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Outline

• GW detections


• Tests of GR


• Fundamental fields


• Peculiar observations


• Stochastic GW Background


• Next generation
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Gravitational wave Data analysis

• I) Direct problem (source modelling):


• II) Inverse problem (data analysis):

“Given a GW source of known properties 
(e.g. BBH of known masses, spins, etc),  
what is the emitted gravitational wave 

signal?”

“Given a stretch of noisy data and the 
stochastic properties of noise, can you 
reconstruct a signal and estimate the 

properties of the source?”

https://www.ligo.caltech.edu/video/ligo20160211v10

with a network matched-filter signal-to-noise ratio (SNR) of
13. At the detection statistic value assigned to GW170104,
the false alarm rate is less than 1 in 70 000 years of coincident
observing time.
The probability of astrophysical origin Pastro for a candi-

date event is found by comparing the candidate’s detection
statistic to a model described by the distributions and rates of
both background and signal events [8,32,33]. The back-
ground distribution is analysis dependent, being derived from
the background samples used to calculate the false alarm rate.
The signal distribution can depend on themass distribution of
the source systems; however, we find that different models
of the binary black hole mass distribution (as described in
Sec. VI) lead to negligible differences in the resulting value of
Pastro. At the detection statistic value of GW170104, the
background rate in bothmatched filter analyses is dwarfed by
the signal rate, yielding Pastro > 1 − ð3 × 10−5Þ.
An independent analysis that is not based on matched

filtering, but instead looks for generic gravitational-wave
bursts [2,34] and selects events where the signal frequency
rises over time [35], also identified GW170104. This
approach allows for signal deviations from the waveform
models used for matched filtering at the cost of a lower
significance for signals that are represented by the consid-
ered templates. This analysis reports a false alarm rate of
∼1 in 20 000 years for GW170104.

IV. SOURCE PROPERTIES

The source parameters are inferred from a coherent
Bayesian analysis of the data from both detectors [36,37].
As a cross-check, we use two independent model-waveform
families. Both are tuned to numerical-relativity simulations
of binary black holes with nonprecessing spins, and intro-
duce precession effects through approximate prescriptions.
One model includes inspiral spin precession using a single
effective spin parameter χp [38–40]; the other includes the
generic two-spin inspiral precession dynamics [41–43]. We
refer to these as the effective-precession and full-precession
models, respectively [44]. The two models yield consistent
results. Table I shows selected source parameters for
GW170104; unless otherwise noted, we quote the median
and symmetric 90% credible interval for inferred quantities.
The final mass (or equivalently the energy radiated), final
spin, and peak luminosity are computed using averages of fits
to numerical-relativity results [45–49]. The parameter uncer-
tainties include statistical and systematic errors from aver-
aging posterior probability distributions over the two
waveform models, as well as calibration uncertainty [37]
(and systematic uncertainty in the fit for peak luminosity).
Statistical uncertainty dominates the overall uncertainty as a
consequence of the moderate SNR.
For binary coalescences, the gravitational-wave frequency

evolution is primarily determined by the component masses.
For highermass binaries, merger and ringdown dominate the

signal, allowing good measurements of the total mass M ¼
m1 þm2 [53–57]. For lower mass binaries, like GW151226
[3], the inspiral is more important, providing precision
measurements of the chirp mass M ¼ ðm1m2Þ3=5=M1=5

[58–61]. The transition between the regimes depends upon
the detectors’ sensitivity, and GW170104 sits between the

TABLE I. Source properties for GW170104: median values
with 90% credible intervals. We quote source-frame masses; to
convert to the detector frame, multiply by (1þ z) [50,51]. The
redshift assumes a flat cosmology with Hubble parameter H0 ¼
67.9 km s−1 Mpc−1 and matter density parameter Ωm ¼ 0.3065
[52]. More source properties are given in Table I of the
Supplemental Material [11].

Primary black hole mass m1 31.2þ8.4
−6.0M⊙

Secondary black hole mass m2 19.4þ5.3
−5.9M⊙

Chirp mass M 21.1þ2.4
−2.7M⊙

Total mass M 50.7þ5.9
−5.0M⊙

Final black hole mass Mf 48.7þ5.7
−4.6M⊙

Radiated energy Erad 2.0þ0.6
−0.7M⊙c2

Peak luminosity lpeak 3.1þ0.7
−1.3 × 1056erg s−1

Effective inspiral spin parameter χeff −0.12þ0.21
−0.30

Final black hole spin af 0.64þ0.09
−0.20

Luminosity distance DL 880þ450
−390 Mpc

Source redshift z 0.18þ0.08
−0.07

FIG. 2. Posterior probability density for the source-framemasses
m1 and m2 (with m1 ≥ m2). The one-dimensional distributions
include the posteriors for the two waveform models, and their
average (black). The dashed lines mark the 90% credible interval
for the average posterior. The two-dimensional plot shows the
contours of the 50% and 90% credible regions plotted over a color-
coded posterior density function. For comparison, we also show
the two-dimensional contours for the previous events [5].
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Chapter 2. Coalescing Compact Binaries

scales (close to 1Gpc), a careful treatment of the di↵erent types of distances
may be required, depending on the calculation one wishes to perform. Also,
at cosmological scales, the waveform undergoes the standard cosmological
redshift, which induces a rescaling of the observed masses relative to the
intrinsic masses.

• Sky location of the source: is defined in terms of the polar # and azimuth '
angles of the source with respect to the detector frame (X̂, Ŷ , Ẑ) (which for
L-shaped interferometers is defined by its X-arm, Y-arm and the vertical).
In practice, the right-ascension ↵ and declination � angles on the celestial
sphere are used instead, which can be directly translated into (',#), given
the location of the detector on the Earth and the Earth’s orientation during
the time of coalescence.

• Orientation of the source: is described by the inclination angle ◆ and polar-
ization angle  . ◆ is defined as the angle between the orbital axis and the
line of sight, while  is the angle between the major axis of the apparent
orbital ellipse and the detector plane.

• Time of coalescence: tc is defined as the time when the gravitational wave
front of peak amplitude arrived at the detector. When a network of detec-
tors is considered, one often uses the time of arrival (TOA) at the center
of the Earth, which can then be translated to the TOAs at each individual
detector.

• Phase at coalescence: 'c is the phase of the GW at peak amplitude.

To conclude, a typical CBC gravitational wave signal is characterized by 15 in-
dependent parameters, a choice of which is the following:

~✓CBC =
⇣
m1, m2, ~S1, ~S2, D,↵, �, ◆, , tc,'c

⌘
(2.2)

Detection rates Apart from the aforementioned attractive physical features
of compact binaries, one also needs to take into account the abundance of such
systems in the universe. If the rate of coalescing compact binaries within our
detectors’ reach were too low, then one would not be guaranteed to make a
detection within a reasonable amount of time. We can safely assume that the
density of compact binaries throughout the universe is roughly uniform. Since
systems of di↵erent masses radiate up to di↵erent frequencies and with di↵erent
amplitudes, the horizon of a given detector can only be defined per type of source
population. Binary neutron star (BNS) systems, in which both components are
neutron stars, are known to be of low mass [352, 243, 403, 244], with a typical
total mass M ⇠ 2.7M�, thus radiating up to 1600 Hz before crossing their
ISCO. A typical BNS system will spend a few minutes within the LIGO/Virgo
sensitivity band. On the other hand, higher-mass NS-BH or BH-BH binaries will
emit stronger gravitational radiation (as we will see in Sec. 2.1, amplitude goes
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Testing GR with Gravitational Waves

Generation Propagation Detection

+ waveform systematics


+ noise model & calibration 

What are we testing?



GW Source modelling

• A post-Newtonian (PN) expansion gives approximate solutions  
to the 2-body problem in GR


• Accurate analytic solution for the best part of the quasicircular Inspiral


• Simple frequency-domain waveform: 
 
 
 

• Calculations in GR give PN phase coefficients ψi (m1, m2, S1, S2), ψi(l) (m1, m2, S1, S2)


• Numerical Relativity simulations complete the model close to/during Merger, where perturbative expansions fail


• BH perturbation theory informed by NR gives model for the Ringdown


• IMR models are used in full LVK analyses

� =
⇣v
c

⌘�5 NX

i=0

h
 i +  (l)

i ln
v

c

i ⇣v
c

⌘i

v = (πMf)1/3h̃(f) = Af�7/6 cos(2�(f ;m1,m2) + �0)



Inspiral - Merger-Ringdown consistency

• Posteriors show consistency with GR predictions


•

16

TABLE III. Results of the residuals analysis (Sec. IV A). For indi-
vidual events we list the SNR of the best-fit waveform (SNRGR), 90%
credible upper limit on the remnant coherent network SNR (SNR90),
fitting factor FF90, and p-values calculate from the background analy-
sis.

Events SNRGR Residual SNR90 FF90 p-value

GW191109 010717 17.99 7.05 0.93 0.55
GW191129 134029 14.10 6.35 0.91 0.60
GW191204 171526 17.31 6.53 0.94 0.63
GW191215 223052 12.39 6.01 0.90 0.91
GW191216 213338 19.06 5.56 0.96 0.92
GW191222 033537 12.11 4.87 0.93 1.00
GW200115 042309 12.06 8.65 0.82 0.16
GW200129 065458 26.79 9.67 0.94 0.25
GW200202 154313 12.08 7.49 0.85 0.35
GW200208 130117 11.35 6.26 0.88 0.97
GW200219 094415 10.72 10.23 0.74 0.10
GW200224 222234 19.63 7.89 0.93 0.52
GW200225 060421 14.15 8.25 0.86 0.05
GW200311 115853 16.99 7.11 0.92 0.93
GW200316 215756 11.63 7.17 0.85 0.51

signal and the waveform model IMRPhenomXPHM. The low-
and high-frequency regimes roughly correspond to the inspiral
and postinspiral, respectively, of the dominant mode of the
waveform. To make sure that the two regimes of the signal
have enough information, we calculate the SNR of the inspiral
and the postinspiral parts of the waveform for each event using
their maximum a posteriori parameter values obtained from
the full IMR signal.

We analyze only those signals which have SNRs greater
than 6 in both the inspiral and the postinspiral parts. This
constraint was also used in previous studies [10, 11]. We also
impose an extra mass constraint (1 + z)M < 100 M� as in our
previous analysis of GWTC-2 events [11] to ensure enough
inspiral signal for heavier BBHs. The SNRs for the inspiral
and the postinspiral regimes of the events analyzed are given
in Table IV.

We independently estimate the posterior distributions of the
mass Mf and the dimensionless spin �f of the remnant BH from
both the inspiral and the postinspiral parts of the signal. To
constrain possible deviations from GR, two fractional deviation
parameters �Mf/M̄f and ��f/�̄f are defined, where

�Mf

M̄f
= 2

Minsp
f � Mpostinsp

f

Minsp
f + Mpostinsp

f

,
��f

�̄f
= 2
�insp

f � �postinsp
f

�insp
f + �postinsp

f

, (3)

and M̄f and �̄f denote the mean values of final mass and final
spin obtained from analyzing the inspiral and postinspiral parts
of the signal, respectively. Here the superscripts denote the
inspiral (insp) and the postinspiral (postinsp) portions of the
signal. The 2D posterior distribution of these fractional de-
viation parameters should peak around (0, 0) when the test is
applied to a signal from a quasi-circular BBH coalescence in
GR, given that we use a waveform model for such signals to
analyze the data.
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FIG. 3. Combined results of the IMR consistency test for BBH events
which satisfy the selection criteria (see Table IV and Appendix B).
The combined bounds are obtained assuming the same deviation
for all events. The main panel shows the 90% credible regions of
the 2D posteriors on (�Mf/M̄f ,��f/�̄f ) assuming a uniform prior,
with (0, 0) being the expected value for GR. The side panels show
the marginalized posterior on �Mf/M̄f and ��f/�̄f . The gray distri-
butions correspond to posteriors obtained by combining individual
results. The other colored traces correspond to the O3b events given
in Table IV where the color encodes the median redshifted total mass.

TABLE IV. Results from the IMR consistency test (Sec. IV B). f IMR
c

denotes the cuto↵ frequency between the inspiral and postinspiral
regimes; ⇢IMR, ⇢insp, and ⇢postinsp are the SNR in the full signal, the
inspiral part, and the postinspiral part respectively; and the GR quan-
tile Q2D

GR denotes the fraction of the reweighted posterior enclosed
by the isoprobability contour that passes through the GR value, with
smaller values indicating better consistency with GR. The results are
given only for O3b events which satisfy the selection criteria. See
Appendix B for the updated results on GWTC-2 events.

Event f IMR
c [Hz] ⇢IMR ⇢insp ⇢postinsp Q2D

GR [%]

GW200129 065458 136 25.7 20.1 16.0 1.5
GW200208 130117 98 9.9 7.2 6.8 10.5
GW200224 222234 107 19.4 14.3 13.1 20.7
GW200225 060421 213 12.9 11.1 6.6 1.3
GW200311 115853 122 17.5 13.5 11.0 15.2

The parameter estimation runs employed the IMRPhenomX-
PHM waveform with uniform priors on the redshifted com-
ponent masses and spins. These priors translate into nontriv-
ial priors on �Mf/M̄f and ��f/�̄f . Thus, as in the previous
analysis [11], we reweight the posteriors to obtain uniform
priors on the deviation parameters. We provide our results in
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FIG. 16. Same as Fig. 3 but for GWTC-2 events (see Table XV). The
gray distribution corresponds to the joint posterior of GWTC-2 events.
O3a (O1 and O2) events are plotted with solid (dot-dashed) traces.

