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GAs	in	par$cle	physics	…



• Some GA introduction and background

• How do they work?

• Why do they work? 

• GA’s on a simple string construction 

• GA’s versus Reinforcement Learning 

Overview	…
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Figure 1. The “mogul-field” function.

value of the function. Moreover the three ingredients of selection, crossover and mutation

are crucial3. If done correctly (see below) one can obtain a solution to any desired precision.

It is worth noting some advantages over other techniques. First the function f can have

many maxima, and yet the procedure can still find the global one: the algorithm e↵ectively

samples the whole fitness landscape. Indeed f does not even need to be di↵erentiable, a

fact that strongly suggests the technique could be powerful in the string context, where

getting from vacuum to vacuum often involves topology changing transitions. In addition,

the computational di�culty appears to rise roughly linearly with the length of the genotype

even though the size of the fitness landscape is increasing exponentially. Finally, the process

is very robust. It doesn’t matter for example if we choose to flatten all the chromosomes

of each creature into one long string of data and perform a single crossover for the entire

genotype, or if we perform crossovers on the chromosomes individually.

Many of these properties can be understood (at least intuitively) in terms of schemata

and the schema theorem which was introduced by Holland [2] and which we will describe

shortly. But before we do so, it is worth seeing the procedure at work on a particular

function. Consider finding the maximum of

f(x, y) = 12

✓
cos

3y

2
sin

3x

2
+ x+ y

◆
� x2 � y2. (1.1)

This “mogul-field” function, shown in figure 1, is clearly a hard function for the usual

hill-climbing algorithms to maximize.

As mentioned above, the simplest convention for choosing breeding pairs, and the one

we shall use here, is that they are weighted linearly with f(x, y) (roulette wheel selection):

3Note crossover and mutation can be either/or; they should be present in the population but do not

have to occur simultaneously in the same individuals.
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Example	landscape	task:	find	global	maximum	to	250	decimal	places	without	using	calculus	…	
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Example	landscape	task:	find	global	maximum	to	250	decimal	places	without	using	calculus	…	

As such the task of finding a completely viable string vacuum is likely to be what in

computational complexity theory is called an NP-complete problem (where NP refers to

Non-deterministic Polynomial time); that is a problem for which any given solution can be

verified in a time that increases only polynomially with the di�culty, but where finding a

solution by a simple deterministic search algorithm (such as exhaustive scanning) rapidly

becomes computationally infeasible. Indeed a similar point was made in ref.[5], to which

the reader is directed for precise definitions. NP-complete problems are precisely where

heuristic search methods become e↵ective.

The purpose of this paper is to demonstrate the e�cacy of GA’s in finding desirable

string vacuum solutions, by examining a small sub-class of string theories, namely heterotic

strings in the Free Fermionic formulation [6–8]. We will show that they are (many orders

of magnitude) more e�cient than a random search at finding string vacua with particular

desirable properties. This is especially evident when one applies many phenomenological

requirements and the search is multi-modal. For example GA’s do not confer much ad-

vantage if one is just searching for say three generation models. However, in line with

them being e↵ective on NP-complete problems, they come into their own when the search

is statistically very di�cult (when for example only one in 107 models or fewer has the

particular properties of interest).

Given the comments above, one thing we can conclude from the fact that GA’s work so

well is that finding the SM in the string landscape is precisely not like looking for a needle

in a haystack: the landscape has structure and similar models have certain correlations.

We will describe exactly what these correlation are expected to be, but because the number

of possible models is so huge it is not possible for us (even in this fairly restricted set of

models) to check them explicitly. Nevertheless in our view the fact that GA’s work is

evidence that they are there.

