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_ everythmg and everything from the one”
2 Heraclitus

*Background stolen from Gary Shiu’s “String Genome Project”
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In recent years machine learning has been intensely st dled as a means of learning
about the “local string landscape”.

However there is a venerable technique that doesn’tiseem to be going away: Genetic
Algorithms Turing; Barricelli; Fraser, Burnell; Crosby; Breme olland; Goldberg; Jones
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GA’s for searching a string sized landscape

Example landscape task: find global maximum to 250 decimal places without using calculus ...
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GA’s for searching a string sized landscape

Example landscape task: find global maximum to 250 decimal places without using calculus ...

« T = a.bedef...
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Define a “creature” and write out its coordinates => genotype

Terminology: Genotype = data. Phenotype = f(x,y).

x = a.bcdef...

y = g.hijkl...



Define a “creature” and write out its coordinates => genotype

Terminology: Genotype = data. Phenotype = f(x,y).

xr = a.bcdef...

y = g.hijkl...
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Work with a population of typically ~100 individuals initially sprinkled at random

Step 0: Define fitness function, and work out the fitness F of each individual
(e.g. F = f(x,y) in this case).




Step 1: Selection: Select pairs for breeding such that the most fit individuals can breed
several times, while unfit ones might not breed at all: e.g. “roulette wheel” based on
ranking k, with P, = aPp

pop °

2 Noon — k
. (1 e Tl 1))
(1+ a)Np0p Npop — 1

&0
i}
40
20

fa

o+
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Step 2: breeding: cut and splice genotypes of breeding pairs somehow (not really crucial how)
to make an entirely new population of the same size.

s g.hty | kl
<~ a.bcd|ef




Step 2: breeding: cut and splice genotypes of breeding pairs somehow (not really crucial how)
to make an entirely new population of the same size.

=~ g.hij|ef
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Step 3: Mutation of a randomly chosen small percentage of digits (alleles).

~ a.bcdefghij...



Step 3: Mutation of a randomly chosen small percentage of digits (alleles).
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Step 3: Mutation of a randomly chosen small percentage of digits (alleles).

= a.bedef'gh'ij...

Steps 4 ... infinity: rinse and repeat. The population should converge round solutions.



Summary — three crucial ingredients: Selection (favours the optimisation);
Breeding/crossover (propagates favourable properties); Mutation (prevents
stagnation: evolution proceeds by punctuated equilibria)

1 Generation number = 0
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Summary — three crucial ingredients: Selection (favours the optimisation);
Breeding/crossover (propagates favourable properties); Mutation (prevents
stagnation: evolution proceeds by punctuated equilibria)



Mutation (prevents

ia)

Selection (favours the optimisation)

Summary — three crucial ingredients

)

crossover (propagates favourable properties)

ng/
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evolution proceeds by punctuated equ

stagnation

Generation number = 499
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Why do they work?

Holland proposed a probabilistic explanation for the efficiency of genetic algorithms: based
on growth rate of “good” schema S, e.g. here § = 61 x x x 62 * *x

Holland argues that initial growth of a good schema in the population is exponential
Selection pushes towards convergence
Mutation pushes system away from convergence

Some controversy in 1990s, rehabilitated somewhat
by Poli. (Not many good general competing theories)

Fithness/distance correlation seems to be important
Holland; David; Jones+Forrest; Collard, Gaspar, Clergue, Escazu
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on growth rate of “good” schema S, e.g. here S = 61 x x * 62 *x xx

Holland argues that initial growth of a good schema in the population is exponential

Selection pushes towards convergence

Mutation pushes system away from convergence In this example the leading
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FirSt String example SAA+Rizos, 2014

Find a phenomenologically attractive Pati-Salam model.