TABLE XV. Same as Table IV but here we include the updated
results of GWTC-2 events which satisfy the inspiral-merger–ringdown
consistency test selection criteria. Only the Q2D

GR values are updated
compared to results given in Table IV of our previous analysis [11].

Event f IMR
c [Hz] ⇢IMR ⇢insp ⇢postinsp Q2D

GR [%]

GW150914 132 25.3 19.4 16.1 54.3
GW170104 143 13.7 10.9 8.5 28.9
GW170809 136 12.7 10.6 7.1 24.7
GW170814 161 16.8 15.3 7.2 9.9
GW170818 128 12.0 9.3 7.2 24.5
GW170823 102 11.9 7.9 8.5 95.1

GW190408 181802 164 15.0 13.6 6.4 11.5
GW190503 185404 99 13.7 11.5 7.5 94.3
GW190513 205428 125 13.3 11.2 7.2 34.6
GW190521 074359 105 25.4 23.4 9.9 0.4
GW190630 185205 135 16.3 14.0 8.2 58.5
GW190814 207 24.8 23.9 6.9 99.9
GW190828 063405 132 16.2 13.8 8.5 21.0

as a cautionary measure, we drop GW191109 010717 from
combined statements in the context of ringdown and modified
dispersion tests.

Appendix B: Revisiting inspiral-merger-ringdown consistency
test results of GWTC-2 events

In this section, we revisit the IMR consistency test results
of GWTC-2 events which are summarized in Table IV of our

previous analysis [11]. Here we describe the main reasons for
this reanalysis.

First, for some events the parameter estimation analyses
of the inspiral and the postinspiral parts used di↵erent prior
bounds. This is not necessarily problematic but it can lead
to the 2D distribution of the prior on the fractional deviation
parameters (�Mf/M̄f ,��f/�̄f ) peaking away from (0, 0). Such
priors are undesirable, since we do not want to prefer a GR
deviation a priori. The prior distributions on the deviation pa-
rameters for GW170823 and GW190503 185404 peaked sig-
nificantly away from (0, 0), so we reanalyzed these events using
the same priors for masses and spins in the inspiral and postin-
spiral analyses. The GR quantile value for GW190503 185404
(94.3%) is significantly higher than its previous value (53.2%).
This can be attributed to the fact that the new prior for this event
peaks at zero whereas the old prior peaked close to the peak
of the posterior (well away from zero). The new and old pos-
teriors peak at almost the same place, causing the reweighted
posterior to shift further away from (0, 0).

Second, in our GWTC-1 analysis [10], the prior distributions
on the fractional mass and spin parameters of O1 and O2
events were computed only using the prior range on component
masses, and not accounting for the additional constraints on the
mass priors. This was discontinued for O3a events in GWTC-
2 [11], where prior samples were generated considering the
full set of priors. However, the GWTC-1 priors were used for
O1/O2 events. To maintain uniformity, we recomputed the
priors for O1/O2 events which were then used to reweight the
posteriors. The old prior for the event GW170814 favored
fractional mass deviation parameters further away from zero
compared to the new prior which pushed the portion of the
posterior with less probability closer to the origin. This is
likely the reason why the GR quantile value of GW170814 in
our previous analysis [11] is significantly higher (22.9%) than
the current value (9.9%).

Third, we change the limits of the fractional deviation pa-
rameters, �Mf/M̄f and ��f/�̄f . As can be seen from Fig. 3
of the GWTC-2 analysis [11], the 90% credible regions of
the posteriors on (�Mf/M̄f ,��f/�̄f ) for a few of the GWTC-2
events such as GW190814 were not closed within the range of
the deviation parameters for which they were calculated. The
ranges of deviation parameters were earlier set to [�1.5, 1.5]
for �Mf/M̄f and [�1, 1] for ��f/�̄f . We now set the ranges of
both deviation parameters to [-2,2], which encloses all the 90%
credible regions we find. This change in the ranges of devia-
tion parameters has at most a small e↵ect on the GR quantiles,
with the largest absolute di↵erence of 0.5 percentage points for
GW190828 063405.

The new results obtained with these three changes are given
in Table XV and the posteriors are shown in Fig. 16. The
three events whose contours do not enclose the origin are
GW170823 (orange dot-dashed), GW190503 185404 (orange
solid), and GW190814 (blue solid). Additionally, GW170814,
GW170818, and GW190828 063405 show some small multi-
modal structures. The possible reasons for the high Q2D

GR values
for GW170823 and GW190814 have already been discussed
in our previous study [11]. Specifically, GW170823 is the
event with the lowest SNR among the events in Table XV and

LVC PRD 103, 122002 (2021)  
LVK [arXiv:2112.06861]



Parameterized tests of GR

• Phase evolution of the binary is dictated by GR


• Violation of GR would modify inspiral dynamics


• Allow for parameterized violations of GR in  
post-Newtonian phase coefficients and  
measure them: 

'i ! 'i(1 + �'̂i)

Arun+ [PRD 74, 024006 (2006)]
Yunes+ [PRD 80, 122003 (2009)]
Li, MA+ [PRD 85, 082003 (2012)]
MA+ [PRD 89, 082001 (2014)]
Meidam, MA+ [PRD 97, 044033 (2018)
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FIG. 6. 90% upper bounds on the magnitude of the parametrized test coe�cients discussed in Sec. V A. Bounds marked by red diamonds
were obtained with a pipeline based on the model SEOBNRv4 ROM, combining all eligible GWTC-3 events, under the assumption that
deviations take the same value for all the events. Filled (unfilled) gray triangles mark analogous results obtained with GWTC-2 data [11]
using SEOBNRv4 ROM (IMRPhenomPv2). We also show upper bounds obtained through the observation of the binary neutron star signal
GW170817, using the NRTidal extensions of the two aforementioned models [194] as filled (unfilled) blue circles. Horizontal stripes indicate
constraints obtained with individual events, with cold (warm) colors representing low (high) total mass events. The left and right panel show
constraints on PN deformation coe�cients, from �1PN to 3.5PN order. The best improvement with respect to the GWTC-2 bounds is achieved
for the �1PN term, thanks ot the inclusion of the NSBH candidate GW200115 042309.
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FIG. 7. Combined GWTC-3 results for the parametrized deviation coe�cients of Sec. V A. Filled distributions represent the results obtained
hierarchically combining all events. This method allows the deviation coe�cients to assume di↵erent values for di↵erent events. Unfilled black
curves represent the distributions obtained in Fig. 6, by assuming the same value of the deviation parameters across all events. Horizontal ticks
and dashed white lines mark the 90% credible intervals and median values obtained with the hierarchical analysis.

Along with this leading-order e↵ect, we have included higher-
order PN terms that appear through the inspiral phase [168,
207] of gravitational waveform.

While Kerr BHs have  = 1 [204–206], compact stars have
a value of  that di↵ers from the BH value, determined by the
star’s mass and internal composition. Numerical simulations
of spinning neutron stars show that the value of  can vary be-
tween ⇠2 and ⇠14 for these systems [208–210]. Moreover, for
currently available models of spinning boson stars,  can have
values ⇠10–150 [211–214]. More exotic stars like gravastars
can even take negative values for  [215]. Hence, an indepen-
dent measurement of  from gravitational-wave observations

can be used to distinguish black holes from other exotic ob-
jects [216–219]. However, to fully understand the nature of
compact objects, one may also include e↵ects such as the tidal
deformations that arise due to the external gravitational field
[220–223] and tidal heating [224–229] along with the spin-
induced deformations, an extensive study of these e↵ects is not
in the scope of this paper.

For a spinning compact binary system, the coe�cients i,
i = 1, 2 represent the primary and secondary components’
spin-induced quadrupole moment parameters. The correlation
of i with the masses and spin parameters of the binary are
evident from Eq. (6), which makes the simultaneous estima-
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FIG. 7. Combined GWTC-3 results for the parametrized deviation coe�cients of Sec. V A. Filled distributions represent the results obtained
hierarchically combining all events. This method allows the deviation coe�cients to assume di↵erent values for di↵erent events. Unfilled black
curves represent the distributions obtained in Fig. 6, by assuming the same value of the deviation parameters across all events. Horizontal ticks
and dashed white lines mark the 90% credible intervals and median values obtained with the hierarchical analysis.

Along with this leading-order e↵ect, we have included higher-
order PN terms that appear through the inspiral phase [168,
207] of gravitational waveform.

While Kerr BHs have  = 1 [204–206], compact stars have
a value of  that di↵ers from the BH value, determined by the
star’s mass and internal composition. Numerical simulations
of spinning neutron stars show that the value of  can vary be-
tween ⇠2 and ⇠14 for these systems [208–210]. Moreover, for
currently available models of spinning boson stars,  can have
values ⇠10–150 [211–214]. More exotic stars like gravastars
can even take negative values for  [215]. Hence, an indepen-
dent measurement of  from gravitational-wave observations

can be used to distinguish black holes from other exotic ob-
jects [216–219]. However, to fully understand the nature of
compact objects, one may also include e↵ects such as the tidal
deformations that arise due to the external gravitational field
[220–223] and tidal heating [224–229] along with the spin-
induced deformations, an extensive study of these e↵ects is not
in the scope of this paper.

For a spinning compact binary system, the coe�cients i,
i = 1, 2 represent the primary and secondary components’
spin-induced quadrupole moment parameters. The correlation
of i with the masses and spin parameters of the binary are
evident from Eq. (6), which makes the simultaneous estima-
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Black Hole Quadrupole
• All properties of a Kerr BH are uniquely determined by knowing 

its mass and spin


• Simple formula for mass and current multipoles


• Spin-induced mass quadrupole: 
       ,     


• Introduces modification in the GW phase that enters @2PN


• Non-Kerr compact objects will in general have , e.g. 
neutron-/boson-/grava- stars, etc.


• We measure a combination of κ to be consistent with the Kerr 
BH value

Q = − κχ2M3 κBH = 1

κ ≠ 1
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FIG. 10. Combined measurement on the spin-induced quadrupole
moment parameter �s from the set of all of events in Fig. 9. The
red curve (restricted) represents the posterior obtained assuming �s
takes the same value for all events. The blue histogram (generic) was
obtained by hierarchically combining events without that assumption,
as in Eq. (1). Dotted lines bound symmetric 90%-credible intervals,
�s = �23.2+52.2

�62.4 (�s = �15.2+15.9
�19.0) for the generic (restricted) case.

The Kerr BBH value (�s = 0) is marked by a dashed line.

include e↵ects such as the tidal deformations that arise due
to the object’s binary companion [179–181] and tidal heating
[182–184] along with the spin-induced deformations. The
present test does not consider these e↵ects but focuses only on
spin-induced deformations.

We perform this analysis on the compact binaries observed
in O1, O2, and O3a. Though the spin-induced e↵ects for non-
BH compact objects are not modeled beyond the inspiral phase,
as a null test of BBH nature, the analysis was performed by in-
cluding the full inspiral, merger, and ringdown phases, using a
waveform model built on IMRPhenomPv2. In this model, only
the inspiral phase of the waveform (defined as in Sec. V A)
is modified in terms of �1 and �2. For GW190412, which
showed evidence of HMs [111], we employed a waveform
model built on IMRPhenomPv3HM with the same modifica-
tions in terms of �1 and �2 as for the model based on IMR-
PhenomPv2. We apply this test only to the events in Table I
that have SNR of 6 or more in the inspiral phase under the GR
BBH assumption (same threshold as in Table V); we apply the
same criteria to the GWTC-1 events. In this paper, we do not
apply this test on GW190814 as the outcome of the test on
GW190814 has already been discussed in [66] and we have
not gained any new insights since then.

We employ a uniform prior on �s in the range [�500, 500].
The prior limits at ±500 were chosen so they safely encompass
the known models of BH mimickers, including gravastars and
other exotic objects that may have �s < 0 [163]. As elsewhere
in this paper, the �s constraints apply exclusively to the set of
events analyzed, and do not preclude the existence of objects
with |�s| high enough to be missed by our search pipelines
[81].

Figure 9 shows the measurement of �s from individual
events. We find that �s is poorly constrained for the majority
of events, which can be attributed to the low spin of these
events [16]. From Eq. (5), it is clear that the quadrupole mo-

ment vanishes when the spins are zero, irrespective of the value
of . Therefore, any meaningful upper limit on  would require
the lower limit on at least one of the spin magnitudes to ex-
clude zero. If this condition is not met, the posteriors of �s
would rail against the priors in this analysis. The dependence
of the upper limit of  on the spin magnitudes was studied
in [171]. In Fig. 9, we highlight the events with the most
concentrated �s posteriors, with a sample standard deviation
��s < 150: GW151226, GW190412, GW190720 000836,
and GW190728 064510. We do not quote symmetric credi-
ble intervals from individual events, since all of the posteriors
present tails reaching the edge of the prior on at least one side.

We may narrow down the scope of the test by focusing on
the �s > 0 region of our prior, which is well constrained by a
subset of the events. Doing so is well motivated in the context
of neutron stars [157, 164, 165] and specific BH mimickers
such as boson stars [167] for which s > 1. Restricting to
positive �s, the two events providing the tightest upper limits
are GW151226 and GW190412, with 90% credible bounds of
�s < 11.33 and �s < 110.89 respectively.