1.1 Overview of GA’s: a fake landscape of 10500

Before getting to string theory, it is instructive to create a somewhat artificial optimization

problem that has a similarly large landscape in order to introduce the GA technique and

to make apparent its generic advantages and also its limitations. Suppose that we wish to

find the supremum of some function f(x, y) in the domain x 2 (0, 10), y 2 (0, 10), without

using calculus. One way do this is as follows: consider writing out the possible coordinates

x = a.bcdef...

y = g.hijkl...

where a, b, c... are digits between 0 and 9. In principle one could scan over x and y by

cycling through all possible strings of digits a, b, c... To find the supremum one simply

– 2 –
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Define	a	“creature”	and	write	out	its	coordinates	=>	genotype		

Terminology:	Genotype	=	data.	Phenotype	=	f(x,y).		
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Work	with	a	popula$on	of	typically	~100	individuals	ini$ally	sprinkled	at	random	

Step	0:	Define	fitness	funcBon,	and	work	out	the	fitness	F	of	each	individual									

(e.g.	F	=	f(x,y)	in	this	case).	
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Step	1:	Selec=on:	Select	pairs	for	breeding	such	that	the	most	fit	individuals	can	breed	
several	Bmes,	while	unfit	ones	might	not	breed	at	all:	e.g.	“rouleke	wheel”	based	on	
ranking	k,	with																													:	
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Step	2:	breeding:	cut	and	splice	genotypes	of	breeding	pairs	somehow	(not	really	crucial	how)	
to	make	an	enBrely	new	populaBon	of	the	same	size.	

g.hij |

a.bcd |ef
kl
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Step	3:	Muta=on	of	a	randomly	chosen	small	percentage	of	digits	(alleles).	

a.bcdefghij...
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Steps	4	…	infinity:	rinse	and	repeat.	The	populaBon	should	converge	round	soluBons.	



Summary	—	three	crucial	ingredients:	Selec$on	(favours	the	opBmisaBon);	
Breeding/crossover	(propagates	favourable	properBes);	Muta$on	(prevents	
stagnaBon:	evoluBon	proceeds	by	punctuated	equilibria)	



Summary	—	three	crucial	ingredients:	Selec$on	(favours	the	opBmisaBon);	
Breeding/crossover	(propagates	favourable	properBes);	Muta$on	(prevents	
stagnaBon:	evoluBon	proceeds	by	punctuated	equilibria)	



Summary	—	three	crucial	ingredients:	Selec$on	(favours	the	opBmisaBon);	
Breeding/crossover	(propagates	favourable	properBes);	Muta$on	(prevents	
stagnaBon:	evoluBon	proceeds	by	punctuated	equilibria)	



Summary	—	three	crucial	ingredients:	Selec$on	(favours	the	opBmisaBon);	
Breeding/crossover	(propagates	favourable	properBes);	Muta$on	(prevents	
stagnaBon:	evoluBon	proceeds	by	punctuated	equilibria)	



Summary	—	three	crucial	ingredients:	Selec$on	(favours	the	opBmisaBon);	
Breeding/crossover	(propagates	favourable	properBes);	Muta$on	(prevents	
stagnaBon:	evoluBon	proceeds	by	punctuated	equilibria)	



Figure 3. Evolved population of 60 individuals in an “almost discontinuous” extremely choppy

landscape.

Holland argued that schemata are important because selection favours the propagation

of shorter strings of data: small subsections of the genome that confer fitness dominate

first and, once they are shared by the majority of the population, crossover does not a↵ect

them. Indeed this can be observed directly in our previous example: the population tends

to spread along the x and y directions from the solution because in this example the

approximately correct x and y values correspond to only the first few entries of the x and

y chromosomes, which tend to persist even though the entire genome may be disturbed by

crossover.

This can be formalised as follows. Suppose that mutation has just produced in the

population a favourable schema, S. Let n(S, t) be the total number in the population

containing it at time t. We can define the average fitness of all members of the population

containing S, as fS(t) =
P

i2S fi/n(S, t), which is higher than the average fitness of the

population as a whole, f̄ . Assuming that selection is proportional to fitness, f(t), then the

expected number of o↵spring containing S is
P

i2S fi/f̄ . Neglecting crossover and mutation

this would be the expectation of n(S, t+ 1); let us rewrite it as

n(S, t+ 1) = n(S, t)
fS(t)

f̄
. (1.3)

