Third Family Hypercharge

by
Ben Allanach
(DAMTP, University of Cambridge)

- Anomalies: $b \rightarrow$ sll
- QFT anomalies
- A simple-minded Z^{\prime} model
- Z^{\prime} searches

Cambridge Pheno Working Group

Where data and theory collide

Science \& Technology Facilities Council

Strange b Activity

$R_{K}^{(*)}$ in Standard Model

$$
R_{K}=\frac{B R\left(B \rightarrow K \mu^{+} \mu^{-}\right)}{B R\left(B \rightarrow K e^{+} e^{-}\right)}, \quad R_{K^{*}}=\frac{B R\left(B \rightarrow K^{*} \mu^{+} \mu^{-}\right)}{B R\left(B \rightarrow K^{*} e^{+} e^{-}\right)}
$$

These are rare decays (each $\mathrm{BR} \sim \mathcal{O}\left(10^{-7}\right)$) because they are absent at tree level in SM+EW+CKM

$b \rightarrow s \mu \mu$ Simplified Models

A good few $2-4 \sigma$ Discrepancies with SM predictions. Computing with look elsewhere effect implies a 4.3σ discrepancy with the SM (conservative theory errors). ${ }^{1}$

We have tree-level flavour changing new physics options:

${ }^{1}$ Isidori, Lancierini, Owen and Serra, arXiv:2104.05631

Extra $u(1)$ plus SM-singlets

Idea: break $\mathrm{SM} \times U(1)_{X}$ gauge group around a TeV to get Z^{\prime}. If $U(1)_{X}$ charges are family non-universal, we should impose quantum field theoretic anomaly cancellation.

- Other uses for Z^{\prime} : dark matter models, axions, fermion masses, ...
- 3 RH neutrinos
- Now, field labels denote the extra $u(1)$ charge
- ACCs become

$$
\begin{aligned}
3^{2} X: \quad 0 & =\sum_{j=1}^{0}\left(2 Q_{j}+U_{j}+D_{j}\right) \\
2^{2} X: \quad 0 & =\sum_{j=1}^{3}\left(3 Q_{j}+L_{j}\right) \\
Y^{2} X: \quad 0 & =\sum_{j=1}^{3}\left(Q_{j}+8 U_{j}+2 D_{j}+3 L_{j}+6 E_{j}\right), \\
\operatorname{grav}^{2} X: \quad 0 & =\sum_{j=1}^{3}\left(6 Q_{j}+3 U_{j}+3 D_{j}+2 L_{j}+E_{j}+N_{j}\right), \\
Y X^{2}: \quad 0 & =\sum_{j=1}^{3}\left(Q_{j}^{2}-2 U_{j}^{2}+D_{j}^{2}-L_{j}^{2}+E_{j}^{2}\right) \\
X^{3}: \quad 0 & =\sum_{j=1}^{3}\left(6 Q_{j}^{3}+3 U_{j}^{3}+3 D_{j}^{3}+2 L_{j}^{3}+E_{j}^{3}+N_{j}^{3}\right) .
\end{aligned}
$$

Diophantine Equations

- Since this is $u(1)$, charges are commensurate: looking for compact extensions like the SM
- Thus we are looking for solutions over \mathbb{Z}^{18}.
- Any overall real factor in charge can be absorbed in $u(1)_{X}$ gauge coupling: $\mathcal{L} \supset-g_{X} \sum_{\psi} X_{\psi} \bar{\psi} X_{\mu} \gamma^{\mu} \psi$
- General diophantine equations are difficult to solve analytically over the integers
- Number theory state-of-the art for general analytic solution of generic diophantine equations is roughly one cubic in three unknowns

Anomaly-free Atlas

To find solutions for fixed $n \leq 3$ and charges between -10 and 10 , we did a numerical scan $\left(21^{18} \sim 10^{24}\right)$: BCA, Davighi, Melville, arXiv:1812.04602.

An Anomaly-Free Atlas is available for public use: http://doi.org/10.5281/zenodo. 1478085

Extended to semisimple case (340) in BCA, Gripaios, ToobySmith 2104.14555 and MSSM $+3 \nu_{R} \times U(1)_{X}$ in BCA, Madigan, Tooby-Smith 2107.07926.

Davighi and Tooby-Smith 2206.11271 have investigated which $\mathrm{SM} \times U(1)_{X}$ models fit in semisimple completions.

We begin with 18 charges and 6 anomaly equations reduce these to a 12-dimensional surface of solutions, extending out to infinity, but sparser away from $\mathbf{0}$.