Figure 10 shows the distributions on �s obtained by consid-
ering all the events collectively. Though most of the individual
signals yielded poor constraints, the set is not completely unin-
formative: as can be seen from Fig. 9, most of the posteriors
have markedly stronger support in regions close to zero, even
though they extend to the edge of the prior. This is reflected
by the combined results of Fig. 10, which disfavor large val-
ues of |�s|. The blue histogram represents the population-
marginalized posterior obtained without assuming a unique
value of �s across events, using the hierarchical approach
of Sec. III B. With 90% credibility, this analysis determines
�s = �23.2+52.2

�62.4, which indicates that the events considered
are consistent with a population dominated by Kerr BBHs
(within the given uncertainty). The distribution hyperparame-
ters are also consistent with the null-hypothesis (µ = � = 0),
with µ = �24.6+30.7

�35.3 and � < 52.7. Both µ and the population-
marginalized posterior of Fig. 10 inherit the asymmetry of the
individual events, which tend to be skewed towards �s < 0
(cf. inset in Fig. 9); this suggests that negative values of �s are
harder to constrain. Conditional on positive values, the generic
population results constrain �s < 59.97.

The red curve in Fig. 10 represents the joint-likelihood pos-
terior obtained by restricting s to take the same value for all
the events. Under that assumption, we find �s = �15.2+15.9

�19.0
and, conditional on positive values, �s < 9.01. The hypothesis
that all of the events considered are Kerr BBHs (�s = 0) is
preferred over an alternative proposal that all of them are not
with a shared �s , 0, with a log10 Bayes factor of 11.7, or
log10 Bayes factor of 11.4 if only allowing �s � 0.

VI. TESTS OF GRAVITATIONAL WAVE PROPAGATION

In GR, GWs far from their source propagate along null
geodesics, with energy E and momentum p related by the
dispersion relation E2 = p2c2, where c is the speed of light.
Extensions to GR may violate this in several ways, e.g., by
endowing the graviton with a mass. To probe generalized
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FIG. 9. The posterior probability distribution on the spin-induced
quadrupole moment parameter, �s from the events listed in the SIM
column of Table II, passing the selection criteria described in Sec-
tion V B. The black dashed vertical line indicates the BBH value
(�s = 0). The colored vertical lines show the 90% symmetric bounds
on �s calculated from the individual events assuming a uniform prior
ranging between [�500, 500] on �s.

FIG. 10. Joint posterior probability distribution on the spin-induced
quadrupole moment parameter �s from the GWTC-3 events. Bounds
obtained by multiplying the likelihoods (restricted) and by hierarchi-
cally combining events (generic) are shown. The analysis is performed
assuming uniform prior ranging between [-500, 500] on �s.

the e↵ective inpsiral spin parameter of the binary system [231].
As most of the events we observe have small but positive �e↵ ,
the combined posterior and the 90% bounds are expected to
show this feature.

We also consider a case where the analysis is restricted to
only positive �s as is well motivated in the case of neutron
stars [208, 209, 218] and boson stars [211], in this case the
event provides the tightest upper limits is GW191216 213338,
with 90% credible bounds of �s < 10.65.

We show the combined posterior distribution on �s from
all the GW events passing the selection criteria in Fig. 10.
The red curve draws the posterior distribution obtained by
multiplying the likelihoods of each individual signal. In
contrast, the population-marginalized posterior from the hi-
erarchical analysis is shown in the blue curve. Dotted lines
show the 90% symmetric credible intervals, and a dashed line
marks the BBH value (�s = 0). We estimate the combined
symmetric 90% bound on �s considering GWTC-3 events
to be �s = �16.0+13.6

�16.7 and, conditional on positive values,

�s < 6.66 from the joint likelihood analysis. With 90% credi-
bility, we find �s = �26.3+45.8

�52.9 from the hierarchical analysis.
The generic population results constrain �s < 51.85 when
we restrict to positive prior region. Also, we find the hyperpa-
rameters to be consistent with the Kerr BBH hypothesis with
90% credible bounds with µ = �26.8+26.3

�34.1 and � < 41.8. Com-
pared to the previous bounds reported in [11], µ = �24.6+30.7

�35.3
and � < 52.7, the � estimate improves, meaning tighter con-
straints on �s, while the peak of the distribution is shifted
more towards the negative prior region. The shift in the peak
or µ omits the BBH value with the 90% credibility and can
be associated to the poor �s constraints on the negative side
of the prior region from the individual events, emerging from
waveform degeneracies at �s < 0 with a certain region of
the spin parameter space. A future study employing wave-
form models including higher harmonics may help break those
degeneracies and hence to improve our overall parameter es-
timation [231, 233]. Moreover, a more generic approach has
been recently proposed [233] that uses a hierarchical mixture-
likelihood formalism to estimate the fraction of events in the
population that deviated from BBH nature. With the increased
number of detections in the future, it would be more natural to
employ generic approaches that considers the population to be
comprised of BBH and non-BBH subpopulations.

The combined log Bayes factor of log10 BKerr
�s , 0 = 0.9 is

obtained supporting the BBH hypothesis over the hypothesis
of all events being non-BBH. This changes to log Bayes factor
of log10 BKerr

�s > 0 = 2.2 if we only allow �s � 0. The findings
here are all consistent with the results reported in GWTC-2 [11]
although the combined constraints are not directly compatible
due to the di↵erent selection of events.

VI. TESTS OF GRAVITATIONAL WAVE PROPAGATION

GR predicts that GWs propagate nondispersively and hence
they are described by the dispersion relation E2 = p2c2, where
E and p are the energy and momentum of the wave. Detection
of dispersion of GWs can be seen as a signature of modifica-
tions to GR. For example, some of the Lorentz violating theo-
ries of gravity predict a modified dispersion relation [45, 234–
237]. We use a parameterized model [41, 50] for dispersion of
GWs that helps search for the presence of dispersion using the
data without referring to the details of the modified theory.

Our parameterized dispersion relation reads [41]

E2 = p2c2 + A↵p↵c↵ , (9)

where A↵ and ↵ are two phenomenological parameters charac-
terizing dispersion. The modified dispersion relation causes
frequency modes of GWs to propagate at di↵erent speeds,
changing the overall phase morphology of the GW that are
observed with respect to the GR predictions. This can be incor-
porated in the waveform as frequency-dependent corrections
to its phase evolution [10, 41]. Here we assume that the wave-
form obtained in the local wave zone [238] of the system is
consistent with GR [10].

For di↵erent choices of ↵, the modified dispersion leads to
a deviation in the GR phasing formula. For example, ↵ = 0
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FIG. 14. Left panel: The 90% credible levels of the posterior probability distribution of the fractional deviations in the frequency and damping
time of the (2,±2) QNM, (� f220, �⌧220) and their corresponding one-dimensional marginalized posterior distributions, for events from O1, O2
and O3 passing a SNR threshold of 8 in both the pre- and post-merger signal. Posteriors for GW150914 and GW200129 065458 are separately
shown. The joint constraints on (� f220, �⌧220) obtained multiplying the posteriors (given a flat prior) from individual events are given by the
filled grey contours, while the hierarchical method of combination yields the black dot dashed curves in the 1D marginalized posteriors. Right
panel: 90% credible interval on the one-dimensional marginalised posteriors on ��i = (� f220, �⌧220), colored by the median redshifted total mass
(1 + z)M, inferred assuming GR. Filled gray (unfilled black) downward triangles mark the constraints obtained when all the events are combined
by multiplying posteriors (hierarchically). For comparison, we mark the previously published bounds from [11] using filled/unfilled upward
triangles. The bounds from GW200129 065458 (square) and GW150914 (diamond) are indicated by the separate markers. See Sec. VIII A 2 for
details.

secondary of two modes is consistent with the GR prediction
� f̂220 = 0, while for GW191109 010717, none of the modes
are. Follow-up investigations with synthetic signals in seg-
ments of data immediately adjacent to the event suggests the
possibility of noise systematics not accounted for. The same
study rules out, within our statistical uncertainties, any system-
atic bias due to missing physics in the SEOBNRv4HM waveform
model.

We also note that the joint posterior distribution on �⌧̂220
in the left plot of Fig. 14 does not include the GR prediction
at the 90% credible level. Although insu�cient to claim a
violation of GR, this apparent deviation definitely warrants
further investigation. The trend of overestimating the com-
bined damping time is consistent with what is observed on
an event-by-event analysis, where the posterior on �⌧̂220, al-
though consistent with 0 is biased towards positive values.
Hence a combination of information across multiple events
is expected to reduce statistical uncertainties and make this
bias more prominent. One possible reason might be a prior
on (� f̂220, �⌧̂220) which is asymmetric around 0 with greater
support for positive values. This is because, since ( f220, ⌧220)

are strictly positive quantities, the priors on (� f̂220, �⌧̂220) are
strictly greater than �1. However, the upper prior boundary
is free to be as large as is required for the posterior to not rail
against it and it usually greater than 1. For events with moder-
ately high SNRs analysed with this method, the e↵ect of the
prior on the final posterior can be non-negligible. We also note
that while the posteriors on the fractional deviation show more
support towards positive values, the frequency and damping
time reconstructed using Eqs. (16) and (17) are consistent with
those predicted using estimates of initial masses and spins from
[82] and NR fits [159]. This gives us more confidence in the
measured QNMs, while also pointing to the possibility that
correlations among the remnant parameters may be responsible
for the apparent deviation. Further, as has been argued in [11],
imperfect noise modelling can also lead to overestimation of
damping time [121]. Finally, we can not rule out the statistical
uncertainties of working with a sample of just 12 events.

Ringdown analysis

• “Is there clear evidence of a quasi-normal ringdown?”


• Final BH radiates damped sinusoids  
 

• Estimate f & τ of dominant (l=2 m=2) mode


•
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TABLE VIII. The table summarizes the choices of basis used in the polarization test. +, ⇥, b, l, x, and y represent the plus mode, cross mode,
scalar breathing mode, scalar longitudinal mode, vector x mode, and vector y mode respectively. The first column shows the polarization
hypothesis being tested, the third column reports the number of basis modes, and the last column reports the number of free parameters that are
marginalized over in the computation of the evidence.

Hypothesis Description # of basis modes Mode(s) Basis mode(s) Free parameters

HT,1 Pure tensorial 1 +, ⇥ + 5
HV,1 Pure vectorial 1 x, y x 5
HS,1 Pure scalar 1 b b 2
HTS,1 Tensor–scalar 1 +, ⇥, b, l + 9
HTV,1 Tensor–vector 1 +, ⇥, x, y + 9
HVS,1 Vector–scalar 1 x, y, b, l x 9
HTVS,1 Tensor–vector–scalar 1 +, ⇥, b, l, x, y + 13
HT,2 Pure tensorial 2 +, ⇥ +, ⇥ 2
HV,2 Pure vectorial 2 x, y x, y 2
HTS,2 Tensor–scalar 2 +, ⇥, b, l +, b 11
HTV,2 Tensor–vector 2 +, ⇥, x, y +, x 11
HVS,2 Vector–scalar 2 x, y, b, l x, b 11
HTVS,2 Tensor–vector–scalar 2 +, ⇥, b, l, x, y +, b 19

TABLE IX. Combined log10 Bayes factors B for various polarization hypotheses against the tensor hypothesis, using both 2-detector and
3-detector events. Polarization states have been projected onto one basis-mode as detailed in Sec. VII. Positive (negative) values indicate that the
hypothesis indicated in the superscript is favored (disfavored) with respect to the tensorial hypothesis. Error bars refer to 90% credible intervals.

Events log10 BS
T log10 BV

T log10 BTS
T log10 BTV

T log10 BVS
T log10 BTVS

T

O1 �0.04 ± 0.07 0.09 ± 0.07 0.04 ± 0.07 0.09 ± 0.07 0.09 ± 0.07 0.07 ± 0.07
O2 �0.42 ± 0.12 0.04 ± 0.12 0.08 ± 0.12 0.22 ± 0.12 0.09 ± 0.12 0.35 ± 0.12
O3a �1.85 ± 0.21 �1.04 ± 0.20 0.25 ± 0.20 0.07 ± 0.20 �1.05 ± 0.20 �0.18 ± 0.20
O3b �1.93 ± 0.17 �0.79 ± 0.17 �0.17 ± 0.17 �0.07 ± 0.17 �0.86 ± 0.17 �0.32 ± 0.17

Combined �4.24 ± 0.30 �1.70 ± 0.30 0.20 ± 0.30 0.31 ± 0.30 �1.73 ± 0.30 �0.08 ± 0.30

TABLE X. Combined log10 Bayes factor B for various polarization hypotheses against the tensor hypothesis, for 3-detector events. Polarization
states been projected onto two basis-modes as explained in Sec. VII. Positive (negative) values indicate that the hypothesis indicated in the
superscript is favored (disfavored) with respect to the tensorial hypothesis. Error bars refer to 90% credible intervals.

