

LHCb indirect searches for physics BSM

2 July 2022 - SUSY - Ioannina

Martino Borsato

on behalf of the LHCb collaboration

Unterstützt von / Supported by

Heidelberg University
martino.borsato@cern.ch

Alexander von Humboldt Stiftung/Foundation

Indirect searches in quark flavour

- Quark flavour-changing processes
 - → indirect probe of BSM physics
- Shaping the BSM landscape up to high energies
 - e.g. Minimal Flavour Violation hypothesis
- Trying to address the flavour puzzle
 - Yukawas not controlled by any SM symmetry

The LHCb experiment

b physics at the LHC

- $\sigma(pp \to b\bar{b}X)^{13 \text{ TeV}} \simeq 0.5 \text{ mb}$ $\mathcal{L}^{\text{LHC}} \simeq 10^{34} \text{ cm}^{-2} \text{s}^{-1}$
- \implies rate = 5 MHz
- \bullet σ (inelastic) $\simeq 200 \times \sigma(b\bar{b}X)$
- $\bullet \ b \bar{b}$ produced at small angle
- ...high detector occupancy
- Large boost $\beta \gamma \simeq 20$ \rightarrow displaced vertex ~1cm

b physics at the LHC

- $\sigma(pp \to b\bar{b}X)^{13 \text{ TeV}} \simeq 0.5 \text{ mb}$ $\mathscr{L}^{\text{LHC}} \simeq 10^{34} \text{ cm}^{-2} s^{-1}$
- \implies rate = 5 MHz
- \bullet σ (inelastic) $\simeq 200 \times \sigma(b\bar{b}X)$
- ullet b ar b produced at small angle
- ...high detector occupancy
- Large boost $\beta \gamma \simeq 20$ \rightarrow displaced vertex ~1cm

The LHCb experiment

LHCb detector design

- Lower luminosity for $\langle \mu \rangle \simeq 1$ $\mathcal{L}^{\text{LHCb}} \simeq 3.5 \times 10^{32} \text{ cm}^{-2} \text{s}^{-1}$ $\rightarrow 10^{12} b$ hadrons in LHCb acceptance in Run 1+2
- Covers forward region of pp collisions (2 < η < 5)
- Displaced vertex identification
- Low- p_T triggers (few GeV)
- Dipole magnet with very precise tracking detectors $\sigma_p/p \sim 0.5 \%$
- Particle ID with calorimeters, muon system and Cherenkov detectors (RICH)

A broad physics program in the LHC forward region

Beauty

Charn

Strange

Flavour physics at LHCb

[5]

Selected world-best measurements from LHCb

• Mixing in both B_d and B_s : $\Delta m_d = 0.5062 \pm 0.0019 \pm 0.0010 \text{ ps}^{-1}$ $\Delta m_s = 17.7683 \pm 0.0051 \pm 0.0032 \text{ ps}^{-1}$ [2]

• CKM angle
$$\gamma = (65.4^{+3.8}_{-4.2})^{\circ}$$
 [3]

© CPV phase in B_s system $\phi_s = -0.083 \pm 0.041 \pm 0.006$ rad [4]

• Electroweak FCNC in $b \rightarrow s$ -> more later

○ CP violation and Δm firstly observed by LHCb → direct ΔA_{CP} = (-15.4 ± 2.9) × 10⁻⁴

$$\rightarrow x_{CP} = (3.97 \pm 0.46 \pm 0.29) \times 10^{-3}$$
 [6]

•
$$\mathscr{B}\left(K_{\rm S}^0 \to \mu^+ \mu^-\right) < 2.1 \times 10^{-10} \text{ at } 90\% \text{ CL}$$
 [7]

Nature Physics 18, (2022) 1-5

References:

- [1] HFLAV average of 4 LHCb analyses
- [2] Nature Physics 18, (2022) 1-5
- [3] JHEP 12 (2021) 141
- [4] Phys. Rev. D 105, 092013
- [5] Phys. Rev. Lett. 122 (2019) 211803
- [6] Phys. Rev. Lett. 127, (2021) 111801
- [7] Phys. Rev. Lett. 125, (2020) 231801

More details on:

Electroweak FCNC in $b \rightarrow s$

Electroweak FCNC in $b \rightarrow s$

Electroweak $b \rightarrow s$ transitions

- Suppressed by loop, $V_{\rm CKM}$ and GIM \rightarrow decay rates of order 10^{-6} or less
- Tiny BSM contributions can enter at the same order as SM amplitude
- Sensitive to SUSY even if MFV

$$b \to s\gamma, b \to s\ell^+\ell^-, B_s \to \ell^+\ell^-$$

Excellent experimental probe

- No neutrinos involved!
- Several complementary observables
- Several complementary decay channels

