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• Anomalies: b→ s``
• QFT anomalies
• A simple-minded Z ′ model
• Z ′ searches
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Strange b Activity
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R
(∗)
K in Standard Model

RK =
BR(B → Kµ+µ−)

BR(B → Ke+e−)
, RK∗ =

BR(B → K∗µ+µ−)

BR(B → K∗e+e−)
.

These are rare decays (each BR∼ O(10−7)) because they

are absent at tree level in SM+EW+CKM
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b→ sµµ Simplified Models

A good few 2 − 4σ Discrepancies with SM predictions.

Computing with look elsewhere effect implies a 4.3σ

discrepancy with the SM (conservative theory errors).1

We have tree-level flavour changing new physics options:

1Isidori, Lancierini, Owen and Serra, arXiv:2104.05631
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Extra u(1) plus SM-singlets

Idea: break SM×U(1)X gauge group around a TeV

to get Z ′. If U(1)X charges are family non-universal,

we should impose quantum field theoretic anomaly

cancellation.

• Other uses for Z ′: dark matter models, axions, fermion

masses, . . .
• 3 RH neutrinos
• Now, field labels denote the extra u(1) charge
• ACCs become
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Diophantine Equations

• Since this is u(1), charges are commensurate: looking

for compact extensions like the SM
• Thus we are looking for solutions over Z18.
• Any overall real factor in charge can be absorbed in

u(1)X gauge coupling: L ⊃ −gX
∑

ψXψψXµγ
µψ

• General diophantine equations are difficult to solve

analytically over the integers
• Number theory state-of-the art for general analytic

solution of generic diophantine equations is roughly one

cubic in three unknowns
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Anomaly-free Atlas

To find solutions for fixed n ≤ 3 and charges between

-10 and 10, we did a numerical scan ((((((((((((((((

2118 ∼ 1024): BCA,

Davighi, Melville, arXiv:1812.04602.

An Anomaly-Free Atlas is available for public use:

http://doi.org/10.5281/zenodo.1478085

Extended to semisimple case (340) in BCA, Gripaios, Tooby-

Smith 2104.14555 and MSSM+3νR×U(1)X in BCA, Madigan,

Tooby-Smith 2107.07926.

Davighi and Tooby-Smith 2206.11271 have investigated

which SM×U(1)X models fit in semisimple completions.
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We begin with 18 charges and 6 anomaly equations reduce

these to a 12-dimensional surface of solutions, extending

out to infinity, but sparser away from 0.
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Inequivalent solutions with 3 RH ν
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Known Solutions

• A is TFHM (BCA, Davighi, arXiv:1809.01158)
• B is B − L, vector-like
• C has inter-family cancellation
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Analytic Solution

Want a full, general analytic solution for any Qmax.

First step is to convert it into a problem in geometry by

noting that solutions over Q are equivalent to those over

Z by clearing all denominators. Since Q is a field, you can

define geometry on it.

We start with Q18 solution space.

All solutions where charges zi differ by a common

multiple are physically equivalent so we define an

equivalence class to obtain PQ17.
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Projective space PQ17

zi

zj

2d surface through origin becomes a line in projective space

and a line through origin becomes a point
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Preliminaries

4 linear equations restrict PQ17 to a projective subspace

isomorphic to PQ13. Within this, we look for the

intersection of a quadratic surface

0 =
3∑
j=1

(
Q2
j − 2U 2

j +D2
j − L2

j + E2
j

)
and a cubic surface

0 =

3∑
j=1

(
6Q3

j + 3U 3
j + 3D3

j + 2L3
j + E3

j +N 3
j

)
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The Method of Chords2

“A chord intersecting a rational cubic surface at two

known rational points intersects it at 1 other Q point”

eg Rational cubic c(zi) = 0. Put a line through 2

known intersections a, b: L(t) = a + t(b − a). Along

line, c(L(t)) = kt(t− 1)(t− t0), where k, t0 ∈ Q.

Caveat: It is possible that the

line lies entirely within the

cubic surface, i.e. c(L(t)) =

0 irrespective of t.

2Newton, Fermat, C17th
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Double Points

Points which are solutions of multiplicity two. All partial

derivatives of the surface vanish there, eg (x, y) = (0, 0)

of the curve

(x2 + y2 + a2)2 − 4a2x2 − a4 = 0

B is a double point of the quadratic and the cubic

17



Method

• Every solution to quadratic R lies on some line SC
• B − L is double point of quadratic ⇒ RB in quadratic
• Every solution X lies on a line between some R and B.
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The Nitty-Gritty
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Solution Space

Is called a projective variety, i.e. not a manifold (in Q
anyway, but also there are singular cases of lines within

planes where the dimensionality decreases).