We will consider the “fermionic string construction”. These are general 4D models in which the
world sheet degrees of freedom are fermions. Kawai, Lewellyn, Tye; Antoniadis, Bachas, Kounnas

PS Models are defined in terms of a set of basis vectors (for the experts) rFaraggi, Kounnas, Nooij, Rizos

-1,...6 -1,....6 =1,2.3 71,...5 71,..8
y7 77w7 7,77777¢7 7’¢7 7}

v =1 = {y*, L6 B L6
vy =8 = {gp, y 161
Vo = €; = {yi,wi@i,@i} ,1=1,...,6
Vo = by = {X34,X56,y34,y56|§34,§56,ﬁ1,151""’5}
vio = by = {2, X%, 52, 47712, 5% 72, L5 )
vy = 2 = {qgl,...,zl}
Uiy = 29 = {$5,...,8}

vig == {Y®*, 5} .

(3
e in addition to a set of GSO projection phases C[ ] 9,7 =1,...,n



Our genotype will be these phases (think of the string construction as a black box that

turns these numbers into phenomenological model)
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Our genotype will be these phases (think of the string construction as a black box that
turns these numbers into phenomenological model)

1 S e1 e e3 es e5 €5 by bo 21 Z9 Q@
1111 1 1 1 1 1 1 L1 1) c[vi],i,jzl,...,n
sl11 1 1 1 1 1 1 1 1 111 Uj
esr| 1 1 0 fog Loy log Llag f30  Lg 0 by by Lln
ea| 1 1 flog O 31 L3z L33 34 L7 0 b5 lor la2
es| 1 1 for lsr O 35 L36 L7 0 10 big Llaa ly3
ea| 1 1 flog L3z €35 0 L3z fag 0 (11 iz oz Ly
CGij= es| 1 1 {Lyg L33 L3 f3s 0 Llyg L3 12 lg  loy Ly | mod?2
e | 1 1 f30 €34 f37 f39 Ly O by {13 lig  los  Lae
bi| 0 0 4 ¢y 0 0 flg YLy 1 0 Uy by L4y
bo| 0O 0 O 0 tlig l11 li1o l13 0 1 /3 U5 l48
21|11 by bis e lir bis b Lo {3 1 b Ly
zo| 1 1 Lo floy loa faz Loy Loy Uy ls 4 L s

o \1 1 lar Llao lag laa las Llag lar+1 lag+1 Llag+1 Ly 551)

51 independent phases in these models: hence search space is 251 — 2 X 1015



This search space is (just about) searchable deterministically so we can compare the two
methods. Assel, Christodoulides, Faraggi, Kounnas, Rizos

The phases determine the characteristics of the models

(a) 3 complete family generations, n, = 3

(b) Existence of PS breaking Higgs, kr > 1

(c) Existence of SM Higgs doublets, ny > 1

(d) Absence of exotic fractional charge states, n, = 0
(

e) Existence of top Yukawa coupling
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e a)+b)+c) = 1:10,000
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This search space is (just about) searchable deterministically so we can compare the two
methods. Assel, Christodoulides, Faraggi, Kounnas, Rizos

The phases determine the characteristics of the models

(a) 3 complete family generations, n, = 3

(b) Existence of PS breaking Higgs, kr > 1

(c¢) Existence of SM Higgs doublets, ny > 1

(d) Absence of exotic fractional charge states, n, = 0
(

e) Existence of top Yukawa coupling

e a)+b)+c) = 1:10,000
e a)+b)+c)+d) = 1:2,500,000
e a)+b)+c)+d)+e)= 1:10,000,000,000

« deterministically we would expect to have to construct 10 billion models to find
an example of the latter
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Call count
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100000 001 o0z 003 004

Mutation probability per bit

* Optimum mutation rate => genetic algorithm is working as expected
* GA’s do not confer much advantage when the search is “easy”

* They work best when there are many criteria and the search is difficult



GAs versus reinforcement learning

SAA, Constantin, Lukas, Harvey

(c.f. recent work by Cole, Schachner, Shiu; Cole,
Krippendorf, Schachner, Shiu; Loges, Shiu)

First comparison of GA versus RL in string context (NB techniques both work with “environment”)

Consider kind of string construction with a much larger space that has been the subject of intensive
ML scrutiny: “Monad bundles on Complete Intersection Calabi Yaus”. Distler, Greene; Kachru; Anderson;