With simple probabilistic arguments one can incorporate the e↵ect of a single-point crossover

destroying S, and mutations at a rate pm per digit to find a lower bound

n(S, t+ 1) � n(S, t)
fS(t)

f̄

✓
1�

d(S)

l � 1

◆
(1� pm)o(S) , (1.4)
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• Holland	proposed	a	probabilisBc	explanaBon	for	the	efficiency	of	geneBc	algorithms:	based	
on	growth	rate	of	“good”	schema	S	,	e.g.	here	

• Holland	argues	that	iniBal	growth	of	a	good	schema	in	the	populaBon	is	exponenBal	

• SelecBon	pushes	towards	convergence	

• MutaBon	pushes	system	away	from	convergence	

• Some	controversy	in	1990s,	rehabilitated	somewhat																																																																							
by	Poli.	(Not	many	good	general	compeBng	theories)			

• Fitness/distance	correlaBon	seems	to	be	important																																																																																			
Holland;	David;	Jones+Forrest;	Collard,	Gaspar,	Clergue,	Escazu

Why	do	they	work?
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In	this	example	the	leading		
digits	of	x	and	y	are	schemata	and	get	
propagated	throughout	the	populaBon

Why	do	they	work?



• Find	a	phenomenologically	akracBve	PaB-Salam	model.	

• We	will	consider	the	“fermionic	string	construcBon”.	These	are	general	4D	models	in	which	the	
world	sheet	degrees	of	freedom	are	fermions.	Kawai,	Lewellyn,	Tye;	Antoniadis,	Bachas,	Kounnas	

• PS	Models	are	defined	in	terms	of	a	set	of	basis	vectors	(for	the	experts)	Faraggi,	Kounnas,	Nooij,	Rizos

First	string	example SAA+Rizos,	2014

{v1, v2, . . . , v13}, where

v1 = 1 =
�
 µ, �1,...,6, y1,...,6,!1,...,6

|ȳ1,...,6, !̄1,...,6, ⌘̄1,2,3,  ̄1,...,5, �̄1,...,8
 

v2 = S =
�
 µ,�1,...,6

 

v2+i = ei =
�
yi,!i

|ȳi, !̄i
 
, i = 1, . . . , 6

v9 = b1 =
�
�34,�56, y34, y56|ȳ34, ȳ56, ⌘̄1,  ̄1,...,5

 
(2.11)

v10 = b2 =
�
�12,�56, y12, y56|ȳ12, ȳ56, ⌘̄2,  ̄1,...,5

 

v11 = z1 =
�
�̄1,...,4

 

v12 = z2 =
�
�̄5,...,8

 

v13 = ↵ =
�
 ̄45, ȳ1,2

 
. (2.12)

Here we denote the fermionised world-sheet coordinates as follows:  µ , �I , I = 1, . . . , 6 are

the superparteners of the 10-dimensional left-moving coordinates, yI ,!I/ȳI , !̄I , I = 1, . . . , 6

stand for six internal left/right coordinates, and  ̄A, A = 1, . . . , 5, ⌘̄↵,↵ = 1, 2, 3, �̄k, k =

1, . . . , 8 are the additional right-moving complex fermions. We have adopted the traditional

(ABK) notation where the fields included in a basis vector set are anti-periodic while the

rest are periodic.

The associated generalised GSO coe�cients are not fixed but they are constrained by

modular invariance. Consequently only the c
⇥
vi
vj

⇤
, i > j are independent. Moreover, the

requirements of space-time supersymmetry fix some of these coe�cients while some others

are set by convention. Altogether, only 51 independent GGSO phases are relevant to the

“observable” PS spectrum. These can be parametrised in terms of `i = {0, 1}, i = 1, . . . , 51 ,
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• in	addiBon	to	a	set	of	GSO	projecBon	phases

2 The problem: viable Free Fermionic Pati–Salam vacua

We now present the stringy problem that we will consider for this study, namely finding

phenomenologically viable Pati-Salam models in the Free Fermionic Formulation of the

heterotic superstring [6–8].