Over-parameterisation in terms of 18 integers

SQ1, SQ2, SU1, SU2, SD1, SD2, SD3, SL1, SL2, SE1, SE2,

SN1, SN2, SN3, a, b, r, t ∈ Q

It is at most 11-dimensional. S ·C = S ·B = 0. An inverse

(S = T, a = 0, b = 1, r = 0, t = 1), was checked against

21 549 920 all Anomaly-free Atlas solns.
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Sol: X = Y3 + t(B3−L3), t ∈ Q
XQ′1,2

= 0 XuR
′
1,2

= 0 XdR
′
1,2

= 0 XL′1,2
= 0

XeR
′
1,2

= 0 XH = −1/2 XQ′3
= 1/6 Xu′R3

= 2/3

Xd′R3
= −1/3 XL′3

= −1/2 Xe′R3
= −1 Xθ 6= 0

L = YtQ3
′
LHt

′
R + YbQ′3LH

cb′R + YτL3
′
LH

cτ ′R +H.c.,
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A Simple Z ′ Model
BCA, Davighi, 1809.01158: Add complex SM-singlet

scalar ‘flavon’ θX 6=0 which breaks gauged U(1)X:

SU(3)× SU(2)L × U(1)Y × U(1)X
〈θ〉 ∼Several TeV

SU(3)× SU(2)L × U(1)Y
〈H〉 ∼246 GeV

SU(3)× U(1)em

• SM fermion content
• Zero X charges for first two generations
• Expect SM×U(1)X to be subsumed in semisimple model
• Still worry about anomaly cancellation

22



LXψ = gX

(
1

6
uLΛ(uL)γρuL +

1

6
dLΛ(dL)γρdL−

1

2
nLΛ(nL)γρnL −

1

2
eLΛ(eL)γρeL+

2

3
uRΛ(uR)γρuR−

1

3
dRΛ(dR)γρdR − eRΛ(eR)γρeR

)
Z ′ρ,

Λ(I) ≡ V †I ξVI, ξ =

 0 0 0

0 0 0

0 0 1


Z ′ couplings, I ∈ {uL, dL, eL, νL, uR, dR, eR}

23



A simple limiting case

VuR = VdR = VeR = 1

for simplicity and the ease of passing bounds.

VdL =

 1 0 0

0 cos θ23 − sin θ23

0 sin θ23 cos θ23

 , VeL =

 1 0 0

0 0 1

0 1 0

 ,

⇒ VuL = VdLV
†
CKM and VνL = VeLU

†
PMNS.
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Important Z ′ Couplings

gX

1

6
(dL sL bL)

 0 0 0

0 sin2 θ23
1
2 sin 2θ23

0 1
2 sin 2θ23 cos2 θ23

 /Z
′

 dL
sL
bL

+

−1

2
(eL µL τL)

 0 0 0

0 1 0

0 0 0

 /Z
′

 eL
µL
τL
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Z − Z ′ mixing

Because Y3(H) = 1/2, B −W 3 −X bosons mix:

M2
N =

1

4

 g′2v2 −gg′v2 g′gXv
2

−gg′v2 g2v2 −ggXv2

g′gXv
2 −ggXv2 4g2

X〈θ〉2
(

1 + ε2

4

)
 −Bµ

−W 3
µ

−(X)µ

• v ≈ 246 GeV is SM Higgs VEV,
• 〈θ〉 ∼TeV. MZ′ = gX〈θ〉.
• gX = U(1)X gauge coupling
• ε ≡ v/〈θ〉 � 1
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Z − Z ′ mixing angle

sinαz ≈
gX√
g2 + g′2

(
MZ

M ′
Z

)2

� 1.

This gives small non-flavour universal couplings to the Z

boson propotional to gX and:

Zµ = cosαz
(
− sin θwBµ + cos θwW

3
µ

)
+ sinαzXµ,
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Z ′ Decay Modes

Mode BR Mode BR Mode BR

tt̄ 0.42 bb̄ 0.12 νν̄ ′ 0.08

µ+µ− 0.08 τ+τ− 0.30 other fifj ∼ O(10−4)

LHC Z ′ Production:
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Z ′ Searches3

3BCA, Banks, 2111.06691
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HL-LHC sensitivity4

4BCA, Banks, 2111.06691
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Why b̄sµ+µ−?

If we take these B−anomalies seriously, we may ask:

why are we seeing the first BSM flavour changing effects

particularly in the b→ sµ+µ− transition, not another one?