$Q_{\max }$	Solutions	Symmetry	Quadratics	Cubics	Time/sec
1	$\mathbf{3 8}$	16	144	38	0.0
2	$\mathbf{3 5 8}$	48	31439	2829	0.0
3	$\mathbf{4 1 1 6}$	154	1571716	69421	0.1
4	$\mathbf{2 4 5 5 2}$	338	34761022	932736	0.6
5	$\mathbf{1 1 1 1 5 2}$	796	442549238	7993169	6.8
6	$\mathbf{4 3 5 3 0 5}$	1218	3813718154	49541883	56
7	$\mathbf{1 3 5 8 3 8 8}$	2332	24616693253	241368652	312
8	$\mathbf{3 6 1 2 7 3 4}$	3514	127878976089	978792750	1559
9	$\mathbf{9 5 8 7 0 8 5}$	5648	558403872034	3432486128	6584
10	$\mathbf{2 1 5 4 6 9 2 0}$	7540	2117256832910	10687426240	24748

Inequivalent solutions with 3 RH ν

Known Solutions

	Q_{1}	Q_{2}	Q_{3}	U_{1}	U_{2}	U_{3}	D_{1}	D_{2}	D_{3}	L_{1}	L_{2}	L_{3}	E_{1}	E_{2}	E_{3}	N_{1}	N_{2}	N_{3}
A	0	0	1	0	0	-4	0	0	-2	0	0	-3	0	0	6	0	0	0
B	1	1	1	-1	-1	-1	-1	-1	-1	-3	-3	-3	3	3	3	3	3	3
C	-1	0	1	-1	0	1	-1	0	1	-1	0	1	-1	0	1	0	0	0

- A is TFHM (BCA, Davighi, arXiv:1809.01158)
- B is $B-L$, vector-like
- C has inter-family cancellation

Analytic Solution

Want a full, general analytic solution for any $Q_{\text {max }}$.
First step is to convert it into a problem in geometry by noting that solutions over \mathbb{Q} are equivalent to those over \mathbb{Z} by clearing all denominators. Since \mathbb{Q} is a field, you can define geometry on it.

We start with \mathbb{Q}^{18} solution space.
All solutions where charges z_{i} differ by a common multiple are physically equivalent so we define an equivalence class to obtain $P \mathbb{Q}^{17}$.

Projective space $P \mathbb{Q}^{17}$

2d surface through origin becomes a line in projective space and a line through origin becomes a point

Preliminaries

4 linear equations restrict $P \mathbb{Q}^{17}$ to a projective subspace isomorphic to $P \mathbb{Q}^{13}$. Within this, we look for the intersection of a quadratic surface

$$
0=\sum_{j=1}^{3}\left(Q_{j}^{2}-2 U_{j}^{2}+D_{j}^{2}-L_{j}^{2}+E_{j}^{2}\right)
$$

and a cubic surface

$$
0=\sum_{j=1}^{3}\left(6 Q_{j}^{3}+3 U_{j}^{3}+3 D_{j}^{3}+2 L_{j}^{3}+E_{j}^{3}+N_{j}^{3}\right)
$$

The Method of Chords ${ }^{2}$

"A chord intersecting a rational cubic surface at two known rational points intersects it at 1 other \mathbb{Q} point" eg Rational cubic $c\left(z_{i}\right)=0$. Put a line through 2 known intersections $a, b: \quad L(t)=a+t(b-a)$. Along line, $c(L(t))=k t(t-1)\left(t-t_{0}\right)$, where $k, t_{0} \in \mathbb{Q}$.

Caveat: It is possible that the line lies entirely within the cubic surface, i.e. $c(L(t))=$ 0 irrespective of t.
${ }^{2}$ Newton, Fermat, C17 ${ }^{\text {th }}$

Double Points

Points which are solutions of multiplicity two. All partial derivatives of the surface vanish there, eg $(x, y)=(0,0)$ of the curve

$$
\left(x^{2}+y^{2}+a^{2}\right)^{2}-4 a^{2} x^{2}-a^{4}=0
$$

B is a double point of the quadratic and the cubic

Method

- Every solution to quadratic R lies on some line $S C$
- $B-L$ is double point of quadratic $\Rightarrow R B$ in quadratic
- Every solution X lies on a line between some R and B.

The Nitty-Gritty

$$
\begin{align*}
& Q_{1}=\Gamma-\Sigma+\Lambda S_{Q_{1}}, \\
& Q_{2}=\Gamma+\Lambda S_{Q_{2}}, \\
& Q_{3}=\Gamma+\Sigma+\Lambda S_{Q_{3}}, \\
& U_{1}=-\Gamma-\Sigma+\Lambda S_{U_{1}}, \\
& U_{2}=-\Gamma+\Lambda S_{U_{2}}, \\
& U_{3}=-\Gamma+\Sigma+\Lambda S_{U_{3}}, \\
& D_{1}=-\Gamma-\Sigma+\Lambda S_{D_{1}}, \\
& D_{2}=-\Gamma+\Lambda S_{D_{2}}, \\
& D_{3}=-\Gamma+\Sigma+\Lambda S_{D_{3}}, \tag{3}\\
& L_{1}=-3 \Gamma-\Sigma+\Lambda S_{L_{1}}, \\
& L_{2}=-3 \Gamma+\Lambda S_{L_{2}}, \\
& L_{3}=-3 \Gamma+\Sigma+\Lambda S_{L_{3}}, \\
& E_{1}=3 \Gamma-\Sigma+\Lambda S_{E_{1}}, \\
& E_{2}=3 \Gamma+\Lambda S_{E_{2}}, \\
& E_{3}=3 \Gamma+\Sigma+\Lambda S_{E_{3}}, \\
& N_{1}=3 \Gamma+\Lambda S_{N_{1}}, \\
& N_{2}=3 \Gamma+\Lambda S_{N_{2}}, \\
& N_{3}=3 \Gamma+\Lambda S_{N_{3}},
\end{align*}
$$