Before we describe the formalism in detail, let us briefly comment further on the

relation of our approach to the landscape programme. It has been known for a long time

that these and similar models lead to a huge number of possible vacua. For example [11]

estimated 101500 vacua in the closely related covariant lattice approach, far in excess even

of the later flux vacua estimate in [1]. The approach advocated in [1] and related papers

(see [12] for a recent review) was to determine correlations between physical characteristics.

Alternatively one can count the multiplicities of string vacua and regard the characteristics

that occur frequently as being more natural.

Completely general computer-based searches were used to consider correlations for

the Free Fermionic vacua in ref.[13]. However, there are limitations to these and similar

approaches, due to the space of models being so large, and due to the time-consuming

computation of the spectrum in every step of the search procedure. Importantly this leads

to inevitable restrictions as to what statistical correlations can and cannot reliably be

established, as discussed in ref.[14].

As we shall see, in performing a GA study one is also e↵ectively studying correla-

tions, but very di↵erent ones from those that were explored in the landscape programme.

In the language of GA’s the di↵erence is that essentially the latter explored phenotype-

phenotype correlations, whereas the frequencies occurring in GA studies are more sensitive

to genotype-phenotype correlations, in a way that will be made precise below.

Now to the formulation, in which consistent models are defined in terms of a set of

basis vectors

{v1, v2, . . . , vn}

and a set of phases

c


vi
vj

�
, i, j = 1, . . . , n

associated with generalised GSO projections (GGSO). The basis vectors and the GGSO

phases are subject to constraints that guarantee modular invariance of the one loop parti-

tion function. The elements of the basis vectors are related to the parallel transportation

properties of the fermionised world-sheet degrees of freedom along the non-contractable

torus loops. This yields models directly in four space-time dimensions with internal coor-

dinates fixed at the fermionic point.

– 10 –
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as follows

cij =

0

BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1 S e1 e2 e3 e4 e5 e6 b1 b2 z1 z2 ↵

1 1 1 1 1 1 1 1 1 1 1 1 1 1

S 1 1 1 1 1 1 1 1 1 1 1 1 1

e1 1 1 0 `26 `27 `28 `29 `30 `6 0 `14 `20 `41

e2 1 1 `26 0 `31 `32 `33 `34 `7 0 `15 `21 `42

e3 1 1 `27 `31 0 `35 `36 `37 0 `10 `16 `22 `43

e4 1 1 `28 `32 `35 0 `38 `39 0 `11 `17 `23 `44

e5 1 1 `29 `33 `36 `38 0 `40 `8 `12 `18 `24 `45

e6 1 1 `30 `34 `37 `39 `40 0 `9 `13 `19 `25 `46

b1 0 0 `6 `7 0 0 `8 `9 1 0 `2 `4 `47

b2 0 0 0 0 `10 `11 `12 `13 0 1 `3 `5 `48

z1 1 1 `14 `15 `16 `17 `18 `19 `2 `3 1 `1 `49

z2 1 1 `20 `21 `22 `23 `24 `25 `4 `5 `1 1 `50

↵ 1 1 `41 `42 `43 `44 `45 `46 `47 + 1 `48 + 1 `49 + 1 `50 `51

1

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

mod 2 .

(2.13)

As every cij set corresponds in principle to a di↵erent model, simple counting gives a huge

number of 251 ⇠ 2.3 ⇥ 1015 distinct models in this class. Thus a comprehensive scan of

even this restricted class of models would take 3000 years on a single core CPU.

Nonetheless, the models share some common attributes. First the gauge group G =

SU(4)⇥SU(2)
L
⇥SU(2)

R
⇥U(1)3⇥SO(4)2⇥SO(8). Second the untwisted sector matter

states comprise six (6,1,1) representations and a number of PS singlets. The twisted sector

states that transform nontrivially under the PS gauge symmetry include the “spinorial”

states (4,2,1), (4,1,2),
�
4,2,1

�
,
�
4,1,2

�
and the “vectorial” states (1,2,2), (6,1,1).