Perhaps it’s because, in hindsight:

• The largest BSM flavour effects are in heavier

generations
• We have many more bs than ts, particularly in LHCb
• Leptons in final states are good experimentally but not

(yet) τs: they are too difficult!
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On amazon.com∼=C20
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Summary

• The b → sµ+µ− anomalies look very interesting from a

BSM point of view: a consistent picture is emerging.
• Independent check awaited from Belle II in Japan in the

coming three years or so: e+e−(10.58 GeV)→ Υ(4s)→
oodles of B mesons.
• Tree-level explanations: leptoquarks and Z ′s.
• In case a Z ′ is found directly, measuring its couplings

may give us an experimental handle on the fermion mass

puzzle.
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Backup
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Stolen from Capdevila et al, Flavour Anomaly Workshop ’21
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BR(Bs→ µ+µ−): Bs = (b̄s), B0 = (b̄d)

36



B0→ K∗0(→ K+π−)µ+µ−
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P ′5

P ′5 = S5/
√
FL(1− FL), leading form factor uncertainties

cancel 5

5LHCb, 2003.04831
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Bs→ φµ+µ−: φ = (ss̄)
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Theory: uncertainties

parametric form factors non-local

MEs

BR(B →Mll) yes large large

angular no small large

BR(Bs→ ll) yes small no

LFU no tiny no

• Parametric uncertainties (eg Vts) easy to deal with
• Large theory uncertainties are taken into account in fits,

but one can argue about them
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Fits
Alguero et al, 2104.08921; Altmannshofer, Stangl, flavio 2103.13370;

Ciuchini et al, HEPfit 2011.01212; Hurth et al, superIso 2104.10058

L = N [C9(b̄Lγ
µsL)(µ̄γµµ) +C10(b̄Lγ

µsL)(µ̄γ5γµµ)] +H.c.

µL

µV
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Y3 Consequences

• Flavour changing TeV-scale Z ′ to do NCBAs: couples

dominantly to EW eigenstates of quarks and leptons of

the third family
• First two fermion families massless at renormalisable

level
• Their masses and fermion mixings generated by small

non-renormalisable operators

This explains the hierarchical heaviness of the third family

and small CKM angles
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Bs− B̄s Mixing

Measurement pretty much agrees with SM calculations.

Z ′
b̄

s

s̄

b

b̄

s

s̄

b

µ̄

µ

LQLQ

gsb
<∼ MZ′

194 TeV
but uncertain

from QCD sum rules and lattice6. Weaker on LQs.

MZ′ ≈ 31 TeV×√gsbgµµ, MLQ ≈ 31 TeV×√gsµgbµ
6King, Lenz, Rauh, arXiv:1904.00940
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B/EW Observables

SMEFT(MZ′)→smelli→WET(MW)→obs(mB)

In units of g2X/M
2
X:
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smelli observables

• 167 quarks: P ′5, BR(Bs → µ+µ−) and others with

significant theory errors
• 21 LFU FCNCs: RK, RK?, B →di-tau decays
• 31 EWPOs from LEP not assuming lepton flavour

universality
Theory uncertainties modelled as multi-variate Gaussians:

approximated to be independent of new physics.

SM:
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Global Fits MZ ′ = 3 TeV

3 2 1 0 1 2 3 4
pull

RK(1, 6)
RK * (0.045, 1.1)

RK * (1.1, 6)
P ′5(4, 6)

BR(Bs-> )
ms

BR(Bs-> )(1,6)
BR( b-> )(15,20)

Al
la
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, C
am

ar
go

-M
ol

in
a 
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d 

Da
vi

gh
i, 

20
21

SM
Y3
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TFHM Fit, 95% CL

0.0 0.5 1.0 1.5 2.0
gX(3 TeV/MX)

0.4

0.2

0.0
23

Allanach and Banks, 2021
Y3 Model

global

Relies on: smelli-2.2.0 (Aebischer, Kumar, Stangl, Straub, 1810.07698),

flavio-2.2.0 (Straub, 1810.08132), Wilson (Aebischer et al, 1712.05298)
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Z ′→ µµ ATLAS 13 TeV 139
fb−1

ATLAS analysis: look for two track-based isolated µ,

pT > 30 GeV. One reconstructed primary vertex. Keep

only highest scalar sum pT pair7

m2
µ1µ2

= (pµ1 + pµ2)
(
p1µ + p2µ

)
CMS also have released8 a 139 fb−1 analysis.