Events log10 BV
T log10 BTS

T log10 BTV
T log10 BVS

T log10 BTVS
T

O1 � � � � �
O2 0.05 ± 0.03 0.01 ± 0.03 �0.02 ± 0.03 0.06 ± 0.03 0.01 ± 0.03
O3a �0.37 ± 0.12 �0.77 ± 0.12 �0.72 ± 0.12 �0.73 ± 0.12 �0.91 ± 0.12
O3b �0.09 ± 0.10 �0.22 ± 0.10 �0.35 ± 0.10 �0.38 ± 0.10 �0.38 ± 0.10

Combined �0.41 ± 0.16 �0.98 ± 0.16 �1.09 ± 0.16 �1.05 ± 0.16 �1.29 ± 0.16

dices (`,m) represent the angular decomposition of the modes,
whereas the index n denotes various tones of the spectrum start-

ing with n = 0. A schematic decomposition of the post-merger
signal reads [11],

h+(t) � ih⇥(t) =
+1X

`=2

X̀

m=�`

+1X

n=0

A`mn exp
"
� t � t0

(1 + z)⌧`mn

#
exp
"
�2⇡i f`mn(t � t0)

1 + z

#
�2S `mn(✓, �,�f ), (13)

whereA`mn denotes the amplitude of the mode, t0 is the start
time of the ringdown model, and z is the redshift of the source.
The frequency and the damping time of a mode characterized
by the three indices are denoted by ⌧`mn and f`mn, respectively,
while �f is the final spin. The polar and azimuthal angles (✓, �),

measured relative to the final spin axis, describe the direction
to the observer. These coordinates assume the spin of the black
hole to be along the ✓ = 0 direction. The contribution of
counter-rotating perturbations is ignored, since it’s expected to
be negligible in the post-merger regime of the signals under
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Is there anything beyond ringdown?

?



Echoes from Exotic Compact Objects

 Are we still sure these are BHs?


 Alternative: objects that


• are compact enough


• have the same light-ring structure as a BH but no 
horizon


 Candidates: Wormholes, thin-shell Gravastars, 
other?


 GW signature: echoes at fixed time intervals Δt

3

0.00

0.05

0.10

0.15

V(
r *) M

2

0.00

0.05

0.10

0.15

-50 -40 -30 -20 -10 0 10 20 30 40 50
r*/M

0.00

0.05

0.10

0.15

wormhole

black hole

outgoing at infinity

trapped outgoing at infinityoutgoing at infinity

ingoing at horizon

star-like ECO

trapped
outgoing at infinity

regular at the center

centrifugal barrier

FIG. 1. Qualitative features of the e↵ective potential felt by
perturbations of a Schwarzschild BH compared to the case
of wormholes [12] and of star-like ECOs with a regular cen-
ter [22]. The precise location of the center of the star is model-
dependent and was chosen for visual clarity. The maximum
and minimum of the potential corresponds approximately to
the location of the unstable and stable PS, and the correspon-
dence is exact in the eikonal limit of large angular number l.
In the wormhole case, modes can be trapped between the
PSs in the two “universes”. In the star-like case, modes are
trapped between the PS and the centrifugal barrier near the
center of the star [28–30]. In all cases the potential is of fi-
nite height, and the modes leak away, with higher-frequency
modes leaking on shorter timescales.

where rmin is the location of the minimum of the potential
shown in Fig. 1. If we consider a microscopic correction
at the horizon scale (` ⌧ M), then the main contribution
to the time delay comes near the radius of the star and
therefore,

�t ⇠ �nM log

✓
`

M

◆
, ` ⌧ M , (6)

where n is a factor of order unity that takes into account
the structure of the objects. For wormholes, n = 8 to
account for the fact that the signal is reflected by the
two maxima in Fig. 1, whereas for our thin-shell gravas-
tar model and the empty-shell model it is easy to check
that n = 6 and n = 4, respectively. The results shown in
Fig. 2 for ` = 10�6M are perfectly consistent with this
picture, with the wormhole case displaying longer echo
delays than the other cases with the same compactness.
Our results show that the dependence on ` is indeed log-
arithmically for all the ECOs we studied.

As argued in Ref. [12], the logarithmic dependence dis-
played in Eq. (6) implies that even Planckian corrections
(` ⇡ LP = 2 ⇥ 10�33 cm) appear relatively soon after
the main burst of radiation, so they might leave an ob-

servable imprint in the GW signal at late times. From
Eq. (6), a typical time delay reads

�t ⇠ 54(n/4)M30


1� 0.01 log

✓
`/LP

M30

◆�
ms , (7)

where M30 := M/(30M�).
The picture of GW signal scattered o↵ the potential

barrier is also supported by two further features shown
in Fig. 2, namely the modulation and the distortion of
the echo signal. In general, modulation is due to the
slow leaking of the echo modes, which contain less en-
ergy than the initial one. In the wormhole case, this
e↵ect is stronger due to the fact that modes can also leak
to the “other universe” through tunneling at the second
peak of the potential. While the amplitude of the echoes
is model-dependent, for a given model it depends only
mildly on `. Distortion is also due to the potential bar-
rier, which acts as a low-pass filter and reflects only the
low-frequency, quasibound echo modes. This implies that
each echo is a low-frequency filtered version of the previ-
ous one and the original shape of the mode gets quickly
washed out after a few echoes1.

B. Waves generated by infalling or scattered
particles

The features above are observed in a simple scattering
process, but are also evident in the GW signal produced
by head-on collisions or close encounters, in the test-
particle limit. The latter di↵er from the radial plunge
studied in Ref. [12] in that their pericenter rmin > 3M ,
i.e. the particle does not cross the radius of the PS
(in fact, scattered particles in the Schwarzschild geom-
etry can never get inside the r = 4M surface). In
order to compute the GW signal, we use the Regge-
Wheeler-Zerilli decomposition reviewed in Appendix B
(cf. Ref. [31] for details).
We have studied the GW emitted during collisions or

scatters between point particles and ECOs; again the
general qualitative features are the same as those dis-
cussed in Section IIA and independent of the nature
of the ECO. To be specific, we show in Fig. 3 the Zer-
illi wavefunction for a point particle plunging into (left
panel) or scattering o↵ a wormhole with ` = 10�6M , with
initial Lorentz boost E = 1.5. The coordinate system we
use is such that the particles are moving along the equa-
tor, and it di↵ers - by a ⇡/2 rotation - from the coordinate
axis used in Ref. [12]. As such, the l = 2 Zerilli-Moncrief
wavefunction, for example, has contributions from az-
imuthal numbers m = 0,±2. Note also that it is easy to

1 Incidentally, we note that all these features (namely time delay,
echoes, modulation, and high-frequency filtering) are precisely
what one would expect by the scattering of sound waves in a
finite-size cavity.
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FIG. 2. Left: A dipolar (l = 1,m = 0) scalar wavepacket scattered o↵ a Schwarzschild BH and o↵ di↵erent ECOs with
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FIG. 3. Left panel: The waveform for the radial infall of a particle with specific energy E = 1.5 into a wormhole with
` = 10�6M , compared to the BH case. The BH ringdown, caused by oscillations of the outer PS as the particle crosses through,
are also present in the wormhole waveform. A part of this pulse travels inwards and is absorbed by the event horizon (for BHs)
or then bounces o↵ the inner (centrifugal or PS) barrier for ECOs, giving rise to echoes of the initial pulse. This is a low-pass
cavity which cleans the pulse of high-frequency components. At late times, only a lower frequency, long-lived signal is present,
well described by the QNMs of the ECO. Right panel: the same for a scattering trajectory, with pericenter rmin = 4.3M , o↵
a wormhole with ` = 10�6M . The main pulse is generated now through the bremsstrahlung radiation emitted as the particle
approaches the pericenter. The remaining main features are as before. We show only the real part of the waveform, the
imaginary part displays the same qualitative behavior.

express these results in a rotated frame [32, 33], and we
checked that the waveforms agree up to numerical errors

with our previous study [12] 2.

2 Note however the following typo in the original publication: the
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FIG. 1. Qualitative features of the e↵ective potential felt by
perturbations of a Schwarzschild BH compared to the case
of wormholes [12] and of star-like ECOs with a regular cen-
ter [22]. The precise location of the center of the star is model-
dependent and was chosen for visual clarity. The maximum
and minimum of the potential corresponds approximately to
the location of the unstable and stable PS, and the correspon-
dence is exact in the eikonal limit of large angular number l.
In the wormhole case, modes can be trapped between the
PSs in the two “universes”. In the star-like case, modes are
trapped between the PS and the centrifugal barrier near the
center of the star [28–30]. In all cases the potential is of fi-
nite height, and the modes leak away, with higher-frequency
modes leaking on shorter timescales.

where rmin is the location of the minimum of the potential
shown in Fig. 1. If we consider a microscopic correction
at the horizon scale (` ⌧ M), then the main contribution
to the time delay comes near the radius of the star and
therefore,

�t ⇠ �nM log

✓
`

M

◆
, ` ⌧ M , (6)

where n is a factor of order unity that takes into account
the structure of the objects. For wormholes, n = 8 to
account for the fact that the signal is reflected by the
two maxima in Fig. 1, whereas for our thin-shell gravas-
tar model and the empty-shell model it is easy to check
that n = 6 and n = 4, respectively. The results shown in
Fig. 2 for ` = 10�6M are perfectly consistent with this
picture, with the wormhole case displaying longer echo
delays than the other cases with the same compactness.
Our results show that the dependence on ` is indeed log-
arithmically for all the ECOs we studied.

As argued in Ref. [12], the logarithmic dependence dis-
played in Eq. (6) implies that even Planckian corrections
(` ⇡ LP = 2 ⇥ 10�33 cm) appear relatively soon after
the main burst of radiation, so they might leave an ob-

servable imprint in the GW signal at late times. From
Eq. (6), a typical time delay reads

�t ⇠ 54(n/4)M30


1� 0.01 log

✓
`/LP

M30

◆�
ms , (7)

where M30 := M/(30M�).
The picture of GW signal scattered o↵ the potential

barrier is also supported by two further features shown
in Fig. 2, namely the modulation and the distortion of
the echo signal. In general, modulation is due to the
slow leaking of the echo modes, which contain less en-
ergy than the initial one. In the wormhole case, this
e↵ect is stronger due to the fact that modes can also leak
to the “other universe” through tunneling at the second
peak of the potential. While the amplitude of the echoes
is model-dependent, for a given model it depends only
mildly on `. Distortion is also due to the potential bar-
rier, which acts as a low-pass filter and reflects only the
low-frequency, quasibound echo modes. This implies that
each echo is a low-frequency filtered version of the previ-
ous one and the original shape of the mode gets quickly
washed out after a few echoes1.

B. Waves generated by infalling or scattered
particles

The features above are observed in a simple scattering
process, but are also evident in the GW signal produced
by head-on collisions or close encounters, in the test-
particle limit. The latter di↵er from the radial plunge
studied in Ref. [12] in that their pericenter rmin > 3M ,
i.e. the particle does not cross the radius of the PS
(in fact, scattered particles in the Schwarzschild geom-
etry can never get inside the r = 4M surface). In
order to compute the GW signal, we use the Regge-
Wheeler-Zerilli decomposition reviewed in Appendix B
(cf. Ref. [31] for details).
We have studied the GW emitted during collisions or

scatters between point particles and ECOs; again the
general qualitative features are the same as those dis-
cussed in Section IIA and independent of the nature
of the ECO. To be specific, we show in Fig. 3 the Zer-
illi wavefunction for a point particle plunging into (left
panel) or scattering o↵ a wormhole with ` = 10�6M , with
initial Lorentz boost E = 1.5. The coordinate system we
use is such that the particles are moving along the equa-
tor, and it di↵ers - by a ⇡/2 rotation - from the coordinate
axis used in Ref. [12]. As such, the l = 2 Zerilli-Moncrief
wavefunction, for example, has contributions from az-
imuthal numbers m = 0,±2. Note also that it is easy to

1 Incidentally, we note that all these features (namely time delay,
echoes, modulation, and high-frequency filtering) are precisely
what one would expect by the scattering of sound waves in a
finite-size cavity.

n=6
n=4
n=8



GWTC-2 searches for echoes

• Look for quasi-periodic bursts of GWs after the ringdown


• Template-based analysis using ringdown signal as basis that is modulated and repeated in echoes


• No support for echoes in data


• Earlier model-independent 
searches also gave null results 
in O1 and O2

[Cornish & Littenberg arXiv:1410.3835]
[Tsang,…,MA+ arXiv:1804.04877]
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[Tsang,…,MA+ arXiv:1906.11168]

[Lo+ arXiv:1811.07431]
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TABLE XIV. Results of the echoes analysis (Sec. VIII B). List of
p-values for signal to noise Bayes Factor BS

N for the events that
are analysed. In the absence of any echoes signal these should be
uniformly distributed between [0, 1]. Fig. 15 shows the corresponding
PP plot with 90% credible intervals superimposed on it. There is no
evidence for the presence of echoes.

Event p-value

GW191109 010717 0.35
GW191129 134029 0.35
GW191204 171526 0.37
GW191215 223052 0.23
GW191216 213338 0.88
GW191222 033537 0.89
GW200115 042309 0.44
GW200129 065458 0.33
GW200202 154313 0.43
GW200208 130117 0.24
GW200219 094415 0.18
GW200224 222234 0.59
GW200225 060421 0.69
GW200311 115853 0.42
GW200316 215756 0.27

out. As the methodology employed here is di↵erent from that
of our previous analysis [11], and relies of the p-values, one
cannot have a fair comparison of the results between the two.