Branching ratios, angular analyses, SM symmetry tests

- Radiative $b \rightarrow s \gamma$
- $_{\odot}$ Leptonic $B_{(s)} \rightarrow \mu^{+}\mu^{-}$
- Semileptonic $b \to s\ell^+\ell^-$

$$C_7^{(')}$$
 $C_9^{(')}$ $C_{10}^{(')}$ $C_{S,P}^{(')}$

- Radiative $b \rightarrow s\gamma$
- Leptonic $B_{(s)} \to \mu^+ \mu^-$
- Semileptonic $b \to s\ell^+\ell^-$

EFT below EW scale (LEFT):

$$\mathcal{H}_{\text{eff}} = \frac{1}{(34 \text{ TeV})^2} \sum_{i} C_i O_i$$

$$O_{7}^{(')} = \frac{m_{b}}{e} (\bar{s}\sigma_{\mu\nu}P_{R(L)}b)F^{\mu\nu} \quad \text{dipole } (b \to s\gamma)$$

$$O_{9}^{(')} = (\bar{s}\gamma_{\mu}P_{L(R)}b)(\bar{\ell}\gamma^{\mu}\ell) \quad \text{vector}$$

$$O_{10}^{(')} = (\bar{s}\gamma_{\mu}P_{L(R)}b)(\bar{\ell}\gamma^{\mu}\gamma_{5}\ell) \quad \text{axial-vector}$$

$$O_{S}^{(')} = (\bar{s}\gamma_{\mu}P_{R(L)}b)(\bar{\ell}\ell) \quad \text{scalar}$$

$$O_{P}^{(')} = (\bar{s}\gamma_{\mu}P_{R(L)}b)(\bar{\ell}\gamma_{5}\ell) \quad \text{pseudo-scalar}$$

Radiative $b \rightarrow s\gamma$

Left handed $C_7 = C_7^{\text{SM}} + C_7^{\text{NP}}$

- - 5% precise prediction [1]
 - 5% precise from *B*-factories [2]
 - Very hard at LHCb
- $\operatorname{Im}(C_7)$ measured with A_{CP}
 - $B \to K_{\rm S} \pi^0 \gamma$ at *B*-factories [2]
 - Tagged time-dep. analysis of $B_s \to \phi \gamma$ at LHCb

Right handed $C_7' = C_7'^{NP}$

- Mixing-induced CPV in $B \to K_S \pi^0 \gamma$ at *B*-factories [2]
- $\Delta\Gamma_s$ induced rate asymmetry in $B_s \to \phi \gamma$ at LHCb
- Angular analysis of $\Lambda_b \to \Lambda \gamma$ at LHCb [4]
- Transverse asymmetries in $B^0 \to K^*e^+e^-$ at LHCb
 - -> the most sensitive

- [1] M. Misiak et al JHEP 06(2020)175
- [2] HFLAV average of BaBar and Belle
- [3] LHCb PRL 123 (2019) 081802

[4] LHCb <u>PRD 105 (2022) L051104</u> [5] LHCb <u>JHEP 12 (2020) 081</u> [5]

- ✓ Use $\gamma^* \rightarrow e^+e^-$ to measure photon polarisation!
- ✓ Get nice $K^-\pi^+e^-e^+$ final state
- \bullet Rate lower by $\alpha_{\rm e.m.}$

✓ About 500 events with LHCb dataset despite BR $\sim 2 \times 10^{-7}$

- $_{ullet}$ Photon polarisation measured with ϕ
 - $\cos 2\phi$ or $\sin 2\phi$ modulation would signal right-handed contribution

LHCb JHEP 12 (2020) 081

LHCb JHEP 12 (2020) 081

Leptonic $B_s \to \mu^+ \mu^-$

- A golden flavour physics channel
 - Very rare 10^{-9} BR (helicity suppression)
 - Precise 4% BR prediction (fully leptonic)

Beneke et al. JHEP 10 (2019) 232 Kozachuk et al., PRD 97 (2018) 053007

 Searched since the 80's and firstly observed in 2014 by LHCb+CMS (Nature 522 (2015) 68)

+ box diagram involving neutrinos

Leptonic $B_s \to \mu^+ \mu^-$

LHCb PRD 105(2022)012010 PRL 128(2022)041801

Now measurement with LHCb Run 1+2 reached 16% uncertainty:

$$BR(B_s^0 \to \mu^+ \mu^-) = (3.09^{+0.46+0.15}_{-0.43-0.11}) \times 10^{-9}$$

- $_{\odot}$ Contribution from MFV MSSM $\propto t_{\beta}^6/m_A^4$
- Expect 10% precision when we will combine with upcoming ATLAS+CMS Run 2