The former arise from the sectors bIpqrs (+S) , I = 1, 2, 3 and the latter from x+bIpqrs (+S) ,

I = 1, 2, 3, where b1pqrs = b1 + p e3 + q e4 + r e5 + s e6, b2pqrs = b2 + p e1 + q e2 + r e5 + s e6,

b3pqrs = x+b1+b2+p e1+q e2+r e3+s e4, p, q, r, s 2 {0, 1}, and x = 1+S+
P6

i=1 ei+
P2

k=1 zk.

Additional exotic states transforming as (4,1,1),
�
4,1,1

�
(1,2,1) and (1,1,2) under

the observable PS gauge group may also arise from the twisted sectors bI+↵ (+z1) (+x) (+S),

I = 1, 2, 3. We denote by ne the number of these states. They carry fractional charges and

in particular they include SM singlets and doublets with ±
1
2 electric charge. The appear-

ance of these states is generic in these vacua [20]. However, as shown in [16] the class of

models under consideration includes “exophobic” vacua where all exotic fractionally charge

states receive string scale masses.

– 14 –
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51	independent	phases	in	these	models:	hence	search	space	is			 251 = 2⇥ 1015



This	search	space	is	(just	about)	searchable	determinisBcally	so	we	can	compare	the	two	
methods.	Assel,	Christodoulides,	Faraggi,	Kounnas,	Rizos	

The	phases	determine	the	characterisBcs	of	the	models	

Selecting amongst this huge number of vacua requires first the computation of the

spectrum and second the introduction of a set of phenomenological criteria. As illustrated

in [15] we can derive general analytic formulae regarding the main characteristics of models

in this set in terms of the GGSO phases, `i, i = 1, . . . , 51. These formulae involving ranks

of binary matrices depending on `i are too lengthy to include here. However, they can be

easily incorporated in a computer code. The model selection criteria can be either related

to the spectrum or to the couplings of the e↵ective low energy theory. The latter are

harder to implement so we will restrict to the existence of the top quark mass coupling.

As demonstrated recently [21] this requirement can be expressed explicitly in terms of

constraints on the GGSO phases,

`i = 0, i = 2, . . . , 7 , `10 = `11 = `47 = 0 , `48 = 1 , `8 = `12 , `9 = `13 . (2.14)

Let us summarise therefore the possible selection criteria. We may choose to impose:

(a) 3 complete family generations, ng = 3

(b) Existence of PS breaking Higgs, kR � 1

(c) Existence of SM Higgs doublets, nh � 1

(d) Absence of exotic fractional charge states, ne = 0

(e) Existence of top Yukawa coupling as in eq.(2.14).

A more stringent test would be to insist on minimality by imposing kR = nh = 1.

3 GAs in the fermionic string landscape

3.1 Introductory remarks

Let us now see how a GA performs in the search for viable models. First we make some

general remarks. When it comes to string phenomenology any fitness landscape is composed

not of continuous functions but of physical properties such as supersymmetry, number of

generations, Yukawa couplings and so forth. Nevertheless the question of whether the

fitness landscape defined in terms of such observables has structure remains crucial, and

one of the purposes of testing GA’s is therefore to address this issue.

To be more specific, suppose that one constructs a GA to converge on models with

three generations. To do this would require a fitness function perhaps of the form f(ng) =

e�(ng�3)2 ; that is models are weighted with a Gaussian around the desired value. Clearly

the population will coalesce around ng = 2, 3 or 4 rather than ng = 10 but as emphasised

in the Introduction, for just one parameter, this way of selecting vacua is not obviously
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Figure 4. Call count the for three di↵erent classes of solutions with increasing search di�culty.

(i.e. the mean number of models one has to construct before finding a solution.) Bottom/purple:

solutions with three generations and Higgses for the Standard Model and Pati-Salam sectors. Mid-

dle/blue: solutions with three generations, Higgses for the Standard Model and Pati-Salam sectors,

and in addition no exotics. Top/yellow: solutions with three generations, Higgses for the Standard

Model and Pati-Salam sectors, no exotics and a top-Yukawa. The search di�culties are respectively

one in 104, one in 2.5⇥ 106, one in 1010.

mutation probability per bit is optimally 0.0075-0.01. This is a clear sign that the GA is

working as expected. The e�ciency drops dramatically when the mutation is turned o↵

completely (when the population is unable to discover new favourable schemata and/or

stagnates) and also when the mutation is dialled up and the search becomes e↵ectively

randomised. It is close to but slightly below the rate 1/l ⇡ 0.02 which is often claimed to

be the optimal rate [3].