IX. CONCLUSIONS AND OUTLOOK

Gravitational-wave observations provide a unique tool to test
fundamental physics. The strongly gravitating, highly dynam-
ical and radiative spacetime associated with the late inspiral,
merger and ringdown of compact binaries facilitates tests of
general relativity in a regime that is unaccessible otherwise.
Binary black holes and binary neutron star mergers observed
in the past observing runs already set limits on possible devi-
ations from GR [3, 6, 7, 9–11, 80, 100, 245, 262, 269–272].
Here we discuss a pool of tests aimed at unearthing deviations
from GR using the events detected during the second part of
the third observing run of advanced LIGO and advanced Virgo.
We perform ten tests of GR on the 15 events that have a false
alarm rate less than 10�3 yr�1. These tests are the same ones
as in the previous analysis [11], except with the following
updates. Our search for post-merger echoes is morphology-
independent in this paper and the method to test for non-GR
polarization modes is refined to address mixed polarizations
as opposed to scalar-only, vector-only, and tensor-only hy-
potheses as was the case in [11]. Furthermore, some of the
tests rely on more up-to-date waveforms; in the residuals and
inspiral-merger-consistency tests, we account for higher order
multipole moments for all the events from the second part of
the third observing run.

We subtract the maximum-likelihood GR waveform from
the data to verify the consistency of the residuals with detector
noise, thereby showing the consistency of the signals in the
data with GR. Independent estimates of the mass and spin of
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FIG. 15. Results of the echoes analysis (Sec. VIII B). Plot of fraction
of events for which the echoes signal-to-noise p-value is less than or
equal to the abscissa. The light-blue band represents the 90% credible
interval of the observed p-values, while the diagonal dashed line is
expectation from the null hypothesis. The light-gray band around
the diagonal line represents the 90% uncertainty band of the null
hypothesis.

the merger remants, from the inspiral and postinspiral parts
of the waveform for di↵erent events show mutual consistency.
The fractional changes in the final mass and spin from this
test, assuming they take the same values for all the events
and combining all the events analyzed so far, are constrained
to �Mf/M̄f = �0.02+0.07

�0.06 and ��f/�̄f = �0.06+0.10
�0.07 at 90%

credibility.
Tests aimed at looking for parametrized departures from GR

in the post-Newtonian phasing coe�cients all find consistency
with GR within the statistical uncertainties. The most well-
constrained parameter is the absolute value of the �1PN coe�-
cient, which is bound to  7.3⇥10�4 at 90% credibility, assum-
ing its value is the same for all the events. As certain modified
theories of gravity predict dispersion of GWs, we searched for
this e↵ect and found no evidence for dispersion. The bound
on the graviton mass is updated to mg  1.27 ⇥ 10�23eV/c2,
at 90% credibility. A general metric theory of gravity admits
up to six modes of GW polarization. We searched for non-GR
polarization modes and found no signature of such modes.

Analyses to measure the spin-induced quadrupole moments
of the binary components found no signatures of exotic com-
pact objects. Further, tests for deviations from GR in the
ringdown of the remnant black hole were carried out using
two independent methods and the frequency deviation parame-
ters are constrained to � f̂221 = 0.01+0.27

�0.28 and � f̂220 = 0.02+0.07
�0.07,

at 90% credibility, by hierarchically combining the results
from the events that are analyzed. We also found no evidence
for post-merger echoes from the merger remnant from our

LVC PRD 103, 122002 (2021)  
LVK [arXiv:2112.06861]



Massive graviton effect on propagation

• “Massive graviton”: GWs propagate along timelike geodesics under the dispersion relation 
 
 

• Waveform undergoes dispersion:


• (early) low-f waves get delayed  
w.r.t. (late) high-f waves


• “Chirp”-like signals get  
squeezed together


• Phase modification in the frequency domain: 

E2 = p2c2 +m2
gc

4 �g =
h

mgc

��MG(f) = � ⇡Dc

�2
g(1 + z)f

Will (1998) [gr-qc/9709011]

⇣vg
c

⌘2
= 1� h2c2

�2
gE

2

making predictions both in the radiative and nonradiative
regimes, and which otherwise agrees with observation. How-
ever, as several authors have pointed out @15–18#, construc-
tion of such a theory is a nontrivial question. Thus, in the
absence of a well-defined theoretical foundation, we shall
make the phenomenological assumption that, if the graviton
is massive in the propagation of gravitational waves, the
Newtonian potential takes the form of Eq. ~1.5!, with the
same value of lg .
With this assumption, one can place bounds on lg using

solar-system dynamics. Essentially, the orbits of the inner
planets agree with standard Newtonian gravity ~including its
post-Newtonian GR corrections! to an accuracy of order
1028. Since the observed corrections to Newtonian gravity in
the limit lg@r go as (r/lg)2 ~it is the acceleration, not the
potential that is important!, this implies a rough bound lg
.104 astronomical units, or 1012 km. Talmadge et al. @19#
surveyed solar system data in the context of bounding the
range and strength of a ‘‘fifth force,’’ a Yukawa term added
to Newtonian gravity. The best bound comes from observa-
tions that verify Kepler’s third law for the inner planets:
from observations of Mars, we find lg.2.831012 km.
Bounds from other planets are summarized in Table IV.
Apart from the Yukawa potential assumption, this bound is
solid and model independent.
Thus the bound inferred from gravitational radiation ob-

servations of stellar mass compact binary inspiral could be
twice as large as the solar-system bound, while that from
massive binary inspiral as observed by LISA could be 2
3104 times larger.
Some have argued for a larger bound on lg from galactic

and cluster dynamics @20,16,17#, noting that the evidence of
bound clusters and of clear tidal interactions between galax-
ies argues for a range lg at least as large as a few megapar-
secs (631019 km!. Indeed this is the value quoted by the
Particle Data Group @21#. However, in view of the uncertain-
ties related to the amount of dark matter in the universe, and
the absence of a theory that can encompass a massive gravi-
ton and cosmology, these bounds should be viewed with cau-
tion.
The remainder of this paper provides the details underly-

ing these results. In Sec. II, we study the propagation of a
massive graviton in a cosmological background, to find the
relation between emission interval and arrival interval. In
Sec. III, using the standard ‘‘restricted PN approximation,’’
in which the gravitational waveform is expressed as an am-
plitude accurate to the lowest, quadrupole approximation,
and a phase accurate through 1.5PN order @O(v/c)3# beyond
the quadrupole approximation, we determine the effect of
graviton propagation time on the Fourier transform of the
waveform, which is the central ingredient in matched filter-
ing. In Sec. IV, we calculate the Fisher information matrix
and determine the accuracy with which the compact binary’s
parameters can be measured, including a bound on the effect
of graviton mass. This approach is a reasonable approxima-
tion to real matched filtering for Gaussian noise and large
signal-to-noise ratio. We apply the results to specific noise
curves and binary systems appropriate for ground-based
~LIGO-VIRGO! and space-based ~LISA! detectors. Section
V discusses bounds on the graviton mass using solar-system
dynamics. Henceforth, we use units in which G5c51.

II. PROPAGATION OF A MASSIVE GRAVITON

Because some of the detectable compact binaries could be
at cosmological distances, we study the propagation of a
massive graviton in a background Friedmann-Robertson-
Walker ~FRW! homogeneous and isotropic spacetime. We
take the line element to have the form @22#

ds252dt21a2~ t !@dx21S2~x!~du21sin2udf2!# ,
~2.1!

where a(t) is the scale factor of the universe and S(x) is
equal to x , sinx or sinhx if the universe is spatially flat,
closed or open, respectively. For a graviton moving radially
from emitter x5xe to detector x50, it is straightforward to
show that the component of 4-momentum px5 const. Using
the fact that mg

252papbgab5E22a22px
2 , where E5p0,

together with px/E5dx/dt , we obtain

dx

dt 52
1
aS 11

mg
2a2

px
2 D

21/2

, ~2.2!

where px
25a2(te)(Ee

22mg
2). Assuming that Ee@mg , ex-

panding Eq. ~2.2! to first order in (mg /Ee)2, and integrating,
we obtain

xe5E
te

ta dt
a~ t ! 2

1
2

mg
2

a2~ te!Ee
2E

te

ta
a~ t !dt . ~2.3!

Consider gravitons emitted at two different times te and te8 ,
with energies Ee and Ee8 , and received at corresponding ar-
rival times (xe is the same for both!. Assuming that Dte
[te2te8!a/ ȧ , and noting that mg /Ee5(lg f e)21, where f e
is the emitted frequency, we obtain, after eliminating xe ,

Dta5~11Z !FDte1
D
2lg

2S
1
f e
2 2

1

f e82
D G , ~2.4!

where Z[a0 /a(te)21 is the cosmological redshift, and

D[
~11Z !

a0
E
te

ta
a~ t !dt , ~2.5!

where a05a(ta) is the present value of the scale factor. Note
that D is not a conventional cosmological distance measure,
like the luminosity distance DL[a0S(xe)(11Z), or the
proper distance DP[a0xe . For Z!1, it is given by the stan-
dard formula D5Z/H0; for a matter dominated, spatially flat
universe, D and DL are given by

D5~2/5H0!~11Z !„12~11Z !25/2…, ~2.6a!

DL5~2/H0!~11Z !„12~11Z !21/2…. ~2.6b!

The ratio D/DL will play a role in our analysis of the bound
on lg . It has the following representative behavior:

D
DL

5H
12Z1O~Z2!, Z!1, all V0

11~21Z !~11Z1A11Z !

5~11Z !2
, V051, all Z

~2.7!
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Lorentz-Invariance-Violating dispersion

• More general form of modified dispersion relation:


• α=0 : massive graviton [de Rham LRR-2014-7]


• α=2 : no dispersion, non-LIV


• other: Lorentz invariance violating, some motivated by approaches 
to quantum gravity, e.g. dSR (α=3) [Amelino-Camelia 2002,2010], 
extra dims & Horava-Lifshitz (α=4) [Blas&Sanctuary 2011]


• More general forms include vector/tensor contractions with pμ 


• GW phase modification:

E2 = p2c2 + A p↵c↵

�A = h A 1
↵�2

[Mirshekari, Yunes, Will 2011]

↵ 6= 1� ↵(f) = ��(⇡Mf)�1 � ⇡D↵

(1� ↵)�2�↵
A (1 + z)1�↵

f↵�1
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TABLE VII. Results for the modified dispersion analysis (Sec. VI). The table shows 90%-credible upper bounds on the graviton mass mg and
the absolute value of the dimensionless phenomenological parameter Ā↵ = A↵/eV2�↵. QGR = P(A↵ < 0) denotes the quantiles corresponding to
GR hypothesis. The < and > labels denote the bounds on |Ā↵| for A↵ > 0 and A↵ < 0 respectively. We also included bounds computed from
GWTC-2 [10, 11] for comparison.

mg |Ā0| |Ā0.5| |Ā1| |Ā1.5| |Ā2.5| |Ā3| |Ā3.5| |Ā4|
[10�23 < > QGR < > QGR < > QGR < > QGR < > QGR < > QGR < > QGR < > QGR
eV/c2] [10�45] [%] [10�38] [%] [10�32] [%] [10�26] [%] [10�14] [%] [10�8] [%] [10�2] [%] [104] [%]

GWTC-2 1.76 1.75 1.37 66 0.46 0.28 66 1.00 0.52 79 3.35 1.47 83 1.74 2.43 31 1.08 2.17 17 0.76 1.57 12 0.64 0.88 25
GWTC-3 1.27 1.88 0.89 86 0.51 0.19 91 1.16 0.32 96 3.69 0.93 98 1.16 2.95 13 0.66 2.33 2 0.45 1.16 7 0.30 0.74 15
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FIG. 12. Results for the modified dispersion analysis (Sec. VI).
The scatter plot of 90% credible upper bounds on the modulus of
deviation parameters A↵. The one-sided bounds are computed for
positive and negative values of the parameters separately. Filled
(open) diamond markers represent the GWTC-3 bounds including
(excluding) the events GW200219 094415 and GW200225 060421.
The gray markers in the background denoted the numbers obtained
from the previous analysis [11].

of a signal s̃( f ) and noise ñ( f ), or alternatively, as

d̃( f ) = F h̃( f ) + ñ( f ), (10)

where s̃( f ) = F h̃( f ), F 2 RD⇥M are the beam pattern func-
tions of the detectors and h̃( f ) 2 CM are the signal’s polariza-
tion modes. We could interpret the gravitational-wave signal
as a geometric projection on the subspace spanned by the basis
vectors of F . By projecting the data on the subspace orthogo-
nal to these vectors, one can then construct null streams, i.e.,
linear combinations of the data containing no information on
the signal [241, 242]. Given D detectors, it is possible to con-
struct at most D � M null streams. The projection operation
can be formalized through the introduction of a null operator
P [243]

P = I � F (F †F )�1F †, (11)

where I is the identity matrix and † denotes conjugate trans-
pose. The quantities F depend on the sky location of the
signal, as well on the polarization angle and event time and, by
construction, P s̃( f ) = 0.

At least M + 1 detectors are needed to apply the null stream
method in the most generic case, although for specific sky

locations less detectors will su�ce to test certain polariza-
tion hypotheses [244, 245]. The beam pattern functions of
the breathing and longitudinal scalar modes are not linearly
independent, and thus the maximum number of independent
polarization modes is five [246, 247]. Consequently, past anal-
yses [7, 9, 11, 248] tested only pure polarization hypotheses,
as these are fully characterized by two polarisation modes at
most, and in this case it is possible to construct a null stream
with the strain measured by three detectors.