Anderson, He, Lukas; Anderson, Gray, He, Lukas; He, Lee, Lukas

Considered the following two kinds of CICY (bi-cubic and triple trilinear respectively) with
configuration matrices, where indices are h11, h21, and Euler number (for the experts):

3 ] 2,83

]P)2
[]P’z 3

—162

Y

el

jd ek fd

jud el fd

3,48

—90

Models constructed by monad bundles on the CICY defining the E8xE8 background: constructed
from two line-bundle sums, B and C: in the end boils down to matrix of integers (where k=1,..,h11):

Gy

k
Ci, - C

k
rc

)



As well as various consistency conditions (e.g. anomaly cancellation), all the
phenomenological properties (e.g. number of generations) determined by these numbers
via (several) index theorems. constantin, Lukas, Harvey

Search for “perfect-models” (aka “terminal states”): require SM-like theories (i.e. SO(10)
GUT from broken E8, with 3 generations).

So what is the size of search space? If we take bmin < bf =0, Crmin < c’; S Coax

1] .
Allowing say 10 values per entry, that is 100 2t

with say h11=3 it becomes huge very quickly!

For the GA we simply encode these integers as a single binary string and operate as before.
Used quite large population = 250.

In both RL and GA we use the same function to stand for the reward / fithess, based on the
number of criteria that are satisfied.



Reinforcement learning vs GAs for these models

These models were already shown to be amenable to RL.  Constantin, Lukas, Harvey
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Reinforcement learning vs GAs for these models

These models were already shown to be amenable to RL.  constantin, Lukas, Harvey
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Reinforcement learning vs GAs for these models

These models were already shown to be amenable to RL.

We find good performance after a long training time:

typical run on the (6,2) bi-cubic with

bmin = _37 Cmin — 0

for which the search space is ~ 4.4 x 10**

bma.x = 47 Cmax = 71

terminal fraction

1.0

0.0t

0.8
0.6
0.4

0.2

Constantin, Lukas, Harvey

0 20000 40000 60000 80000

rounds

The GA is much faster to the first solutions! Note only 50K states visited:

—
-
-
—
-
-
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Reinforcement learning vs GAs for these models

Redundancy: The methods behave differently. GA’s tend to produce a lot of redundancy
(equivalent perfect states) due to convergence, but are still more efficient:
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Reinforcement learning vs GAs for these models

Redundancy: The methods behave differently. GA’s tend to produce a lot of redundancy
(equivalent perfect states) due to convergence, but are still more efficient:

inequivalent perfect states
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Reinforcement learning vs GAs for these models

Saturation: after 35 core days the RL produced 643 inequivalent perfect states. After 10
core days the GA saturated at 639 inequivalent perfect states.

About 50 models in complement (i.e. 689 models in total)
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NB: at the beginning they cover different regions (Sammon mapping), so an important
side-effect is that we have evidence almost all possibilities are saturated, for this
choice of hyper-parameters .
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Reinforcement learning vs GAs for these models

(6,2) triple trilinear. Keep same domains of defining integers, but now
h11=3 gives search space 8%! ~ 10'° is seven orders of magnitude larger!

terminal fraction
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Reinforcement learning vs GAs for these models

(6,2) triple trilinear. Keep same domains of defining integers, but now
h11=3 gives search space 8%! ~ 10'° is seven orders of magnitude larger!

terminal fraction

0 100 200 300 400

generation

GA in a given run takes only twice as many generations to reach the saturated fitness.
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has been comprehensively searched for §M models. This Is not possible
with either method alone or by doing any Kind an (for NP-hard).
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with either method alone or by doing any Kind an (for NP-hard).

- Search difficulty does not seem to be increa@sing proportionally to difficulty
(scaling behaviour remains to be determine
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- Results suggest estimates of Stfin cape size"are less meaningful than
fitness-distance correlation (l.e. 1S a ne rya haystack)

- A combined GA+RL approach can indicate wheén a ;{ortion of the landscape
has been comprehensively searched for §M models. This Is not possible
with either method alone or by doing any Kind an (for NP-hard).

- Search difficulty does not seem to be increa@sing proportionally to difficulty
(scaling behaviour remains to be determine




