

CAUSALITY, NONLINEAR SUSY AND INFLATION

Quentin Bonnefoy (DESY-TH), Gabriele Casagrande (CPHT-Ecole Polytechnique), E.D., [arXiv:2206.13451 [hep-th]] and also

E.D., M.A.G.Garcia, Y.Mambrini, K.A.Olive, M.Peloso and S.Verner, Phys. Rev. **D103** (2021), 123519 [arXiv:2104.03749 [hep-th]]

SUSY 2022, Ioannina june 29, 2022

Outline

- 1) Spin 3/2, potential problems
- 2) Gravitino sound speed in supergravity
- 3) Causality and positivity bounds
- 4) Alternative minimal models of inflation
- 5) Perspectives

1) Spin 3/2, potential problems

SUGRA = SUSY + Gravity

Rarita-Schwinger, spin 3/2

It contains:

- gravity multiplet:

Graviton $g_{\mu
u}$, gravitino ψ_{μ}

- « matter » fields: chiral superfields (complex) Scalars , Weyl Fermions

 Φ_i

 ϕ_i

 ψ_i

+ gauge multiplets, etc

• In supergravity, the gravitino Ψ_{μ} becomes massive by absorbing the goldstino G

$$\Psi_{\mu} \begin{pmatrix} 3/2 \\ - \\ - \\ -3/2 \end{pmatrix} + G \begin{pmatrix} - \\ 1/2 \\ -1/2 \end{pmatrix} = \Psi_{\mu} \begin{pmatrix} 3/2 \\ 1/2 \\ -1/2 \\ -3/2 \end{pmatrix}$$

The consistency of low-energy actions for the spin 3/2 Rarita-Schwinger field has a long history:

- 1941: Rarita-Schwinger action
- 1969: Velo-Zwanziger pointed out potential acausal propagation for a charged gravitino in an e.m. background
- 1977: Deser-Zumino proved that gravitino propagation in minimal supergravity is causal
- 2001: Deser-Waldron proved that gravitino propagation in gauged supergravities is causal

.

 2021 – Gravitino swampland conjecture, gravitino mass conjecture (talk D.Lust)

History of the subject strongly suggest that usual supergravities have no problems with gravitino propagation.

SUSY (linearly realized): nb. bosons = nb. fermions SUGRA: SUSY is a gauge symmetry, contains gravity Nonlinear SUSY/SUGRA: nb. bosons \neq nb. fermions

Inflation models in standard SUGRA's have at least one complex scalar field (often several).

Recently, simple nonlinear SUSY/SUGRA models were constructed. More minimal inflationary models, fewer fields. (Antoniadis, E.D., Ferrara & Sagnotti; Kallosh, Linde & coll, 2014-)

Even possible to construct minimal models with only: graviton, massive gravitino and inflaton (real scalar)

Simplest nonlinear SUSY's: constrained superfields (see also talk F. Quevedo). Example:

 Volkov-Akulov action can be constructed in superspace (Rocek,78) introducing a constrained, nilpotent superfield

whose solution is

 $S^2=0$ no fundamental scalar

Superspace fermionic coordinate

$$S = \frac{GG}{2F_S} + \sqrt{2}\theta G + \theta^2 F_S$$

The full VA action is

auxiliary field

$$\mathcal{L}_{VA} = [S\bar{S}]_D + [fS + h.c.]_F$$

2) Gravitino sound speed in supergravity (SUGRA)

The talk deals with the « speed of sound » c_s of gravitino in SUGRA, in inflation and more general time-dependent sols Normally $0 < c_s \le 1$

Recently, two potential problematic behaviours were discussed:

- $oldsymbol{\cdot}$ $c_s=0$ at particular points on the inflationary trajectory
 - Large (catastrophic) production of gravitinos (Hasegawa, Terada et al, 2017; Kolb, Long, McDonough, 2021).
- . $c_s>1$ acausal behaviour at particular points on the inflationary trajectory in specific SUGRA models

The sound speed C_S is defined from the dispersion relation

$$\omega^2 = c_s^2 \mathbf{k}^2 + a^2 m^2$$

The transverse spin 3/2 component in a FRW background has a standard dispersion relation with $\,c_s=1\,$

For the longitudinal component:

$$c_s < 1$$
 Slow gravitino (Benakli, Darmé, Oz, 2014)

$$c_{s}>1$$
 possible for particular nonlinear SUGRA models with orthogonal constraint

A general expression for longitudinal gravitino sound speed is

$$c_s^2 = \frac{\left(p-3m_{3/2}^2\right)^2}{\left(\rho+3m_{3/2}^2\right)^2} + \frac{4\dot{m}_{3/2}^2}{\left(\rho+3m_{3/2}^2\right)^2} \\ = \frac{\left(\rho+3m_{3/2}^2\right)^2}{\left(\rho+3m_{3/2}^2\right)^2} + \frac{1}{\left(\rho+3m_{3/2}^2\right)^2} + \frac{1}{\left(\rho+3m_{3/2}^2\right)^2} \\ = \frac{1}{\left(\rho+3m_{3/2}^2\right)^2} + \frac{1}{\left(\rho+3m_{3/$$

The explicit formula in SUGRA is

$$c_s^2 = 1 - \frac{4}{(|\dot{\varphi}|^2 + |F|^2)^2} \left\{ |\dot{\varphi}|^2 |F|^2 - |\dot{\varphi} \cdot F^*|^2 \right\}$$

where $F^i \equiv \mathrm{e}^{K/2} K^{ij^*} \, D_{j^*} W^*$ in <u>standard</u> SUGRA ,

$$D_i W \equiv \frac{\partial W}{\partial \varphi^i} + \frac{\partial K}{\partial \varphi^i} W$$

and we used the compact notation $|\dot{arphi}|^2=\dot{arphi}^i\,K_{ij^*}\,\dot{arphi}^{j*}$,etc