$$
\begin{aligned}
& \Gamma=c(R, R, R)+r \delta_{c(B, R, R), 0} \delta_{c(R, R, R), 0}, \\
& \Sigma=\left(-3 c(B, R, R)+t \delta_{c(B, R, R), 0} \delta_{c(R, R, R), 0}\right) \\
& \left(q(S, S)+a \delta_{q(S, S), 0} \delta_{q(C, S), 0}\right), \\
& \Lambda=\left(-3 c(B, R, R)+t \delta_{c(B, R, R), 0} \delta_{c(R, R, R), 0}\right) \\
& \left(-2 q(C, S)+b \delta_{q(S, S), 0} \delta_{q(C, S), 0}\right) \text {. } \\
& q\left(P, P^{\prime}\right):=\sum_{i=1}\left(Q_{i} Q_{i}^{\prime}-2 U_{i} U_{i}{ }^{\prime}+D_{i} D_{i}{ }^{\prime}\right. \\
& \left.-L_{i} L_{i}{ }^{\prime}+E_{i} E_{i}{ }^{\prime}\right), \\
& c\left(P, P^{\prime}, P^{\prime \prime}\right):=\sum_{i=1}^{3}\left(6 Q_{i} Q_{i}{ }^{\prime} Q_{i}{ }^{\prime \prime}+3 U_{i} U_{i}{ }^{\prime} U_{i}^{\prime \prime}+3 D_{i} D_{i}{ }^{\prime} D_{i}{ }^{\prime \prime}\right. \\
& \left.+2 L_{i} L_{i}{ }^{\prime} L_{i}{ }^{\prime \prime}+E_{i} E_{i}{ }^{\prime} E_{i}{ }^{\prime \prime}+N_{i} N_{i}{ }^{\prime}{ }^{\prime}{ }_{i}{ }^{\prime \prime}\right) \text {. } \\
& R=q(S, S) C-2 q(C, S) S+\delta_{q(S, S), 0} \delta_{q(C, S), 0}(a C+b S), \\
& S_{Q_{3}}=\frac{1}{2}\left[-2 S_{Q_{1}}-2 S_{Q_{2}}+\sum_{i=1}^{3}\left(S_{D_{i}}+S_{N_{i}}\right)\right], \\
& S_{U_{3}}=-\left[S_{U_{1}}+S_{U_{2}}+\sum_{i=1}^{3}\left(2 S_{D_{i}}+S_{N_{i}}\right)\right] \text {, } \\
& S_{L_{3}}=-\frac{1}{2}\left[2 S_{L_{1}}+2 S_{L_{2}}+3 \sum_{i=1}^{3}\left(S_{D_{i}}+S_{N_{i}}\right)\right], \\
& S_{E_{3}}=-S_{E_{1}}-S_{E_{2}}+\sum^{3}\left(3 S_{D_{i}}+2 S_{N_{i}}\right) .
\end{aligned}
$$

Solution Space

Is called a projective variety, i.e. not a manifold (in \mathbb{Q} anyway, but also there are singular cases of lines within planes where the dimensionality decreases).

Over-parameterisation in terms of 18 integers

$$
\begin{aligned}
S_{Q_{1}}, S_{Q_{2}}, S_{U_{1}}, S_{U_{2}}, S_{D_{1}}, S_{D_{2}}, & S_{D_{3}}, S_{L_{1}}, S_{L_{2}}, S_{E_{1}}, S_{E_{2}} \\
& S_{N_{1}}, S_{N_{2}}, S_{N_{3}}, a, b, r, t \in \mathbb{Q}
\end{aligned}
$$

It is at most 11-dimensional. $S \cdot C=S \cdot B=0$. An inverse ($S=T, a=0, b=1, r=0, t=1$), was checked against 21549920 all Anomaly-free Atlas solns.

Sol: $X=Y_{3}+t\left(B_{3}-L_{3}\right), t \in \mathbb{Q}$

$$
\begin{array}{cccc}
X_{Q_{1,2}^{\prime}}=0 & X_{u_{R_{1,2}^{\prime}}}=0 & X_{d_{R_{1}^{\prime}, 2}}=0 & X_{L_{1,2}^{\prime}}=0 \\
X_{e_{R_{1,2}^{\prime}}}=0 & X_{H}=-1 / 2 & X_{Q_{3}^{\prime}}=1 / 6 & X_{u_{R 3}^{\prime}}=2 / 3 \\
X_{d_{R 3}^{\prime}}^{=}=1 / 3 & X_{L_{3}^{\prime}}=-1 / 2 & X_{e_{R 3}^{\prime}}=-1 & X_{\theta} \neq 0
\end{array}
$$

$$
\mathcal{L}=Y_{t} \overline{Q_{3}^{\prime}} H t_{R}^{\prime}+Y_{b} \overline{Q_{3 L}^{\prime}} H^{c} b_{R}^{\prime}+Y_{\tau} \overline{L_{3}^{\prime}} H^{c} \tau_{R}^{\prime}+H . c .
$$