71903.06248
82103.02708
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ATLAS l+l− limits

1903.06248
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CDF II MW

As already noted, Z − Z ′ mixing implies

MW = ρ0MZ cos θ̂W

where

ρ0(SM) = (1.01019± 0.00009),

ρ0(Y3) ≈ 1 +
X2
Hg

2
X

g2 + g′2
M 2

Z

M 2
Z′
> 1.
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sY3 + t(B3− L3)

 0

 0.2

 0.4

 0.6

-6 -4 -2  0  2

p-
va
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e

t/s

Y3
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global
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e

t/s

Y3
EWPO
quarks

LFU
global

Left incl CDF II MW , Right excl

BCA, Davighi, 2205.12252

Pick Y3 − 3(B3 − L3) as a well fit example
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Best-fit point: incl CDF MW

7 6 5 4 3 2 1 0 1 2 3 4
pull

Ab
Ac
Ae
A
A

AFB
b

AFB
c

AFB
e

AFB

AFB

BR(W e )
BR(W )
BR(W )

W

Z
Rb
Rc
Re
R
R

MW
had
0

SM
s = 2, t = 6

3 2 1 0 1 2 3 4
pull

ms

RK(1, 6)
RK * (0.045, 1.1)

RK * (1.1, 6)
P ′5(2.5, 4)

P ′5(4, 6)
BR(Bs-> )

BR(Bs-> )(0.1,0.98)
BR(Bs-> )(1.1,2.5)

BR(Bs-> )(2.5,4)
BR(Bs-> )(4,6)

BR(Bs-> )(15,19)

SM
s = 2, t = 6

gX = 0.021×1 TeV/MZ′, θ23 = −0.0191, p = .08
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TFHM Z ′→ µ+µ−+SM obs
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1 fb−1 ≈ 106BB̄
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(g − 2)µ
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Trident Neutrino Process
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Light Z ′ for (g − 2)µ: Lµ− Lτ
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B3− L2 model’s9Z ′

9Bonilla, Modak, Srivastava, Valle, 1705.00915, Alonso, Cox, Han, Yanagida
1705.03858
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Hadronic Uncertainties
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Wilson Coefficients clij
In SM, can form an EFT since mB �MW :

Leff =
1

(36 TeV)2
clij(s̄γ

µPib)(l̄γµPjl) (1)

One loop weak interactions give clij ∼ ±O(1) in SM.

(1/36 TeV)2 = VtbV
∗
tsα/(4πv

2).

From now on, clij refer to beyond SM contribution.
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TFHM Near best-fit point
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2 4 6 8 10
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0
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2 SM
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Allanach, Camargo-Molina and Davighi, 2021
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Which Ones Work?

Options for a single BSM operator:

• ceij operators fine for RK(∗) but are disfavoured by global

fits including other observables.
• cµLR disfavoured: predicts enhancement in both RK and

RK∗

• cµRR, cµRL disfavoured: they pull RK and RK∗ in opposite

directions.
• cµLL = −1.06 fits well globally10.

10D’Amico et al, 1704.05438; Aebischer et al 1903.10434.
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Invisible Width of Z Boson

Γ
(exp)
inv = 499.0±1.5 MeV, whereas Γ

(SM)
inv = 501.44 MeV.

⇒ ∆Γ(exp) = Γ
(exp)
inv − Γ

(SM)
inv = −2.5± 1.5 MeV.

Lν̄νZ = − g

2 cos θw
ν ′Le/ZPLν

′
Le

−ν ′Lµ

(
g

2 cos θw
+

5

6
gF sinαz

)
/Zν ′Lµ

−ν ′Lτ

(
g

2 cos θw
− 8

6
gF sinαz

)
/Zν ′Lτ .
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Deformed TFHM

FQ′i = 0 FuR′i = 0 FdR′i = 0 FH = −1/2

FeR′1 = 0 FeR′2 = 2/3 FeR′3 = −5/3

FL′1 = 0 FL′2 = 5/6 FL′3 = −4/3

FQ′3 = 1/6 Fu′R3
= 2/3 Fd′R3

= −1/3 Fθ 6= 0

L = YtQ3
′
LHt

′
R + YbQ′3LH

cb′R +H.c.,
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Neutrino Masses

At dimension 5:

LSS =
1

2M
(L′3

T
Hc)(L′3H

c),

but if we add RH neutrinos, then integrate them out

LSS = 1/2
∑
ij

(L′iH
c)(M−1)ij(L

′
jH

c),

where now (M−1)ij may well have a non-trivial structure.

If (M−1)ij are of same order, large PMNS mixing results.
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Froggatt Neilsen Mechanism11

A means of generating the non-renormalisable Yukawa

terms, e.g. Xθ = 1/6:

YcQ′L
(F=0)
2 H (F=−1/2)c′R

(F=0) ∼ O

[(
〈θ〉
M

)3

Q′L2Hc
′
R

]

〈θ∗〉 〈θ∗〉 〈θ∗〉〈H0(F=−1/2)〉

Q
′(+1/6)
L Q

′(+2/6)
L Q

′(+3/6)
L

Q
′(0)
L2

c
′(0)
R2M M M

eg
(
〈θ〉
M

)
∼ 0.2

⇒ Yc/Yt ∼ 1/100

11C Froggatt and H Neilsen, NPB147 (1979) 277
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