In this work, we use a method that allows tests of mixed
polarization states with 2 and 3 detectors [249]. This enables
all our events to be used to compute combined Bayes factors,
while the previous analysis [11] was restricted to 3-detector
events. The method builds upon an e↵ective antenna pattern
function F̄ 2 CD⇥L that is constructed from a subset of L < M
polarization modes. For each hypothesis to be tested, the rele-
vant polarization state is projected into the chosen basis: thus,
one orthogonalizes the data with respect to a smaller subspace
spanned by the basis modes, rather than the assumed polar-
ization modes. Each polarization mode h̃m can be rewritten
as a linear combination of the basis modes, plus an additional
orthogonal component

h̃m( f ) =
LX

k=1

Ckmh̃k,k( f ) +C?mh̃?( f ), (12)

with Ckm,C?m 2 C. We perform the null projection with respect
to the subspace spanned by the component of the beam pattern
vectors parallel to the basis mode(s). Therefore, the method is
sensitive to any component of a given polarization hypothesis
that is parallel to the chosen basis modes(s). The subspace
removed by the null projection does not need to coincide with
the polarization subspace of the hypothesis being tested.

We will conduct analyses employing either one (L = 1)
or two (L = 2) basis modes. The L = 2 parameterization
allows more freedom in the choice of the basis modes, but
at the cost of a weaker distinguishability between di↵erent
polarization hypotheses. The subspaces spanned by the beam
pattern function vectors for di↵erent hypotheses, in fact, will
generally have a larger overlap in the L = 2 than in L = 1
case. The polarization content is constrained to be a linear
combination of the basis modes and, therefore, the L = 1
analysis is expected to produce more stringent results, due to
the strongest constraints imposed on the signal. On the other
hand, the L = 2 analysis will be able to capture orthogonal
components missed by the L = 1 analysis.

Right ascension, declination and polarization angle are free
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TABLE VII. Results for the modified dispersion analysis (Sec. VI). The table shows 90%-credible upper bounds on the graviton mass mg and
the absolute value of the dimensionless phenomenological parameter Ā↵ = A↵/eV2�↵. QGR = P(A↵ < 0) denotes the quantiles corresponding to
GR hypothesis. The < and > labels denote the bounds on |Ā↵| for A↵ > 0 and A↵ < 0 respectively. We also included bounds computed from
GWTC-2 [10, 11] for comparison.

mg |Ā0| |Ā0.5| |Ā1| |Ā1.5| |Ā2.5| |Ā3| |Ā3.5| |Ā4|
[10�23 < > QGR < > QGR < > QGR < > QGR < > QGR < > QGR < > QGR < > QGR
eV/c2] [10�45] [%] [10�38] [%] [10�32] [%] [10�26] [%] [10�14] [%] [10�8] [%] [10�2] [%] [104] [%]

GWTC-2 1.76 1.75 1.37 66 0.46 0.28 66 1.00 0.52 79 3.35 1.47 83 1.74 2.43 31 1.08 2.17 17 0.76 1.57 12 0.64 0.88 25
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FIG. 12. Results for the modified dispersion analysis (Sec. VI).
The scatter plot of 90% credible upper bounds on the modulus of
deviation parameters A↵. The one-sided bounds are computed for
positive and negative values of the parameters separately. Filled
(open) diamond markers represent the GWTC-3 bounds including
(excluding) the events GW200219 094415 and GW200225 060421.
The gray markers in the background denoted the numbers obtained
from the previous analysis [11].

of a signal s̃( f ) and noise ñ( f ), or alternatively, as

d̃( f ) = F h̃( f ) + ñ( f ), (10)

where s̃( f ) = F h̃( f ), F 2 RD⇥M are the beam pattern func-
tions of the detectors and h̃( f ) 2 CM are the signal’s polariza-
tion modes. We could interpret the gravitational-wave signal
as a geometric projection on the subspace spanned by the basis
vectors of F . By projecting the data on the subspace orthogo-
nal to these vectors, one can then construct null streams, i.e.,
linear combinations of the data containing no information on
the signal [241, 242]. Given D detectors, it is possible to con-
struct at most D � M null streams. The projection operation
can be formalized through the introduction of a null operator
P [243]

P = I � F (F †F )�1F †, (11)

where I is the identity matrix and † denotes conjugate trans-
pose. The quantities F depend on the sky location of the
signal, as well on the polarization angle and event time and, by
construction, P s̃( f ) = 0.

At least M + 1 detectors are needed to apply the null stream
method in the most generic case, although for specific sky

locations less detectors will su�ce to test certain polariza-
tion hypotheses [244, 245]. The beam pattern functions of
the breathing and longitudinal scalar modes are not linearly
independent, and thus the maximum number of independent
polarization modes is five [246, 247]. Consequently, past anal-
yses [7, 9, 11, 248] tested only pure polarization hypotheses,
as these are fully characterized by two polarisation modes at
most, and in this case it is possible to construct a null stream
with the strain measured by three detectors.

In this work, we use a method that allows tests of mixed
polarization states with 2 and 3 detectors [249]. This enables
all our events to be used to compute combined Bayes factors,
while the previous analysis [11] was restricted to 3-detector
events. The method builds upon an e↵ective antenna pattern
function F̄ 2 CD⇥L that is constructed from a subset of L < M
polarization modes. For each hypothesis to be tested, the rele-
vant polarization state is projected into the chosen basis: thus,
one orthogonalizes the data with respect to a smaller subspace
spanned by the basis modes, rather than the assumed polar-
ization modes. Each polarization mode h̃m can be rewritten
as a linear combination of the basis modes, plus an additional
orthogonal component

h̃m( f ) =
LX

k=1

Ckmh̃k,k( f ) +C?mh̃?( f ), (12)

with Ckm,C?m 2 C. We perform the null projection with respect
to the subspace spanned by the component of the beam pattern
vectors parallel to the basis mode(s). Therefore, the method is
sensitive to any component of a given polarization hypothesis
that is parallel to the chosen basis modes(s). The subspace
removed by the null projection does not need to coincide with
the polarization subspace of the hypothesis being tested.

We will conduct analyses employing either one (L = 1)
or two (L = 2) basis modes. The L = 2 parameterization
allows more freedom in the choice of the basis modes, but
at the cost of a weaker distinguishability between di↵erent
polarization hypotheses. The subspaces spanned by the beam
pattern function vectors for di↵erent hypotheses, in fact, will
generally have a larger overlap in the L = 2 than in L = 1
case. The polarization content is constrained to be a linear
combination of the basis modes and, therefore, the L = 1
analysis is expected to produce more stringent results, due to
the strongest constraints imposed on the signal. On the other
hand, the L = 2 analysis will be able to capture orthogonal
components missed by the L = 1 analysis.

Right ascension, declination and polarization angle are free

LVC PRD 103, 122002 (2021)  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Gravitational Wave Detection

• Detector arms stretch and squeeze in a different way


• Antenna pattern gives detector response that depends on 
direction of propagation 
 

• Detector output (strain) is the differential deformation of arms 
 

• With many IFOs we can resolve polarizations

1

Chapter 1. Gravitational Wave Physics

Figure 1.2: Motion of test masses in a circular arrangement on a plane around the
origin, under the influence of a passing GW that propagates in a direction perpendicular
to the plane. The arrow lines represent the force vector field. The left (right) plots show
the e↵ect of a pure + (⇥) polarization.

A generic gravitational waveform from a far away source, can then be expressed
as a superposition of plane waves that propagate along a given direction n̂:

hij(t, ~x) =
X

P=+,⇥
✏Pij(n̂)

Z 1

�1
df h̃P (f) e�2⇡if(t�n̂·~x)/c. (1.74)

Antenna pattern for GW interferometers In order to translate a passing
gravitational wave into detector output, one needs to transform from the TT
frame defined by the source, to the proper detector frame, where the e↵ect on
the apparatus is best described, and subsequently apply a mapping from the
perturbation tensor to the gravitational wave strain scalar. Since hµ⌫ transforms
as a tensor under Lorentz transformations, its spatial part hij transforms as a
regular (0,2)-tensor under rotations R 2 SO(3), which can be represented as 3x3
matrices parametrized by three angles (e.g. Euler angles). The mapping from
the new hµ⌫ to the strain h(t) is given by a (2,0)-tensor known as the detector
tensor Dij , which can be decomposed into the plus and cross detector pattern
functions, the projections of the detector tensor on the polarization basis tensors:

h(t) = F+(n̂) h+(t) + F⇥(n̂) h⇥(t) , (1.75)

FP (n̂) = Dij ✏Pij(n̂) , P = +, ⇥ (1.76)

More specifically, here we are only interested in interferometric GW detectors,
whose geometric properties are determined by the two unit vectors x̂ and ŷ that
define the detector’s arms. In particular, we will consider L-shaped detectors,
whose arms are perpendicular to each other. We will also assume that length L of
the detector is much smaller than the typical wavelengths of the signal, !gwL/c ⌧
1, so that the perturbation applies uniformly across the entire detector. Let ✓
and � be the spherical angles between the proper detector frame and the TT
frame, i.e. the direction of propagation is expressed as n̂ = (✓,�) in spherical
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1.6. Second generation ground based interferometers

coordinates in the detector frame x̂, ŷ, ẑ and let  be the polarization angle, the
angle that defines the orientation of the source w.r.t. the detector plane.

As a gravitational wave passes through the interferometer, it stretches and squeezes
the spatial dimensions perpendicular to its direction of propagation in an oscilla-
tory fashion. As a result, the paths that light travels along the two arms change
relative to each other, creating an oscillating bright pattern on the dark fringe.
The action of an interferometric detector’s tensor Dij returns a scalar that mea-
sures the integrated path di↵erence between the light rays that travel along the
two arms in x̂ and ŷ, and so:

Dij =
1

2
(x̂ix̂j � ŷiŷj) . (1.77)

The spatial perturbation matrix hij of Eq. (1.35) transforms under a general
rotational transformation

R(n̂) = Rz(�) Ry(✓) Rz( ) , (1.78)

here in the z � y0 � z00 sequence, as:

h0
ij = (R h RT )ij = Rik Rjl hkl . (1.79)

Originally, the TT gauge choice restricts h to the 2x2 subspace x-y which is
invariant under Rz rotations. This implies that the two polarizations will mix
with each other but the form of (1.35) will be preserved. Now, if we substitute
R with the rotation matrix that transforms (X̂, Ŷ , Ẑ) to (x̂, ŷ, ẑ) we find:

F+(n̂) =
(1 + cos2 ✓)

2
cos 2� cos 2 � cos ✓ sin 2� sin 2 , (1.80)

F⇥(n̂) =
(1 + cos2 ✓)

2
cos 2� sin 2 + cos ✓ sin 2� cos 2 . (1.81)

1.6 Second generation ground based interferom-
eters

The Virgo (Cascina, Italy) and two LIGO (Hanford, WA and Livingston, LA) in-
terferometric GW detectors started operating in 2007, 2002 and 2002 respectively.
These are laser interferometers of 3 km (Virgo) and 4 km (LIGO) arm-length, in
a 90o (L-shaped) configuration.

The detectors’ sensitivity is described by the spectrum of noise present in the
output (the photo-diode readout on the dark fringe), in which sources of noise
of di↵erent nature contribute (seismic noise, radiation pressure noise, thermal
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Figure 1.3: F+ (left) and F⇥ (center) antenna pattern functions for a GW interfer-
ometer for  = 0, plotted as the radial coordinate of the surface, with the zero section
being mapped on the sphere of r = 2 (purple intersection). Color represents the absolute

value. The right plot shows
q

F 2

+
+ F 2

⇥.

noise, shot noise, Newtonian noise, etc.). As a stochastic process, the noise can
be modelled by measuring its auto-corellation function in time:

R(⌧) ⌘ hn(t + ⌧) n(t)i ⌘ 1

2

Z 1

�1
df Sn(f)e�i2⇡f⌧ , (1.82)

where the Fourier decomposition in the second equation defines the function
Sn(f), that has units of 1/

p
Hz and is called the noise power spectral density

(PSD). Assuming that the process is Gaussian (and that it averages to zero), the
auto-correlation completely characterizes the noise; furthermore, if it does not
change in time we say that the noise is stationary. Equivalently, in the frequency
domain, Gaussian stationary noise will be uncorrelated in frequency space and
characterized by its root mean square on each frequency bin. The autocorrelation
function for ñ reads:

hñ⇤(f)ñ(f 0)i =
1

2
�(f � f 0) Sn(f) , (1.83)

Of course, it is not always the case that noise satisfies the assumptions of being
Gaussian and stationary, and this may become important in our analysis, as we
shall see in Chapter 8.

The VSR3 science run of Virgo and S6 of LIGO ended in 2011, with a maximum
sensitivity that reached

p
Sn(f) ⇠ 7 ⇥ 10�23Hz�1/2 and ⇠ 4 ⇥ 10�23Hz�1/2 re-

spectively and an absolute horizon for the network of three detectors at ⇠ 40
Mpc. After the network of initial LIGO and Virgo detectors shut down, the
instruments were disassembled and started being upgraded to bring the interfer-
ometers to their advanced configuration, towards a sensitivity improvement of
roughly an order of magnitude. Given the 1/r behaviour of the GW amplitude,
this implies an order of magnitude improvement in horizon distance, which means
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Anomalous polarizations

• GR predicts 2 transverse GW polarizations (+,x)


• Alternative metric theories allow for additional: 


• longitudinal modes


• breathing mode 
 

• With the 2 LIGO detectors: cannot tell the difference!