A Simple Z^{\prime} Model

BCA, Davighi, 1809.01158: Add complex SM-singlet scalar 'flavon' $\theta_{X \neq 0}$ which breaks gauged $U(1)_{X}$:

$$
\begin{aligned}
& S U(3) \times S U(2)_{L} \times U(1)_{Y} \times U(1)_{X} \\
& \langle\theta\rangle \sim \text { Several } \mathrm{TeV} \\
& \begin{aligned}
& S U(3) \times S U(2)_{L} \times U(1)_{Y} \\
& \begin{array}{l}
\langle H\rangle \sim 246 \mathrm{GeV} \\
\\
\\
\\
\\
\hline H(3) \times U(1)_{e m}
\end{array}
\end{aligned}
\end{aligned}
$$

- SM fermion content
- Zero X charges for first two generations
- Expect $\mathrm{SM} \times U(1)_{X}$ to be subsumed in semisimple model
- Still worry about anomaly cancellation

$$
\begin{aligned}
\mathcal{L}_{X \psi}=g_{X} & \left(\frac{1}{6} \overline{\mathbf{u}_{\mathbf{L}}} \Lambda^{\left(u_{L}\right)} \gamma^{\rho} \mathbf{u}_{\mathbf{L}}+\frac{1}{6} \overline{\mathbf{d}_{\mathbf{L}}} \Lambda^{\left(d_{L}\right)} \gamma^{\rho} \mathbf{d}_{\mathbf{L}}-\right. \\
& \frac{1}{2} \overline{\mathbf{n}_{\mathbf{L}}} \Lambda^{\left(n_{L}\right)} \gamma^{\rho} \mathbf{n}_{\mathbf{L}}-\frac{1}{2} \overline{\overline{\mathbf{e}}_{\mathbf{L}}} \Lambda^{\left(e_{L}\right)} \gamma^{\rho} \mathbf{e}_{\mathbf{L}}+ \\
& \frac{2}{3} \overline{\mathbf{u}_{\mathbf{R}}} \Lambda^{\left(u_{R}\right)} \gamma^{\rho} \mathbf{u}_{\mathbf{R}}- \\
& \left.\frac{1}{3} \overline{\mathbf{d}_{\mathbf{R}}} \Lambda^{\left(d_{R}\right)} \gamma^{\rho} \mathbf{d}_{\mathbf{R}}-\overline{\mathbf{e}_{\mathbf{R}}} \Lambda^{\left(e_{R}\right)} \gamma^{\rho} \mathbf{e}_{\mathbf{R}}\right) Z_{\rho}^{\prime}, \\
\Lambda^{(I)} \equiv & V_{I}^{\dagger} \xi V_{I}, \quad \xi=\left(\begin{array}{llll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)
\end{aligned}
$$

Z^{\prime} couplings, $I \in\left\{u_{L}, d_{L}, e_{L}, \nu_{L}, u_{R}, d_{R}, e_{R}\right\}$

A simple limiting case

$$
V_{u_{R}}=V_{d_{R}}=V_{e_{R}}=1
$$

for simplicity and the ease of passing bounds.

$$
\begin{aligned}
& V_{d_{L}}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \theta_{23} & -\sin \theta_{23} \\
0 & \sin \theta_{23} & \cos \theta_{23}
\end{array}\right), \quad V_{e_{L}}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right), \\
& \Rightarrow V_{u_{L}}=V_{d_{L}} V_{C K M}^{\dagger} \text { and } V_{\nu_{L}}=V_{e_{L}} U_{P M N S}^{\dagger} .
\end{aligned}
$$

Important Z^{\prime} Couplings

$$
g_{X}\left[\frac{1}{6}\left(\overline{d_{L}} \overline{s_{L}} \overline{b_{L}}\right)\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & \sin ^{2} \theta_{23} & \frac{1}{2} \sin 2 \theta_{23} \\
0 & \frac{1}{2} \sin 2 \theta_{23} & \cos ^{2} \theta_{23}
\end{array}\right) \not^{\prime}\left(\begin{array}{c}
d_{L} \\
s_{L} \\
b_{L}
\end{array}\right)+\right.
$$

$$
\left.-\frac{1}{2}\left(\overline{e_{L}} \overline{\mu_{L}} \overline{\tau_{L}}\right)\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right) \boldsymbol{\not}^{\prime}\left(\begin{array}{c}
e_{L} \\
\mu_{L} \\
\tau_{L}
\end{array}\right)\right]
$$