Leptonic $B_{(s)} \rightarrow \mu^+ \mu^-$

LHCb PRD 105(2022)012010 PRL 128(2022)041801

- \bullet $BR(B_d \to \mu^+ \mu^-) < 2.6 \times 10^{-10}$
- Testing the MFV paradigm
- Excellent agreement with SM

Semileptonic $b \to s\ell\ell$

Branching ratios

 dB/dq^2 in exclusive $b \rightarrow s\mu\mu$ seems to undershoot SM

- Theory uncertainties ~20-30%
 (hadronic form factors)
- Coherent undershooting, but predictions uncertainties are correlated

spin-1 hadron

- $B \rightarrow V \mu^+ \mu^-$ 4-body decay has rich kinematic structure to be studied

- $B^0 \to K^{*0} \mu^+ \mu^-$ with 6/fb (~4600 events)
- $B^+ \to K^{*+} \mu^+ \mu^-$ with 9/fb (~700 events)
- $B_s \rightarrow \phi \mu^+ \mu^-$ with 9/fb (~1900 events)

PRL 125(2020)011802

$$B^0 \to K^* \mu^+ \mu^- \text{ in } 4.0 < q^2 < 6.0 \text{ GeV}^2$$

PRL 125(2020)011802

PRL 125(2020)011802

- Measure many angular observables in q^2 bins
- SM predictions are challenging, but uncertainties are smaller than for BR's
- Optimised observables where hadronic uncertainties cancel out at 1st order (e.g. P'_5)
- Some deviations at $>2\sigma$ level observed
- Deviations are **coherent** and **significant** when interpreted as modified vector coupling C_9

SM prections from:

Bharucha et al arXiv:1503.05534 Altmannshofer et al arXiv:1411.3161

Descotes-Genon et al arXiv:1407.8526 Khodjamirian et al arXiv:1006.4945

LU tests in $b \rightarrow s\ell^+\ell^-$

• $b \to s\ell^+\ell^-$ is lepton universal in the SM \to can identify LU violating NP contribution

Hiller & Kruger arXiv:hep-ph/0310219

- Predictions are uncontroversial and very precise
 - QCD uncertainty cancels to 10^{-4}
 - Up to ~1% QED corrections

Bordone et al arXiv:1605.07633

• Main challenge at LHCb is e/μ differences in the detector response

$$R_{H_s} = \frac{\text{BR} (H_b \to H_s \mu^+ \mu^-)}{\text{BR} (H_b \to H_s e^+ e^-)} = 1.00 \pm 0.01$$

Electrons at LHCb

- Efficiency bottleneck at hardware trigger:
 - $p_{\rm T}(\mu^{\pm}) > 1.5 1.8 \text{ GeV}$
 - $E_{\rm T}(e^{\pm}) > 2.5 3.0 {\rm GeV}$
- Electron ID based on ECAL and tracking (harder and slower than μ ID)

$$\frac{\epsilon(B^+ \to K^+ \mu^+ \mu^-)}{\epsilon(B^+ \to K^+ e^+ e^-)} \simeq 2.8$$

- Measurement of $p(e^{\pm})$ affected by bremsstrahlung emission before magnet
- Bremsstrahlung photon recovery procedure has limited efficiency

0.2 0.4 0.6 0.8 1 1.2 1.4 Int.J.Mod.Phys. A 30, 1530022 (2015)

Electrons at LHCb

LHCb Nature Physics 18, (2022) 277-282

LU tests in $b \rightarrow s\ell^+\ell^-$

- Results much more precise than previous experiments
- Measured in several $b \to s\ell\ell$ decay channels
- If confirmed, it would be a clear sign of physics beyond the SM
- Hints of LU violation in charged current $b \to c\ell\nu$ could be connected \to LHCb working to improve precision on R(D) and $R(D^*)$

LHCb Nature Physics 18, (2022) 277-282

Personal compilation of results

Effective theory interpretation

- Fit couplings to all $b \to s\ell\ell$ results
 - Model with modified left-handed coupling to muons $C_L^{\mu} = C_9^{\mu} C_{10}^{\mu}$ fits better than SM by >5 σ Review talk from 20/10/2021
 - Generic lepton-dependent short-distance contribution fits better than SM by $>4\sigma$

G.Isidori et al, PLB822(2021)136644

Connection to high energy

$$\frac{g_{\rm NP}}{\Lambda_{\rm NP}} \sim \frac{1}{30 \text{ TeV}}$$

 \rightarrow Could be out of reach for the LHC if $g_{NP} \simeq 1$

Tree level candidates:

- <u>Talk from Kostas</u> on Monday
- Important to leave no stone unturned at the LHC

Several models addressing these anomalies (and others) at SUSY2022!