Obs: Cauchy-Schwarz inequality \implies causality $c_s \leq 1$ respected in standard SUGRA's

For the (large) majority of SUGRA models we investigated , we found no problems : $0 < c_s^i \leq 1$

The only models with problems we found is with the ${\tt worthogonal}$ constraint ${\tt worthogonal}$ for the inflaton multiplet ${\tt worthogonal}$

$$S(\Phi - \overline{\Phi}) = 0$$

Only $Re\ \phi$ =inflaton is a dynamical degree of freedom. $Im\ \phi$, the inflatino $\ \psi_{\phi}$ and the auxiliary field $\ F_{\phi}$ are determined by the constraint.

In particular F_ϕ is a bilinear in fermions and does not appear in the scalar potential : $F^\Phi \neq e^{K/2}K^{\Phi i}D_{i^*}W^*$

Consequences:

- There is no inflatino \implies the gravitino sound speed problem $c_s=0$ can arise (model-dependent)
- The Cauchy-Schwarz argument for $c_s \leq 1$ not valid. We found examples with $c_s > 1$!

However, the UV origin of the orthogonal constraint is not clear (Dall'Agata, E.D., Farakos, 2006; Bonnefoy, Casagrande, E.D.)

Potential pathological behaviour reminiscent of the swampland program! (Vafa,Ooguri; talks C.Vafa, A. Faraggi...)

3) Causality and positivity bounds

(Q.Bonnefoy,G. Casagrande & E.D., [arXiv:2206.13451 [hep-th]])

- The potential acausal behaviour concerns the longitudinal component of the gravitino.
- Gravitino equivalence theorem: at high-energy, gravitino longitudinal component is described by the goldstino, with enhanced couplings to matter.

The general lagrangian with orthogonal constraint is

$$K = h(A)B^2 + S\bar{S}$$

$$W = f(\Phi)S + g(\Phi)$$

where we defined

$$\Phi = \mathcal{A} + i\mathcal{B}$$

Is the acausality found in SUGRA captured by the low-energy lagrangian of the goldstino coupled to matter, in the decoupling limit $M_P \to \infty$?

Yes! The goldstino lagrangian contains a higher-derivative operator of the form

$$\frac{1}{f(\varphi)^2} (h(\varphi) - \frac{2g'(\varphi)^2}{f(\varphi)^2}) (\bar{G}i\gamma^m \partial^n G) \ \partial_m \varphi \ \partial_n \varphi$$

The operator is subject to positivity constraints from dispersion relation arguments which enforce

$$\frac{h(\varphi)}{2}f(\varphi)^2 \ge g'(\varphi)^2$$
 $\qquad \qquad \qquad \qquad c_s \le 1$

The issue arises due to the « elimination » of the auxiliary field by the orthogonal constraint, no simple physical interpretation.

 Obs: SUGRA/inflation subluminality condition valid throughout the inflationary trajectory, positivity constraints valid only in the ground state

SUGRA condition is stronger.

 Causality condition of goldstino propagation in timedependent solutions of the goldstino action is equivalent to the SUGRA constraint.

4) Alternative minimal models of inflation

Orthogonal constraint is « reducible » three « irreducible » constraints (dall'Agata, E.D, Farakos, 2016)

$$Sar{S}\left(\Phi-ar{\Phi}
ight)$$
 =0, eliminates a scalar $Sar{S}D_{lpha}\Phi$ =0, eliminates the fermion $Sar{S}D^2\Phi$ =0, eliminates the auxiliary field

Simplest alternative with no potential acausality problems: use only

$$S\bar{S}\left(\Phi - \bar{\Phi}\right) = 0$$
$$S\bar{S}D_{\alpha}\Phi = 0$$

(Same) minimal spectrum for inflation : Graviton, massive gravitino, inflaton

Equivalent alternative (Bonnefoy, Casagrande, E.D): orthogonal constraint, but higher-derivative UV action

Comparison

Orthogonal constraint

VS

Alternative constraint

$$V = e^K \{ |D_S W|^2 - 3|W|^2 \}$$

$$V = e^{K} \{ |D_S W|^2 - 3|W|^2 \} \qquad V = e^{K} \{ |D_S W|^2 + |D_\Phi W|^2 - 3|W|^2 \}$$

Example inflation model

$$K = -\frac{1}{2}(\Phi - \bar{\Phi})^2 + \bar{S}S$$
 , $W = f(\Phi)S + g(\Phi)$

$$f = \sqrt{3}g$$

$$f = \sqrt{3}g \qquad g = M^2 \left(\Phi + \frac{1}{a}e^{-a\Phi}\right) + g_0$$

$$V(\varphi) = M^4 [1 - e^{-a\varphi}]^2$$
 is the Starobinsky model

- Important to check and impose sound speed
- $0 < c_s \le 1$ \Longrightarrow gravitino swampland conjecture
- Most SUGRA models satisfy it, except peculiar models with orthogonal constraint (or similar).
- Subluminality constraints captured by goldstino SUSY lagrangians in $M_P \to \infty$ limit and positivity constraints, but SUGRA condition is stronger.
- Alternative minimal inflation models, no causality issues
- General interest: consistency constraints on nonlinear SUSY/SUGRA, strings with broken SUSY

THANK YOU!