$Z-Z^{\prime}$ mixing

Because $Y_{3}(H)=1 / 2, B-W^{3}-X$ bosons mix:

$$
\mathcal{M}_{N}^{2}=\frac{1}{4}\left(\begin{array}{ccc}
g^{\prime 2} v^{2} & -g g^{\prime} v^{2} & g^{\prime} g_{X} v^{2} \\
-g g^{\prime} v^{2} & g^{2} v^{2} & -g g_{X} v^{2} \\
g^{\prime} g_{X} v^{2} & -g g_{X} v^{2} & 4 g_{X}^{2}\langle\theta\rangle^{2}\left(1+\frac{\epsilon^{2}}{4}\right)
\end{array}\right) \begin{gathered}
-B_{\mu} \\
-W_{\mu}^{3} \\
-(X)_{\mu}
\end{gathered}
$$

- $v \approx 246 \mathrm{GeV}$ is SM Higgs VEV,
- $\langle\theta\rangle \sim \mathrm{TeV} . M_{Z^{\prime}}=g_{X}\langle\theta\rangle$.
- $g_{X}=U(1)_{X}$ gauge coupling
- $\epsilon \equiv v /\langle\theta\rangle \ll 1$

$Z-Z^{\prime}$ mixing angle

$$
\sin \alpha_{z} \approx \frac{g_{X}}{\sqrt{g^{2}+g^{\prime 2}}}\left(\frac{M_{Z}}{M_{Z}^{\prime}}\right)^{2} \ll 1 .
$$

This gives small non-flavour universal couplings to the Z boson propotional to g_{X} and:

$$
Z_{\mu}=\cos \alpha_{z}\left(-\sin \theta_{w} B_{\mu}+\cos \theta_{w} W_{\mu}^{3}\right)+\sin \alpha_{z} X_{\mu},
$$

Z^{\prime} Decay Modes

Mode	BR	Mode	BR	Mode	BR
$t \bar{t}$	0.42	$b \bar{b}$	0.12	$\nu \bar{\nu}^{\prime}$	0.08
$\mu^{+} \mu^{-}$	0.08	$\tau^{+} \tau^{-}$	0.30	other $f_{i} f_{j}$	$\sim \mathcal{O}\left(10^{-4}\right)$

Z^{\prime} Searches ${ }^{3}$

ATLAS di-muon b-tag ATLAS di-muon b-veto
CMS di-muon
ATLAS di-muon
ATLAS di-tau
Favoured region

[^0]
HL-LHC sensitivity ${ }^{4}$

---- Current Bound
Favoured region
ATLAS di-muon b-tag ATLAS di-muon b-veto
CMS di-muon
ATLAS di-muon ATLAS di-tau
ATLAS di-jet $2 b$-tag ATLAS $t \bar{t}$

[^1]
Why $\bar{b} s \mu^{+} \mu^{-}$?

If we take these B-anomalies seriously, we may ask: why are we seeing the first BSM flavour changing effects particularly in the $b \rightarrow s \mu^{+} \mu^{-}$transition, not another one?

Perhaps it's because, in hindsight:

- The largest BSM flavour effects are in heavier generations
- We have many more bs than $t s$, particularly in LHCb
- Leptons in final states are good experimentally but not (yet) $\tau \mathrm{s}$: they are too difficult!

On amazon.com~€20

Symmetries, Particles and Fields

Ben Allanach

Summary

- The $b \rightarrow s \mu^{+} \mu^{-}$anomalies look very interesting from a BSM point of view: a consistent picture is emerging.
- Independent check awaited from Belle II in Japan in the coming three years or so: $e^{+} e^{-}(10.58 \mathrm{GeV}) \rightarrow \Upsilon(4 s) \rightarrow$ oodles of B mesons.
- Tree-level explanations: leptoquarks and Z^{\prime} s.
- In case a Z^{\prime} is found directly, measuring its couplings may give us an experimental handle on the fermion mass puzzle.

Backup

Stolen from Capdevila et al, Flavour Anomaly Workshop '21
$B R\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right): \quad B_{s}=\left(\sigma_{0}, B^{0}=\left(\sigma_{0}\right)\right.$

$B^{0} \rightarrow K^{* 0}\left(\rightarrow K^{+} \pi^{-}\right) \mu^{+} \mu^{-}$

Decay fully described by three helicity angles $\vec{\Omega}=\left(\theta_{\ell}, \theta_{K}, \phi\right)$ and $q^{2}=m_{\mu \mu}^{2}$

$$
\begin{aligned}
\frac{1}{\mathrm{~d}(\Gamma+\bar{\Gamma}) / \mathrm{d} q^{2}} \frac{\mathrm{~d}^{3}(\Gamma+\bar{\Gamma})}{\mathrm{d} \vec{\Omega}} & =\frac{9}{32 \pi}\left[\frac{3}{4}\left(1-F_{\mathrm{L}}\right) \sin ^{2} \theta_{K}+F_{\mathrm{L}} \cos ^{2} \theta_{K}+\frac{1}{4}\left(1-F_{\mathrm{L}}\right) \sin ^{2} \theta_{K} \cos 2 \theta_{\ell}\right. \\
& -F_{\mathrm{L}} \cos ^{2} \theta_{K} \cos 2 \theta_{\ell}+S_{3} \sin ^{2} \theta_{K} \sin ^{2} \theta_{\ell} \cos 2 \phi \\
& +S_{4} \sin 2 \theta_{K} \sin 2 \theta_{\ell} \cos \phi+S_{5} \sin 2 \theta_{K} \sin \theta_{\ell} \cos \phi \\
& +\frac{4}{3} A_{\mathrm{FB}} \sin ^{2} \theta_{K} \cos \theta_{\ell}+S_{7} \sin 2 \theta_{K} \sin \theta_{\ell} \sin \phi \\
& \left.+S_{8} \sin 2 \theta_{K} \sin 2 \theta_{\ell} \sin \phi+S_{9} \sin ^{2} \theta_{K} \sin ^{2} \theta_{\ell} \sin 2 \phi\right]
\end{aligned}
$$