• Virgo, KAGRA (2019) and IndIGO will help resolve degeneracies between polarizations
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[LVC PRL 119, 141101 (2017)]

[LVC arXiv:1811.00364 ]
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Testing presence of nontensorial polarizations

• Null-stream test without modelling the actual signal


• Any residual signal must be non-tensorial


• No evidence for nontensorial signal in data; scalar is more disfavoured

LVC PRD 103, 122002 (2021)  
LVK [arXiv:2112.06861]
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TABLE VIII. The table summarizes the choices of basis used in the polarization test. +, ⇥, b, l, x, and y represent the plus mode, cross mode,
scalar breathing mode, scalar longitudinal mode, vector x mode, and vector y mode respectively. The first column shows the polarization
hypothesis being tested, the third column reports the number of basis modes, and the last column reports the number of free parameters that are
marginalized over in the computation of the evidence.

Hypothesis Description # of basis modes Mode(s) Basis mode(s) Free parameters

HT,1 Pure tensorial 1 +, ⇥ + 5
HV,1 Pure vectorial 1 x, y x 5
HS,1 Pure scalar 1 b b 2
HTS,1 Tensor–scalar 1 +, ⇥, b, l + 9
HTV,1 Tensor–vector 1 +, ⇥, x, y + 9
HVS,1 Vector–scalar 1 x, y, b, l x 9
HTVS,1 Tensor–vector–scalar 1 +, ⇥, b, l, x, y + 13
HT,2 Pure tensorial 2 +, ⇥ +, ⇥ 2
HV,2 Pure vectorial 2 x, y x, y 2
HTS,2 Tensor–scalar 2 +, ⇥, b, l +, b 11
HTV,2 Tensor–vector 2 +, ⇥, x, y +, x 11
HVS,2 Vector–scalar 2 x, y, b, l x, b 11
HTVS,2 Tensor–vector–scalar 2 +, ⇥, b, l, x, y +, b 19

TABLE IX. Combined log10 Bayes factors B for various polarization hypotheses against the tensor hypothesis, using both 2-detector and
3-detector events. Polarization states have been projected onto one basis-mode as detailed in Sec. VII. Positive (negative) values indicate that the
hypothesis indicated in the superscript is favored (disfavored) with respect to the tensorial hypothesis. Error bars refer to 90% credible intervals.

Events log10 BS
T log10 BV

T log10 BTS
T log10 BTV

T log10 BVS
T log10 BTVS

T

O1 �0.04 ± 0.07 0.09 ± 0.07 0.04 ± 0.07 0.09 ± 0.07 0.09 ± 0.07 0.07 ± 0.07
O2 �0.42 ± 0.12 0.04 ± 0.12 0.08 ± 0.12 0.22 ± 0.12 0.09 ± 0.12 0.35 ± 0.12
O3a �1.85 ± 0.21 �1.04 ± 0.20 0.25 ± 0.20 0.07 ± 0.20 �1.05 ± 0.20 �0.18 ± 0.20
O3b �1.93 ± 0.17 �0.79 ± 0.17 �0.17 ± 0.17 �0.07 ± 0.17 �0.86 ± 0.17 �0.32 ± 0.17

Combined �4.24 ± 0.30 �1.70 ± 0.30 0.20 ± 0.30 0.31 ± 0.30 �1.73 ± 0.30 �0.08 ± 0.30

TABLE X. Combined log10 Bayes factor B for various polarization hypotheses against the tensor hypothesis, for 3-detector events. Polarization
states been projected onto two basis-modes as explained in Sec. VII. Positive (negative) values indicate that the hypothesis indicated in the
superscript is favored (disfavored) with respect to the tensorial hypothesis. Error bars refer to 90% credible intervals.

Events log10 BV
T log10 BTS

T log10 BTV
T log10 BVS

T log10 BTVS
T

O1 � � � � �
O2 0.05 ± 0.03 0.01 ± 0.03 �0.02 ± 0.03 0.06 ± 0.03 0.01 ± 0.03
O3a �0.37 ± 0.12 �0.77 ± 0.12 �0.72 ± 0.12 �0.73 ± 0.12 �0.91 ± 0.12
O3b �0.09 ± 0.10 �0.22 ± 0.10 �0.35 ± 0.10 �0.38 ± 0.10 �0.38 ± 0.10

Combined �0.41 ± 0.16 �0.98 ± 0.16 �1.09 ± 0.16 �1.05 ± 0.16 �1.29 ± 0.16

dices (`,m) represent the angular decomposition of the modes,
whereas the index n denotes various tones of the spectrum start-

ing with n = 0. A schematic decomposition of the post-merger
signal reads [11],

h+(t) � ih⇥(t) =
+1X

`=2

X̀

m=�`

+1X

n=0

A`mn exp
"
� t � t0

(1 + z)⌧`mn

#
exp
"
�2⇡i f`mn(t � t0)

1 + z

#
�2S `mn(✓, �,�f ), (13)

whereA`mn denotes the amplitude of the mode, t0 is the start
time of the ringdown model, and z is the redshift of the source.
The frequency and the damping time of a mode characterized
by the three indices are denoted by ⌧`mn and f`mn, respectively,
while �f is the final spin. The polar and azimuthal angles (✓, �),

measured relative to the final spin axis, describe the direction
to the observer. These coordinates assume the spin of the black
hole to be along the ✓ = 0 direction. The contribution of
counter-rotating perturbations is ignored, since it’s expected to
be negligible in the post-merger regime of the signals under



Tests of Gravity with GW170817

• Coincident GWs and γ-ray detections 


• Distance travelled ~40 Mpc


• GW -> GRB time delay (+ reasonable astrophysical priors) =>  
 
 

• Test of the equivalence principle (Shapiro time delay): 
 
 
 
 
 
 

The 90% credible intervals(Veitch et al. 2015; Abbott et al.
2017e) for the component masses (in the m m1 2. convention)
are m M1.36, 2.261 � :( ) and m M0.86, 1.362 � :( ) , with total
mass M2.82 0.09

0.47
�
�

:, when considering dimensionless spins with

magnitudes up to 0.89 (high-spin prior, hereafter). When the
dimensionless spin prior is restricted to 0.05- (low-spin prior,
hereafter), the measured component masses are m 1.36,1 � (

M1.60 :) and m M1.17, 1.362 � :( ) , and the total mass is

Figure 2. Joint, multi-messenger detection of GW170817 and GRB170817A. Top: the summed GBM lightcurve for sodium iodide (NaI) detectors 1, 2, and 5 for
GRB170817A between 10 and 50 keV, matching the 100 ms time bins of the SPI-ACS data. The background estimate from Goldstein et al. (2016) is overlaid in red.
Second: the same as the top panel but in the 50–300 keV energy range. Third: the SPI-ACS lightcurve with the energy range starting approximately at 100 keV and
with a high energy limit of least 80 MeV. Bottom: the time-frequency map of GW170817 was obtained by coherently combining LIGO-Hanford and LIGO-
Livingston data. All times here are referenced to the GW170817 trigger time T0

GW.

3
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of 5.3T. This unambiguous association confirms that BNS
mergers are progenitors of (at least some) SGRBs.

4. Implications for Fundamental Physics

Little or no arrival delay between photons and GWs over
cosmological distances is expected as the intrinsic emission
times are similar and the propagation speeds of EM and GWs
are thought to be identical. In this Section we discuss the
implications on fundamental physics of the temporal offset of

1.74 0.05 s� o( ) measured between GW170817 and
GRB170817A.

Standard EM theory minimally coupled to general relativity
predicts that GWs and light propagate with identical speeds.
The refractive index of vacuum is expected to be unity, and
both waves are expected to be affected by background
gravitational potentials in the same way. The arrival delay of
only a few seconds across a distance greater than one hundred
million light years places stringent constraints on deviations
from fundamental principles. We use the observed temporal
offset, the distance to the source, and the expected emission-
time difference to place constraints on the deviation of the
speed of gravity from the speed of light, and on violations of
Lorentz invariance and the equivalence principle.

4.1. Speed of Gravity

Assuming a small difference in travel time t% between
photons and GWs, and the known travel distance D, the
fractional speed difference during the trip can be written

v v v t DEM EM% x % , where v v vGW EM% � � is the differ-
ence between the speed of gravity vGW and the speed of light
vEM. This relation is less constraining for small distances, hence
we conservatively use here D 26 Mpc� , the lower bound of
the 90% credible interval on luminosity distance derived from
the GW signal (Abbott et al. 2017e). If we conservatively
assume that the peak of the GW signal and the first photons
were emitted simultaneously, attributing the entire

1.74 0.05 s� o( ) lag to faster travel by the GW signal, this
time difference provides an upper bound on v% . To obtain a
lower bound on v% , one can assume that the two signals were
emitted at times differing by more than 1.74 0.05 s� o( ) with
the faster EM signal making up some of the difference. As a
conservative bound relative to the few second delays discussed
in Section 2.1, we assume the SGRB signal was emitted 10 s
after the GW signal. The resulting constraint on the fractional
speed difference is

v
v

3 10 7 10 . 115

EM

16- -� q
%

� q� � ( )

The intergalactic medium dispersion has negligible impact on
the gamma-ray photon speed, with an expected propagation
delay many orders of magnitude smaller than our errors
on vGW.

Lags much longer than 10 s are proposed in alternative
models (e.g., Ciolfi & Siegel 2015; Rezzolla & Kumar 2015),
and emission of photons before the merger is also possible
(Tsang et al. 2012). Hence, certain exotic scenarios can extend
this time difference window to (−100 s, 1000 s), yielding a 2
orders of magnitude broadening of the allowed velocity range
on either side. While the emission times of the two messengers
are inherently model dependent, conservative assumptions
yield dramatic improvements over existing indirect (Kostelecky

& Russell 2017) and direct (Cornish et al. 2017) constraints,
which allow for time differences of more than 1000 years.
Future joint GW–GRB detection should allow disentangling
the emission time difference from the relative propagation time,
as only the latter is expected to depend on distance.

4.2. Lorentz Invariance Violation Limits

Within a comprehensive effective field theory description of
Lorentz violation (Colladay & Kostelecký 1997, 1998;
Kostelecký 2004; Tasson 2014), the relative group velocity
of GWs and EM waves, is controlled by differences in
coefficients for Lorentz violation in the gravitational sector and
the photon sector at each mass dimension d (Kostelecký &
Mewes 2016, 2009, 2008; Wei et al. 2017). We focus here on
the non-birefringent, non-dispersive limit at mass dimension
d=4, as it yields by far the most impressive results. In this
case, the difference in group velocities for the two sectors takes
the form

v Y n s c
1
2

1 . 2
ℓm

ℓ

ℓm
ℓ

ℓm I ℓm

2

1 4 4

-

�% � � � ��⎜ ⎟⎛
⎝

⎞
⎠( ˆ) ( ) ( )( )

( )
( )

The result is presented in a spherical harmonic, Yℓm, basis, sℓm
4( )

and c I ℓm
4

( )
( ) being spherical-basis coefficients for Lorentz violation

in the gravitational and EM sectors, respectively. The direction n̂
refers to the sky position (provided in Coulter et al. 2017a,
2017b).
For ease of comparison with the many existing sensitivities

(Shao 2014a, 2014b; Shao et al. 2017; Kostelecký & Tasson
2015; Bourgoin et al. 2016; Le Poncin-Lafitte et al. 2016;
Kostelecky & Russell 2017) to the d=4 gravity-sector
coefficients (Bailey & Kostelecký 2006; Hees et al. 2016), an
analysis in which the coefficients are constrained one at a time
is useful (Flowers et al. 2016), with all other coefficients,
including the EM sector ones, set to zero. These results are
presented in Table 1 along with the best constraints for each
coefficient prior to this work. These results can be compared
with the isotropic A, LVB Lorentz violation parametrization
(Mirshekari et al. 2012) used by Abbott et al. (2017c) in
dispersive GW tests. The 2LVB � limit of this parametrization
is equivalent to the isotropic limit of the framework discussed
above, with s A400

4 Ql( ) . Constraints on A for 2LVB � can
be obtained from the first line of Table 1; these cannot be
established within the analysis carried out in Abbott et al.
(2017c).

4.3. Test of the Equivalence Principle

Probing whether EM radiation and GWs are affected by
background gravitational potentials in the same way is a test of
the equivalence principle (Will 2014). One way to achieve this
is to use the Shapiro effect (Shapiro 1964), which predicts that
the propagation time of massless particles in curved spacetime,
i.e., through gravitational fields, is slightly increased with
respect to the flat spacetime case. We will consider the
following simple parametrized form of the Shapiro delay
(Krauss & Tremaine 1988; Longo 1988; Gao et al. 2015;
Kahya & Desai 2016):

rt
c

U l dl
1

, 3
r

r

S 3
e

o

¨E
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� �
� ( ( )) ( )
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where re and ro denote emission and observation positions,
respectively, rU ( ) is the gravitational potential, and the integral
is computed along the wave path. γ parametrizes a deviation
from the Einstein–Maxwell theory, which minimally couples
classical electromagnetism to general relativity. We allow for
different values of γ for the propagation of EM and GWs ( EMH
and GWH , respectively, with 1EM GWH H� � in the Einstein–
Maxwell theory).