Although there are only three points of reference it is worth noting that the minimal

call count appears to be increasing roughly as the log of the statistical di�culty and slower

than a power law; empirically we find call-count ⇡ 7 ⇥ 103 log(di↵/4 ⇥ 103). It would be

of interest to make this relationship more precise.

There is one further probe of the structure we can make. Instead of completely scram-

bling the genotypes after a solution is discovered, one can instead perform the same muta-

tion of 25⇥µb0grd that one does when the population stagnates. If this yields new solutions

(i.e. the population should not simply revisit the same solution) at a faster rate, then this

indicates that the solutions are “clustered” together (in terms of Hamming distance) rather

than spread uniformly. This would certainly be expected if the system is modular with dif-

ferent non-overlapping schema governing di↵erent phenomenological traits. More generally

it would imply that the solutions occupy a hypersurface in the search space.
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• First	comparison	of	GA	versus	RL	in	string	context	(NB	techniques	both	work	with	“environment”)	

• Consider	kind	of	string	construcBon	with	a	much	larger	space	that	has	been	the	subject	of	intensive	
ML	scruBny:	“Monad	bundles	on	Complete	IntersecBon	Calabi	Yaus”.	Distler,	Greene;	Kachru;	Anderson;	
Anderson,	He,	Lukas;	Anderson,	Gray,	He,	Lukas;	He,	Lee,	Lukas	

• Considered	the	following	two	kinds	of	CICY	(bi-cubic	and	triple	trilinear	respecBvely)	with	
configuraBon	matrices,	where	indices	are	h11,	h21,	and	Euler	number	(for	the	experts):	

• Models	constructed	by	monad	bundles	on	the	CICY	defining	the	E8xE8	background:	constructed	
from	two	line-bundle	sums,	B	and	C:	in	the	end	boils	down	to	matrix	of	integers	(where	k=1,..,h11):			

GAs	versus	reinforcement	learning
SAA,	ConstanBn,	Lukas,	Harvey

(c.f.	recent	work	by	Cole,	Schachner,	Shiu;	Cole,	
Krippendorf,	Schachner,	Shiu;	Loges,	Shiu)



• As	well	as	various	consistency	condiBons	(e.g.	anomaly	cancellaBon),	all	the	
phenomenological	properBes	(e.g.	number	of	generaBons)	determined	by	these	numbers	
via	(several)	index	theorems.		

• Search	for	“perfect-models”	(aka	“terminal	states”):	require	SM-like	theories	(i.e.	SO(10)	
GUT	from	broken	E8,	with	3	generaBons).		

• So	what	is	the	size	of	search	space?	If	we	take	

• Allowing	say	10	values	per	entry,	that	is																																																																																																							
with	say	h11=3	it	becomes	huge	very	quickly!		

• For	the	GA	we	simply	encode	these	integers	as	a	single	binary	string	and	operate	as	before.	
Used	quite	large	populaBon	=	250.	

• In	both	RL	and	GA	we	use	the	same	funcBon	to	stand	for	the	reward	/	fitness,	based	on	the	
number	of	criteria	that	are	saBsfied.

ConstanBn,	Lukas,	Harvey
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ConstanBn,	Lukas,	Harvey

The	GA	is	much	faster	to	the	first	soluBons!	Note	only	50K	states	visited:	
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Reinforcement	learning	vs	GAs	for	these	models

(6,2)	triple	trilinear.	Keep	same	domains	of	defining	integers,	but	now	
h11=3	gives	search	space																								is	seven	orders	of	magnitude	larger!

GA	in	a	given	run	takes	only	twice	as	many	generaBons	to	reach	the	saturated	fitness.
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