P_{5}^{\prime}

$P_{5}^{\prime}=S_{5} / \sqrt{F_{L}\left(1-F_{L}\right)}$, leading form factor uncertainties cancel ${ }^{5}$

[^2]$B_{s} \rightarrow \phi \mu^{+} \mu^{-}: \phi=(s \bar{s})$

Theory: uncertainties

	parametric	form factors	non-local MEs
$B R(B \rightarrow M l l)$	yes	large	large
angular	no	small	large
$B R\left(B_{s} \rightarrow l l\right)$	yes	small	no
LFU	no	tiny	no

- Parametric uncertainties (eg $V_{t s}$) easy to deal with
- Large theory uncertainties are taken into account in fits, but one can argue about them

Fits

Alguero et al, 2104.08921; Altmannshofer, Stangl, flavio 2103.13370; Ciuchini et al, HEPfit 2011.01212; Hurth et al, superIso 2104.10058

$$
\mathcal{L}=N\left[C_{9}\left(\bar{b}_{L} \gamma^{\mu} s_{L}\right)\left(\bar{\mu} \gamma_{\mu} \mu\right)+C_{10}\left(\bar{b}_{L} \gamma^{\mu} s_{L}\right)\left(\bar{\mu} \gamma^{5} \gamma_{\mu} \mu\right)\right]+H . c .
$$

global fit

41
fit to LFU observables $+B_{s} \rightarrow \mu \mu$

Y_{3} Consequences

- Flavour changing TeV -scale Z^{\prime} to do NCBAs: couples dominantly to EW eigenstates of quarks and leptons of the third family
- First two fermion families massless at renormalisable level
- Their masses and fermion mixings generated by small non-renormalisable operators

This explains the hierarchical heaviness of the third family and small CKM angles

$B_{s}-\bar{B}_{s}$ Mixing

Measurement pretty much agrees with SM calculations.

from QCD sum rules and lattice ${ }^{6}$. Weaker on LQs.
$M_{Z^{\prime}} \approx 31 \mathrm{TeV} \times \sqrt{g_{s b} g_{\mu \mu}}, \quad M_{L Q} \approx 31 \mathrm{TeV} \times \sqrt{g_{s \mu} g_{b \mu}}$
${ }^{6}$ King, Lenz, Rauh, arXiv:1904.00940

$B /$ EW Observables

$\operatorname{SMEFT}\left(M_{Z^{\prime}}\right) \rightarrow$ smelli $\rightarrow \mathrm{WET}\left(M_{W}\right) \rightarrow \mathrm{obs}\left(m_{B}\right)$

In units of g_{X}^{2} / M_{X}^{2} :

WC	value	WC	value
$C_{I I}^{2222}$	- $-\frac{1}{8}$	$\left(\mathrm{C}_{\mathrm{lq}}^{(1)}\right)^{22 x_{j}}$	$\frac{1}{12} \Lambda_{\xi}^{\left(d_{L}\right)}$
$\left(C_{q q}^{(1)}\right)^{i j k t}$		$C_{e c}^{333}$	- $\frac{1}{2}$
$C_{\text {vas }}^{\text {a33 }}$	$-\frac{2}{9}$	$C_{d d}^{333}$	$-\frac{1}{18}$
$C_{\text {ea }}^{333}$	$\frac{2}{3}$	$C_{e d}^{3333}$	$-\frac{1}{3}$
$\left(C_{\text {ud }}^{(1)}\right)^{3333}$	$\frac{2}{9}$	$C_{l e}^{2233}$	$-\frac{1}{2}$
C_{12}^{2233}	$\frac{1}{3}$	$C_{l d}^{2233}$	$-\frac{1}{6}$
$C_{q e}^{i j 33}$	$\frac{1}{6} A_{\epsilon}^{\left(d_{L}\right)}$	$\left(C_{\text {gu }}^{(1)}\right)^{2333}$	$-\frac{1}{9} A_{\varepsilon}^{\left(d_{L}\right)}$
$\left(C_{q d}^{(1)}\right)^{i j 33}$	$\frac{1}{18} A_{\xi, i j}^{\left(d_{L}\right)}$	$\left(C_{\phi l}^{(1)}\right)^{22}$	$\frac{1}{4}$
$\left(C_{\phi q}^{(1)}\right)^{i j}$	$-\frac{1}{12} \Lambda_{\xi i j}^{\left(d_{L}\right)}$	$C_{\text {de }}^{33}$	$\frac{1}{2}$
$C_{\text {¢ }}^{33}$	$-\frac{1}{3}$	$C_{\phi d}^{3 a}$	$\frac{1}{6}$
$C_{\phi D}$	$-\frac{1}{2}$	$C_{\phi \square}$	$-\frac{1}{8}$

smelli observables

- 167 quarks: $P_{5}^{\prime}, B R\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)$and others with significant theory errors
- 21 LFU FCNCs: $R_{K}, R_{K^{\star}}, B \rightarrow$ di-tau decays
- 31 EWPOs from LEP not assuming lepton flavour universality
Theory uncertainties modelled as multi-variate Gaussians: approximated to be independent of new physics.