A wide $b \rightarrow s\ell^+\ell^-$ program

• $B^+ \to K^+ \mu^+ \mu^-$ and $B^0 \to K^* \mu^+ \mu^-$

- **More sophisticated** analyses possible with O(10k) events
- Aim to get a handle on theory uncertainties ($c\bar{c}$)
- Angular LU test with $B^0 \to K^* \mathcal{C}^+ \mathcal{C}^-$
 - Common explanation of $b \to s\mu\mu$ and LU anomalies implies LU breaking in the angular observables
- Lots of potential in Λ_b decays

CERN-LHCC-2018-027

R_X precision	$9 { m fb}^{-1}$
R_K	0.043
$R_{K^{st 0}}$	0.052
R_ϕ	0.130
R_{pK}	0.105
R_{π}	0.302
$R_{K_{\mathrm{S}}^{0}}$	0.26
$-R_{K^{*+}}$	U.22

+ we are exploring high q^2

S.Glashow et al Phys.Rev.Lett. 114 (2015) 091801

• LFU violation implies LFV \rightarrow several LFV searches: $e^+\mu^-$, $\mu^+\tau^-$

LHCb Upgrade I

- Upgraded detector for Runs 3 and 4 (<u>TDR</u>)
 - Readout electronics and several subdetectors upgraded
 - Can run at 5x higher luminosity
 - Full-software trigger using GPUs

 Most measurements will directly profit from the higher statistical precision (about factor 3 with Run 3 only)

LHCb Upgrade II

LHCB-PUB-2018-009

- LHCb Upgrade II to run at 10x luminosity of Upgrade I
- Potentially the only flavour facility in the world on this timescale
- Driven by detector developments: granularity, material budget, radiation hardness, timing, RTA
- Upgrade II sensitivity:
 - Angle γ with 0.35° precision
 - CPV ϕ_s with 4 mrad precision
 - R_K with 0.7% precision
 $\frac{B_d \to \mu\mu}{B_s \to \mu\mu}$ with 10% precision
- Double reach in NP energy scale $\Lambda_{\rm NP}$

Conclusions

- Indirect effects often anticipated discoveries in HEP
 - Several leading measurements in precision quarkflavour physics coming from LHCb
 - Provided brief review of electroweak $b \rightarrow s$
- LHCb performance in Runs 1-2 vindicated the detector design and motivated upgrades I and II to run at much higher luminosity
- Tantalising anomalies in $b \to s\ell\ell$ decays
 - LHCb can clarify the situation with complementary measurements and the upcoming upgrade data
 - Inputs from ATLAS, CMS and Belle II are extremely valuable and eagerly anticipated

"Discovery commences with the awareness of anomaly" Thomas Kuhn

"Extraordinary claims require extraordinary evidence" Carl Sagan

BACKUP

LU in tree-level B decays

- LFU has been tested intree-level $b \rightarrow c\ell\nu$ transitions
 - Comparing τ decay to $\ell = \mu(e)$

$$\mathcal{R}\left(D^{(*)}\right) = \frac{\mathcal{B}\left(\bar{B} \to D^{(*)}\tau^{-}\bar{\nu}_{\tau}\right)}{\mathcal{B}\left(\bar{B} \to D^{(*)}\ell^{-}\bar{\nu}_{\ell}\right)}$$

- LHCb, Belle and BaBar have comparable sensitivity
 - Measurements complicated by missing neutrino(s)
 - **Combined** result deviates about 3σ from the SM
- LHCb working on combined measurement of R(D) and $R(D^*)$

Measuring m_W at LHCb

LHCB-FIGURE-2022-003

Expect anticorrelated PDF uncertainties!

Entering the precision era

- LHCb best at heavy-flavour decays with charged final state
 - ⇒ e.g. collected in one year $10 \times \text{more } B \to K^+\pi^-\mu^+\mu^-$ decays than the Belle experiment collected in 10 years
 - \rightarrow we just entered the precision era of $b \rightarrow s\ell\ell$

Hadronisation in $b \rightarrow s\ell\ell$

- Several decays, depending on spectator quark and spin-parity
- Opportunity to study $b \to s\ell\ell$ in various systems
- QCD makes theoretical predictions more challenging

