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Motivation

Long history: […Kumar, Taylor ’09; Adams, DeWolfe, Taylor ’10;…
García-Etxebarria, Hayashi, Ohmori, Tachikawa, Yonekura ’17;
Kim, Tarazi, Vafa ’19; M.C., Dierigl, Lin, Zhang ’20; Montero,Vafa ’20;
Hamada, Vafa ’21; Tarazi, Vafa ’21;…]
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N =1 Supergravity in 8D à
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Guiding principles
• Geometry: primarily F-theory compactification
• Physics: global symmetries, including higher-form ones,

gauged or broken in consistent quantum gravity
[No Global Symmetry Hypothesis]

…[Harlow, Ooguri ’18]
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Key features of F-theory compactification
• F-theory, a powerful framework that geometrizes 𝜏 =axio-dilaton
as a modular parameter of T2 (SL(2,Z) duality of Type IIB string)

• 7-brane non-Abelian gauge symmetries G, encoded in types of 
singular T2 fibration (ADE singularities)

•  T2 (elliptic curve) carries arithmetic structure: Mordell-Weil group of   
rational points à U(1)’s  [Morrison,Park’12; 
M.C.,Klevers,Piragua’13; Borchmann, Mayrhofer,Palti,Weigand’13;…]
torsional points à gauge group topology Zà G/Z 

[Aspinwall,Morrison’98; Mayrhofer,Morrison,Till,Weigand’14; M.C.,Lin’17] 
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Current efforts: determination the exact matter spectra 
(including # of Higgs pairs) [Bies, M.C., Donagi,(Liu), Ong  ’21,’22]
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Bies, M.C., Donagi, Ong 2205.00008

by studying                               [Caporaso,Casagrande, Cornalba ’04]
limit root bundles on nodal matter curves (deformed matter curves)

• Develop algorithm to determine h0 for all limit root 
bundles  (w/ chirality: 𝝌 = h0 – h1 =3)

• For 𝝙4 polytope (1011 triangulations) 99.995% of root-bundles 
exactly h0 = 3  à -no vector-like exotics  

• Statistical analysis for other polytopes à w/ h0 =3 
by far most prevalent

Identified  O(1011) F-theory QSM geometries without
vector-like matter exotics in the representations  of QL , qR , eR

à Study of Higgs nodal curves  [Bies, M.C., Liu, work in progress] 

Matter spectra specified by root bundles  (K{frac no}|curve) 
on matter curves:
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• Anomalies of non-SU groups is integer sums of SU subgroups 
[Cordova, Freed, Lam, Seiberg ’19]

• Also predictions for rank 10 and 2 theories. 
Confirmed in compactifications of CHL string (rank 10) 
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• Independently quantified by advancing string junction techniques
including rank 2                          [M.C., Dierigl, Lin, Zhang ’21 & ’22]  
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String Junctions & All Gauge Groups in 8D String Theory
String junctions between (p,q) 7-branes       geometry of 2-cycles            

[Gaberdiel,Zwiebach ’97, DeWolfe,Zwiebach ’98]

String junctions w/ prongs on stack ⇔ roots of gauge algebra lattice

[Magnetic ``junctions’’ à 5-branes wrapping the same 2-cycles; 
realizes ADE gauge algebras  w/ weights = co-weights]

(magnetic) electric higher-form symmetries
[Morrison,Schäfer-NamekiWillett ’20, 
Albertini,Del Zotto,García-Etxebarria,Hosseini ’20]

[M.C., Dierigl, Lin, Zhang 2203.03644]

String junctions w/ external (asymptotic) prongs ⇔ weights

= Z(G) !

in perpendicular
2d space
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…to global compactification & gauge group topology there 

à no net asymptotic (p,q) charge
à restricts allowed junctions in “gluing” local patches     

encoded in fractional null junctions of 5-branes (encode Z)
[Fukae,Yamada,Yang ’99, Guralnik ’01]

All rank 18 vacua à Example:

Also for all examples with U(1)’s
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Junctions on O7+

• O7+ does not split into (p,q) 7-branes at finite gs (unlike O7−)

• Same monodromy as 𝔰𝔬16 - stack, but w/ “non-trivial flux”
that “freezes” singularity in M-/F-theory 

[Witten ’97, de Boer et al ’01, Tachikawa ’15]

Analogous constructions w/global topology
w/ one O7+ à all rank 10 vacua
w/ two O7+à all rank 2 vacua - first construction

• Freezing - local:  “replacing” one stack [two stacks]
with O7+ yields theories of rank 10 [rank 2] 

[Hamada,Vafa ’21]
• Strings ending on O7+ must have even p and q charges

[Imamura ’99, Bergman,Gimon,Sugimoto ’01]
[5-brane prongs of any integer (p,q)]
Derived, if configs. with one O7+ are dual to CHL vacua
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Junctions in 9D uplifts:
sharpens swampland distance conjecture
• Suitable infinite distance limits of F-theory in K3 moduli space    

describe 9D N=1 theories of rank 17 
[Lee, Lerche,Weigand ’21]

• Junctions characterized by appearance of singularities
associated with affine algebras ên:

Two series: 

[Maximal non-Abelian enhancement in D=9 heterotic vacua
[Font, Fraiman,Grana,Parra de Freitas ‘20]]
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9D uplifts with one O7+ à rank 9

• Characterized by ``freezing’’ of one ê8

• Maximal enhancements:
[CHL:                                                                                           ] [Mikhailov ’98; (Font), Fraiman, (Grana), Parra de Freitas ’21]

9D uplifts with two O7+ à rank 1
• Freezing of two ê8:

• 9D, rank 1 has two disconnected moduli branches 
[Aharony,Komargodski,Patir ’07]

•  Shown to be connected through D=8 

All 9D string vacua are “emergent” from 8D ones! 
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Role of 1-form symmetry &
Mixed 1-form - gauge anomalies in D≤8

• 8D [Font, Graña ,Fraiman, Freitas ’21] – heterotic 
[M.C., Dierigl, Lin, Zhang ’21, ’22] – string junctions

• 7D  [M.C., Dierigl, Lin, Zhang ’21] – F/M-theory duality
(torsional boundary G4)

• 6D [Apruzzi, Dierigl, Lin ’20] – excitations of BPS strings

• 5D [M.C., Dierigl, Lin, Zhang ’21] – F/M-theory duality
(torsional boundary G4)

[Apruzzi, Bonetti, García-Etxebarria, Hosseini, Schäfer-Nameki ’22]…

• Mixed higher-form - gauge anomalies 
have important implications also for 6D and 5D SCFTs  
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Summary

• Physics: 
Employing higher-form symmetries to formulate    
anomaly condition for gauge group topology 

Gauged 1-form symmetry in 8D

perfect agreement

• Geometry: 
F-theory/Heterotic string/CHL/string junctions

Full 8D string theory landscape
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Future Directions
• Focused on 8D N=1 and role of 1-form gauge 
symmetry

• Higher-group structures in D≤6    
0-form & 1-form symmetries à 2-group structures

- Within SCFT’s à geometric origin of higher group structures    
[M. C., Heckman,  Hübner , Torres ’22]

[Del Zotto,  Etxebarria, Schafer-Nameki ‘22]

- Their role in in quantum gravity -
string theory on compact spaces

[M. C.,  Heckman,Hübner, E. Torres to appear]



Thank you!