SM:

data set	χ^{2}	n	p-value
quarks	221.6	167	.003
LFU FCNCs	35.3	21	.026
EWPOs	35.7	31	.26
global	292.6	219	.00065

Global Fits $M_{Z^{\prime}}=3 \mathrm{TeV}$

TFHM Fit, 95\% CL

Relies on: smelli-2.2.0 (Aebischer, Kumar, Stangl, Straub, 1810.07698), flavio-2.2.0 (Straub, 1810.08132), Wilson (Aebischer et al, 1712.05298)

$Z^{\prime} \rightarrow \mu \mu$ ATLAS 13 TeV 139 fb^{-1}

ATLAS analysis: look for two track-based isolated μ, $p_{T}>30 \mathrm{GeV}$. One reconstructed primary vertex. Keep only highest scalar sum p_{T} pair 7

$$
m_{\mu_{1} \mu_{2}}^{2}=\left(p_{1}^{\mu}+p_{2}^{\mu}\right)\left(p_{1 \mu}+p_{2 \mu}\right)
$$

CMS also have released ${ }^{8}$ a $139 \mathrm{fb}^{-1}$ analysis.

[^3]

ATLAS $l^{+} l^{-}$limits

CDF II M_{W}

As already noted, $Z-Z^{\prime}$ mixing implies

$$
M_{W}=\rho_{0} M_{Z} \cos \hat{\theta}_{W}
$$

where

$$
\begin{aligned}
\rho_{0}(S M) & =(1.01019 \pm 0.00009) \\
\rho_{0}\left(Y_{3}\right) & \approx 1+\frac{X_{H}^{2} g_{X}^{2}}{g^{2}+g^{\prime 2}} \frac{M_{Z}^{2}}{M_{Z^{\prime}}^{2}}>1
\end{aligned}
$$

$$
s Y_{3}+t\left(B_{3}-L_{3}\right)
$$

Left incl CDF II M_{W}, Right excl
BCA, Davighi, 2205. 12252
Pick $Y_{3}-3\left(B_{3}-L_{3}\right)$ as a well fit example

Best-fit point: incl CDF M_{W}

$g_{X}=0.021 \times 1 \mathrm{TeV} / M_{Z^{\prime}}, \theta_{23}=-0.0191, p=.08$

TFHM $Z^{\prime} \rightarrow \mu^{+} \mu^{-}+\mathbf{S M}$ obs

BCA, Bulteworth, Corbelt, 2110.13518

$\mathbf{1} \mathbf{f b}^{-1} \approx 10^{6} B \bar{B}$

$$
(g-2)_{\mu}
$$

Trident Neutrino Process

FIG. 10. Neutrino trident process that leads to constraints on the Z^{μ} coupling strength to neutrinos-muons, namely $M_{Z^{\prime}} / g_{v \mu} \gtrsim 750 \mathrm{GeV}$.

Light Z^{\prime} for $(g-2)_{\mu}: L_{\mu}-L_{\tau}$

Altmannshofer, Gori, Martin-Albo, Sousa, Wallbank 1902.06765

$B_{3}-L_{2}$ model's $^{9} Z^{\prime}$

${ }^{9}$ Bonilla, Modak, Srivastava, Valle, 1705.00915, Alonso, Cox, Han, Yanagida 1705.03858

Hadronic Uncertainties

- Hadronic effects like charm loop are photon-mediated \Rightarrow vector-like coupling to leptons just like C_{9}

- How to disentangle NP \leftrightarrow QCD?
- Hadronic effect can have different q^{2} dependence
- Hadronic effect is lepton flavour universal ($\rightarrow R_{K}$!)

Wilson Coefficients $c_{i j}^{l}$

 In SM, can form an EFT since $m_{B} \ll M_{W}$:$$
\begin{equation*}
\mathcal{L}_{\mathrm{eff}}=\frac{1}{(36 \mathrm{TeV})^{2}} c_{i j}^{l}\left(\bar{s} \gamma^{\mu} P_{i} b\right)\left(\bar{l} \gamma_{\mu} P_{j} l\right) \tag{1}
\end{equation*}
$$

One loop weak interactions give $c_{i j}^{l} \sim \pm \mathcal{O}(1)$ in SM . $(1 / 36 \mathrm{TeV})^{2}=V_{t b} V_{t s}^{*} \alpha /\left(4 \pi v^{2}\right)$.
From now on, $c_{i j}^{l}$ refer to beyond SM contribution.