LHCb Upgrade II

- Plan to crank up luminosity by another factor 10 in Run 5-6 (2030s)
 - Aim at collecting 300/fb by 2040
- Need to deal with the collision pile-up of about 50
 - Higher granularity
 - Lower material budget
 - Better radiation hardness
 - Tracking detectors with precise timing (200ps/hit in VELO, 20-50ps in ECAL)
 - Hardware accelerators for online reconstruction

Timing is crucial to find origin vertex of *B* decay

41

Control channel

LHCb arXiv:2103.11769

- $B^+ \to K^+ J/\psi(\ell^+ \ell^-)$ decays are known to respect LU at 0.4% level
- Define R_K as double ratio with control channel

$$\mathcal{R}_{K} = \frac{\mathcal{B}(B^{+} \to K^{+} \mu^{+} \mu^{-})}{\mathcal{B}(B^{+} \to K^{+} J/\psi (\mu^{+} \mu^{-}))} \frac{\mathcal{B}(B^{+} \to K^{+} J/\psi (e^{+} e^{-}))}{\mathcal{B}(B^{+} \to K^{+} e^{+} e^{-})}$$

Few words on Belle II

- $\bullet e^+e^- \rightarrow \Upsilon(4S) \rightarrow B\bar{B}$
 - Much cleaner than LHC environment
 - Cross-section $\mathcal{O}(nb)$: need huge luminosity
- Belle II is ramping up
 - Aim at collecting 50 ab⁻¹ around 2031
 - Not as much stat as LHCb in charged modes: $K^+\mu\mu$: 1 fb⁻¹ LHCb \simeq 2.5 ab⁻¹ Belle II $K^+e^+e^-$: 1 fb⁻¹ LHCb \simeq 1 ab⁻¹ Belle II
- But Belle II can measure channels with neutral hadrons and neutrinos → great complementarity
- + Essential validation of the anomalies from experiment with very different environment and challenges

Response to muons and electrons is very similar!

Belle: Phys. Rev. Lett. 118, 111801

LHCb vs B-factories

Impossible at LHCb

→ Belle II experiment (50× Belle luminosity)

Rare decays in Upgrade II

- $_{\odot}$ $B_{(s)} \rightarrow \mu\mu$, LFU tests and LFV searches will directly profit from the higher statistics
- Withh 400k events, the $B^0 \to K^* \mu \mu$ angular analysis will enter a new precision era, where sophisticated amplitude analyses will allow to disentangle NP and SM effects
- If anomalies are confirmed:
 - The Upgrade II will allow to precisely pin down their structure and possibly discover related effects in $b \to d\ell\ell$, $b \to se\mu$
- If anomalies are not confirmed:
 - The Upgrade II will give a unique chance to probe NP effects at an energy scale about twice as large as the current one

LU tests at LHCb

• Previous LU tests:

•
$$B^0 \to K^{*0} \ell^+ \ell^-$$
 with 3 fb⁻¹

$$R_{K^{*0}} = 0.66^{+0.11}_{-0.07}(\text{stat}) \pm 0.03(\text{syst})$$
 in [0.045,1.1] GeV²
 $R_{K^{*0}} = 0.69^{+0.11}_{-0.07}(\text{stat}) \pm 0.05(\text{syst})$ in [1.1,6.0] GeV²

 \rightarrow 2.2-2.5 σ deviation from SM per bin

LHCb arXiv:2103.11769

- $\Lambda_b \to pK^- \mathcal{C}^+ \mathcal{C}^-$ with 4.7 fb⁻¹ $R_{pK^-} = 0.86^{+0.14}_{-0.11} (\text{stat}) \pm 0.05 (\text{syst}) \text{ in } [0.1,6.0] \text{ GeV}^2$
 - \rightarrow agrees with SM at <1 σ

LHCb, JHEP 05 (2020) 040

• $B^+ \to K^+ \mathcal{E}^+ \mathcal{E}^-$ with 9 fb⁻¹ $R_{K^+} = 0.846^{+0.042}_{-0.039} (\text{stat})^{+0.013}_{-0.012} (\text{syst}) \text{ in [1.1,6.0] GeV}^2$

 \rightarrow 3.1 σ deviation from the SM

LHCb, <u>JHEP 08 (2017) 055</u>

New tests of isospin partners of R_{K^+} and $R_{K^{*0}}$ with 9 fb⁻¹

$$R_{K_{\rm S}^0}^{-1} = 1.51_{-0.35}^{+0.40} (\text{ stat.})_{-0.04}^{+0.09} (\text{ syst.})$$

$$R_{K^{*+}}^{-1} = 1.44_{-0.29}^{+0.32} (\text{ stat.})_{-0.06}^{+0.09} (\text{syst.})$$
LHCb arXiv:2110.09501