While obtaining the best bound on the difference between
the Shapiro time delays requires modeling the potential rU ( )
along the entire line of sight, we determine a conservative
bound on GW EMH H� by considering only the effect of the
Milky Way outside a sphere of 100 kpc, and by using a
Keplerian potential with a mass of M2.5 1011q : (the lowest
total mass within a sphere of radius 100 kpc quoted in Bland-
Hawthorn & Gerhard 2016, from Gibbons et al. 2014, taking
the 95% confidence lower bound) (Krauss & Tremaine 1988;
Longo 1988; Gao et al. 2015). Using the same time bounds as
Equation (1) we find

2.6 10 1.2 10 . 47
GW EM

6- -H H� q � q� � ( )
The best absolute bound on EMH is 1 2.1 2.3EMH � � o q( )
10 5� , from the measurement of the Shapiro delay (at radio
wavelengths) with the Cassini spacecraft (Bertotti et al. 2003).

5. Astrophysical Implications

The joint GW–GRB detection provides us with unprece-
dented information about the central engine of SGRBs. The
delay between the GW and the GRB trigger times allows us to
examine some basic GRB physics. This delay could be intrinsic
to the central engine, reflecting the time elapsed from the
moment the binary components come into contact to the
formation of a remnant BH and the resulting jet. This
interpretation includes the case of a relatively long-lived
massive NS remnant, which has been suggested to survive from
seconds to minutes after merger(see Faber & Rasio 2012;
Baiotti & Rezzolla 2017 and references therein). The delay
could also be due to the propagation time of the relativistic jet,

including the time it takes for the jet to break out of the dense
gaseous environment produced by non-relativistic merger
ejecta(Nagakura et al. 2014; Moharana & Piran 2017) and/
or the emitting region to become transparent to gamma-
rays(Mészáros & Rees 2000).
We first discuss the implications that the time delay between

the GW and EM emission has on the physical properties of the
emitting region when considering the jet propagation and
transparency scenarios. Here we assume that the entire delay is
due to the expansion of the emitting region and neglect any
intrinsic delays between the moment of binary coalescence and
the launching of the resulting jet, thus placing limits on the
physical properties of the system. Then we consider the impact
of SGRB emission from an NS merger on the EOS of dense
matter.

5.1. GRB Physics

The main hard peak observed for GRB170817A lasted
roughly half a second. This peak is consistent with a single
intrinsic emission episode as it is well described by a single
pulse (Goldstein et al. 2017), showing no evidence for
significant substructure (spikes). This interpretation is consis-
tent with the SPI-ACS observation of a single peak (Savchenko
et al. 2017b). The GBM detection of GRB170817A also
shows no evidence for photons with energy >511 keV,
implying that the outflow does not require a high bulk Lorentz
factor Γ to overcome photon–photon absorption at the source.
Explanations for the extreme energetics and short timescales

observed in GRBs invoke a near instantaneous release of a
large amount of energy in a compact volume of space(Goodman
1986; Paczynski 1986). This is commonly referred to as the
fireball model, and it is the framework that we will assume for
the remainder of this section. The fireball model is largely
independent of the burst progenitor and focuses on the dynamics
of such a system after this sudden release of energy. The
resulting pair-plasma is optically thick and quickly expands
under its own pressure to produce a highly relativistic outflow
that coasts asymptotically with a constant Lorentz factor
Γ. Within the fireball, kinetic energy is imparted to particles

Table 1
Constraints on the Dimensionless Minimal Gravity Sector Coefficients

ℓ Previous Lower This Work Lower Coefficient This Work Upper Previous Upper

0 −3×10−14 −2×10−14 s00
4( ) 5×10−15 8×10−5

1 −1×10−13 −3×10−14 s10
4( ) 7×10−15 7×10−14

−8×10−14 −1×10−14 sRe 11
4� ( ) 2×10−15 8×10−14

−7×10−14 −3×10−14 sIm 11
4( ) 7×10−15 9×10−14

2 −1×10−13 −4×10−14 s20
4� ( ) 8×10−15 7×10−14

−7×10−14 −1×10−14 sRe 21
4� ( ) 2×10−15 7×10−14

−5×10−14 −4×10−14 sIm 21
4( ) 8×10−15 8×10−14

−6×10−14 −1×10−14 sRe 22
4( ) 3×10−15 8×10−14

−7×10−14 −2×10−14 sIm 22
4� ( ) 4×10−15 7×10−14

Note. Constraints on the dimensionless minimal gravity sector coefficients obtained in this work via Equations (1) and (2) appear in columns 3 and 5. The
corresponding limits that predate this work and are reported in columns 2 and 6; all pre-existing limits are taken from Kostelecký & Tasson (2015), with the exception
of the upper limit on s00

4( ) from Shao (2014a, 2014b). The isotropic upper bound in the first line shows greater than 10 orders of magnitude improvement. The gravity
sector coefficients are constrained one at a time, by setting all other coefficients, including those from the EM sector, to zero.
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GW170817: Test of extra dimensions
LVC 2018 [arXiv:1811.00364]

• screening out to “activation radius” Rc


• n: transition steepness


• Astrophysical length scales -> D=4


• Cosmological length scales (Rc ~ RH):


• slow transition (n~0.1): D=4


• steep transition: unconstrained

➤ GW detection + EM identification of host galaxy -> 
independent measurements of distance to source


➤ In higher-dim gravity, GWs may “leak” into extra 
dimensions (larger effective distance)


h ∝
1

dGW
L

=
1

dEM
L

1 + ( dEM
L

Rc )
n −(D−4)/(2n)



Light bosons & BH Superradiance

• Growth of bosonic field with    , stimulated by BH spin


• Direct detection via CW emission 


• Indirect detection in population statistics (mass-spin plane)

h̄c
mb

≃
GMBH

c2

FIG. 6. Exclusion regions in the boson mass (mb) and black hole mass (MBH) plane for an assumed distance of D ¼ 1 kpc (left) and
D ¼ 15 kpc (right), and an initial black hole dimensionless spin χi ¼ 0.9. For D ¼ 1 kpc, three possible values of the black hole age,
tage ¼ 103; 106; 108 years, are considered; for D ¼ 15 kpc, tage ¼ 103; 104.5; 106 years are considered.

FIG. 7. Same as Fig. 6 but for black hole initial spin χi ¼ 0.5. The assumed distance is D ¼ 1 kpc (left), and D ¼ 15 kpc (right).

FIG. 8. Maximum distance at which at least 5% of a simulated population of black holes with a boson cloud would produce a
gravitational-wave signal with strain amplitude larger than the upper limit in the detectors. The left plot refers to a maximum black hole
mass of 50 M⊙, while the right plot to a maximum mass of 100 M⊙. The different colored markers correspond to different system ages,
ranging from 103 years to 107 years, as indicated in the legend. The alignment of points for different ages at the smallest boson masses
(and distances) is the result of a discretization effect due to the finite size grid used in distance.

ALL-SKY SEARCH FOR GRAVITATIONAL WAVE EMISSION … PHYS. REV. D 105, 102001 (2022)

102001-9

• LVK sets bounds on long-duration signals from UL 
scalars [PRD 105, 102001]


• Continuous wave emission during cloud decay phase 


• Axionic case fits with mass ~ 10^{-13} - 10^{-12} eV



GW Phenomenology of New Physics
• Modified BH geometry (multipolar structure, QNMs)


• Modified binary dynamics


• Alternative polarizations (scalar, vector)


• Modified Dispersion Relation (massive, LIV)


• Speed of Gravity


• Superradiance (light boson)


• Stochastics GW Background (cosmological/astrophysical)  

• Phase transitions / topological defects  

• Neutron star matter (composition, phase transitions) 

• Stellar evolution



D e t e c t o r s  &  S o u r c e s
F U T U R E  O F  G W



L I S A  ( 2 0 3 4 + )

• Massive - Supermassive BBH mergers


• Horizon out to  z ~ 10 - 20


• MMA for transients 


• Tests of GR


• Precision Black-Hole Spectroscopy


• Probe of MBH environment, DM halos, disks, etc


• Cosmology


• Physics in the Early Universe 


• Phase transitions


• Cosmic string networks



E I N S T E I N  T E L E S C O P E

• On the ESFRI Roadmap


• Candidate Sites:  
i. Euregio Meuse-Rhine (NL) ii. Sardinia (IT)


• Scientific Consortium forming NOW!


• 10 km arm lengths


• Triangular shape


• Underground


• Cryogenic optics


• Improved sensitivity @ high- & low-freq


• Increase in sensitivity by O(10)

186 Chapter 7. Site and Infrastructure
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Figure 7.16: Sizes of Caverns.

Figure 7.17: CAD rendering of the corner station with the tall suspension towers of ET-LF (blue) and ET-HF
(red)

6 CHAPTER 1. SCIENCE CASE
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Figure 1.1: Astrophysical reach for equal-mass, nonspinning binaries for Advanced LIGO, Einstein Telescope and
Cosmic Explorer.

with total mass (20�100) M�, as typical of BBH or BH-NS binaries, will be visible by ET up to redshift
z ⇠ 20 and higher, probing the dark era of the Universe preceding the birth of the first stars. In particular,
BBH mergers seen at such distances would necessarily have a primordial origin. By comparison, in the
catalog of detections from the O1 and O2 Advanced LIGO/Virgo runs, the farthest BBH event is at z ' 0.5
and, at final target sensitivity, 2G detectors should reach z ' 1. The range of BH masses accessible will
also greatly increase; as we see from Fig. 1.1, ET will be able to detect BHs with masses up to several
times 103 M�, out to z ⇠ 1�5.
For BNS, whose total mass is around 3M�, ET will reach z ' 2�3; by comparison, the BNS GW170817
was at z ' 0.01 and, at final target sensitivity, 2G detectors should reach z ' 0.2. The corresponding
detection rates will be impressive, in the order of O(106) BBH and O(105) BNS coalescences per year;
depending on the network of electromagnetic facilities operating at the time of 3G detectors, over a few
years one might collect O(102 �103) BNS GW events with observed electromagnetic counterpart. The
signal-to-noise ratio of many of these events will be huge, even for events at cosmological distances.
The combination of distances and masses explored, sheer number of detections, and detections with very
high signal-to-noise ratio will provide a wealth of data that have the potential of triggering revolutions in
astrophysics, cosmology and fundamental physics.
Beside coalescing binary systems, ET will be able to detect several other kinds of signals, such as
stochastic backgrounds of GWs, signals from isolated pulsars, or supernovae, with a sensitivity that
improves by orders of magnitude compared to 2G detectors. Many of the possible achievements of ET,
and other planned 3G detectors like Cosmic Explorer in the U.S., are only possible through gravitational
waves. For others, GW detectors are complementary to facilities exploiting electromagnetic radiation
or other messengers, such as neutrinos and cosmic rays. The combined observations through GWs,
electromagnetic signals, neutrinos and/or cosmic rays, will give us a multi-messenger picture of many
phenomena of the Universe. Schematically, we can identify the following main items as part of the ET
science case:

• Astrophysics:
– black hole properties: origin (stellar vs. primordial), evolution, demography;
– neutron star properties: interior structure (QCD at ultra-high densities, exotic states of matter),

demography;



T H E  S C I E N C E  O F  3 G  D E T E C T O R S

• Multimessenger Astronomy with GWs


• 100,000 - 1,000,000 CBC sources/yr


• Improved Sky Localization for EM-bright transients


• Early warning for transient events (e.g. BNS)


• Multi-band detections (LISA -> AION -> ET/CE)


• Supernova event detection


• Fundamental Physics


• Tests of GR vs Modified Gravity


• Precision BH Spectroscopy


• Near-horizon physics & Exotic Compact Objects


• Fundamental fields, DM, DE


• Tight constraints on NS matter and EoS (pre- & post-merger)

3 Overview

Figure 3.4: Astrophysical horizon of current and proposed future detectors for compact binary systems.
As in the bottom of Fig. �.�, the lines indicate the maximum redshift at which a detection with signal-to-
noise ratio � could be made. The detectors shown here are Advanced LIGO during its third observing run
(“O�”), Advanced LIGO at its anticipated sensitivity for the fifth observing run (“A+”), a possible cryogenic
upgrade of LIGO called Voyager (“Voy”), the Einstein Telescope (“ET”), and Cosmic Explorer (“CE”, see
§� for observatory descriptions). The yellow and white dots are for a simulated population of binary
neutron star mergers and binary black hole mergers, respectively, following Madau and Dickinson [��]
with a characteristic binary merger time of ���million years.
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• Cosmology


• Cosmography with high-z population of sources


• Stochastic backgrounds (cosmological/astrophysical)


• Tests of ΛCDM with GWs


• Cosmic strings


• GW Lensing

[CE Horizon Study 2021]



DATA AVAILABLE ONLINE!
➤ Detector strain data & more 

www.gw-openscience.org


➤ Data release GWTC-2 
https://dcc.ligo.org/LIGO-
P2000438/public


➤ Full posterior samples GWTC-2 
https://zenodo.org/record/
5172704#.YTOaSC1h2Zw

http://www.gw-openscience.org
https://dcc.ligo.org/LIGO-P2000438/public
https://dcc.ligo.org/LIGO-P2000438/public
https://zenodo.org/record/5172704#.YTOaSC1h2Zw
https://zenodo.org/record/5172704#.YTOaSC1h2Zw