TFHM Near best-fit point

$M_{X}=3.0 \mathrm{TeV}$
$g_{x}=0.418$
$-\quad$ quarks LFU FCNCs EWPOs

- global θ_{23}

Which Ones Work?

Options for a single BSM operator:

- $c_{i j}^{e}$ operators fine for $R_{K^{(*)}}$ but are disfavoured by global fits including other observables.
- $c_{L R}^{\mu}$ disfavoured: predicts enhancement in both R_{K} and $R_{K^{*}}$
- $c_{R R^{\prime}}^{\mu}, c_{R L}^{\mu}$ disfavoured: they pull R_{K} and $R_{K^{*}}$ in opposite directions.
- $c_{L L}^{\mu}=-1.06$ fits well globally ${ }^{10}$.
${ }^{10}$ D'Amico et al, 1704.05438; Aebischer et al 1903.10434.

Invisible Width of Z Boson

$\Gamma_{\text {inv }}^{(\text {exp })}=499.0 \pm 1.5 \mathrm{MeV}$, whereas $\Gamma_{\text {inv }}^{(S M)}=501.44 \mathrm{MeV}$.

$$
\begin{aligned}
\Rightarrow \Delta \Gamma^{(\exp)}= & \Gamma_{\mathrm{inv}}^{(\exp)}-\Gamma_{\mathrm{inv}}^{(\mathrm{SM})}=-2.5 \pm 1.5 \mathrm{MeV} . \\
\mathcal{L}_{\bar{\nu} \nu Z}= & -\frac{g}{2 \cos \theta_{w}} \overline{\nu_{L e}^{\prime}} \mathrm{Z}^{2} P_{L} \nu_{L e}^{\prime} \\
& -\overline{\nu_{L \mu}^{\prime}}\left(\frac{g}{2 \cos \theta_{w}}+\frac{5}{6} g_{F} \sin \alpha_{z}\right) \not 中^{\prime} \nu_{L \mu}^{\prime} \\
& -\overline{\nu_{L \tau}^{\prime}}\left(\frac{g}{2 \cos \theta_{w}}-\frac{8}{6} g_{F} \sin \alpha_{z}\right) \not 中^{\prime} \nu_{L \tau}^{\prime}
\end{aligned}
$$

Deformed TFHM

$$
\begin{array}{cccc}
F_{Q_{i}^{\prime}}=0 & F_{u_{R i}^{\prime}}=0 & F_{d_{R i}^{\prime}}=0 & F_{H}=-1 / 2 \\
F_{e_{R 1}^{\prime}}=0 & F_{e_{R_{2}^{\prime}}^{\prime}}=2 / 3 & F_{e_{R_{3}^{\prime}}}=-5 / 3 & \\
F_{L_{1}^{\prime}}=0 & F_{L_{2}^{\prime}}=5 / 6 & F_{L_{3}^{\prime}}=-4 / 3 & \\
F_{Q_{3}^{\prime}}=1 / 6 & F_{u_{R 3}^{\prime}}=2 / 3 & F_{d_{R 3}^{\prime}}=-1 / 3 & F_{\theta} \neq 0
\end{array}
$$

$$
\mathcal{L}=Y_{t} \overline{Q_{3}{ }_{L}^{\prime}} H t_{R}^{\prime}+Y_{b} \overline{Q_{3 L}^{\prime}} H^{c} b_{R}^{\prime}+H . c .
$$

Neutrino Masses

At dimension 5:

$$
\mathcal{L}_{S S}=\frac{1}{2 M}\left(L_{3}^{\prime T} H^{c}\right)\left(L_{3}^{\prime} H^{c}\right)
$$

but if we add RH neutrinos, then integrate them out

$$
\mathcal{L}_{S S}=1 / 2 \sum_{i j}\left(L_{i}^{\prime} H^{c}\right)\left(M^{-1}\right)_{i j}\left(L_{j}^{\prime} H^{c}\right)
$$

where now $\left(M^{-1}\right)_{i j}$ may well have a non-trivial structure. If $\left(M^{-1}\right)_{i j}$ are of same order, large PMNS mixing results.

Froggatt Neilsen Mechanism ${ }^{11}$

A means of generating the non-renormalisable Yukawa terms, e.g. $X_{\theta}=1 / 6$:

$$
Y_{c} \overline{Q_{L 2}^{\prime(F=0)}} H^{(F=-1 / 2)} c_{R}^{\prime}{ }^{(F=0)} \sim \mathcal{O}\left[\left(\frac{\langle\theta\rangle}{M}\right)^{3} \overline{Q_{L 2}^{\prime}} H c_{R}^{\prime}\right]
$$

${ }^{11}$ C Froggatt and H Neilsen, NPB147 (1979) 277

[^0]: ${ }^{3}$ BCA, Banks, 2111.06691

[^1]: ${ }^{4}$ BCA, Banks, 2111.06691

[^2]: ${ }^{5}$ LHCb, 2003. 04831

[^3]: ${ }^{7} 1903.06248$
 ${ }^{8} 2103.02708$

