e.g. pure glue):

$$\bar{n}(x) \simeq g(x/x_M)/\sqrt{x_M} + \delta(x - x_M)$$

Effect of LPM Suppression

- Depends on energy
 - ⇒ changes the shape of the spectrum

Effect of LPM Suppression

- Depends on energy
 changes the shape of the spectrum
- Reduces the thermalization rate
 increases normalization of spectrum of non-thermal particles!

Impact on Production of Relics

For $M_{\Phi} = 10^{13}$ GeV, $\alpha_{\chi} = 0.01, \ \alpha = 0.05, \ T_R = 10^5$ GeV:

MD, B. Najjari, 2205.07741

Include full spectrum of SM particles in the cascade: Leads to set of coupled Boltzmann eqs. (one per species)

MD, B. Najjari, 2205.07741

- Include full spectrum of SM particles in the cascade: Leads to set of coupled Boltzmann eqs. (one per species)
- Include full p—dependence of LPM suppression, including "Coulomb logs" (using results from heavy ion physics Arnold et al)

MD, B. Najjari, 2205.07741

- Include full spectrum of SM particles in the cascade: Leads to set of coupled Boltzmann eqs. (one per species)
- Include full p—dependence of LPM suppression, including "Coulomb logs" (using results from heavy ion physics Arnold et al)

There will be non-thermal χ production whenever $\langle \sigma v \rangle \neq 0!$

MD, B. Najjari, 2205.07741

- Include full spectrum of SM particles in the cascade: Leads to set of coupled Boltzmann eqs. (one per species)
- Include full p—dependence of LPM suppression, including "Coulomb logs" (using results from heavy ion physics Arnold et al)

There will be non-thermal χ production whenever $\langle \sigma v \rangle \neq 0$! E.g $\Phi \to gg$ only, but your relic couples only to ℓ_R : Need $g \to q \to B \to \ell_R$ splitting cascade!

$x_M=10^4,\,\Phi\to gg~{ m only}$

Period of early matter domination not unlikely in SUGRA, superstring scenarios

- Period of early matter domination not unlikely in SUGRA, superstring scenarios
- Greatly affects predicted DM relic density!

- Period of early matter domination not unlikely in SUGRA, superstring scenarios
- Greatly affects predicted DM relic density!
- Refinements:

- Period of early matter domination not unlikely in SUGRA, superstring scenarios
- Greatly affects predicted DM relic density!
- Refinements:
 - Proper treatment of $g_*(T)$, hence T(t), $s_R(T)$: done.

- Period of early matter domination not unlikely in SUGRA, superstring scenarios
- Greatly affects predicted DM relic density!
- Refinements:
 - Proper treatment of $g_*(T)$, hence T(t), $s_R(T)$: done.
 - Spectrum of non-thermal particles: (done)

- Period of early matter domination not unlikely in SUGRA, superstring scenarios
- Greatly affects predicted DM relic density!
- Refinements:
 - Proper treatment of $g_*(T)$, hence T(t), $s_R(T)$: done.
 - Spectrum of non-thermal particles: (done)
- Still missing: showering of primary decay products (software exists); Higher—order Φ decays: generally exist if $\langle \sigma v \rangle \neq 0$ R. Allahverdi, MD, hep-ph/0203118