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INTRODUCTION AND MOTIVATION

In a renormalizable field theory, the RG flow of the coupling A is given by

dA

A
b= dlnp2’

L is the energy scale

o Usually they are determined perturbatively
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An important class are the two-dimensional (integrable) o-models:

» Technically simpler, combination of CFT and gravitational techniques.

» Embedding into supergravity and connection with holography.



FOCAL POINTS

In this talk we will focus on the non-Abelian bosonic Thirring model:

1.

2.

Introduce the model
It’s integrable all-loop effective action

Dynamically promote its parameter(s) — restoration of conformality

. Conclusion and future directions
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NON-ABELIAN THIRRING MODEL

Let us consider the WZW model at level k in light-cone coordinates Witten *83
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where g € G and it is invariant under the current algebra symmetry.
It has two conserved (anti-)chiral currents

Jor = iVk Tr(t.04099 "), Joo = —ivk Tr(tag '0_g)
satisfying two current algebras at level k

~ Bab 1 fave Je(22)

The (bosonized) non-Abelian Thirring model is defined as follows

S =Si(g) — % J &0 Juy Ju



NON-ABELIAN THIRRING MODEL

Symmetries of the non-abelian bosonized Thirring model:

A
S = Silg) — J >0 Jut Ju-

» Using conformal perturbation theory we find Kutasov ’89
A dA cc AN 02G
= —_6_2% Lol
B dlnp? 2k(1+7\)2+ K2)’
Jacdfoeda = —€GOar €.g. ¢ =2N for g€ SU(N)

where p is the RG flow energy scale.
» The perturbing operator is marginally relevant, UVisatA =0 & [RasA — 1~
» The effective action is expected to be invariant under Kutasov *89
A=A, ko —k—cg
as does the RG flow for k >> 1.

Can we capture the A dependence in an effective action?
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THE EFFECTIVE ACTION

‘We propose as an all-loop action Sfetsos 13

—1
Sm(g):Sk(g)—%szo{(H—ADT) )\} Jards—, 0<A<1

ab
and there is also a scalar e 2? = det(I — AD”) and Dy, = Tr(tagtrg ') ,DDT =1.
Properties:
> Explicit weak-strong duality: S_; x—1(g~") = Sk.a(g) Itsios, Sfetsos, KS 14
» For A < 1 we obtain the non-Abelian Thirring model.
» The eom take the form of a Lax connection. Itsios, Sfetsos, KS, Torrieli *14
>

It possesses well behaved zoom-in limits around A = +1 and g = .

v

Using o-model techniques we find the expression of the Thirring model
Itsios, Sfetsos, KS *14

dA co N2 ¢
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MARGINAL DEFORMATION

Let us consider the SU(2) case & the deformation matrix A, = diag(0, 0, A3) with

» This corresponds to the SU2xU1)/y(1) gauged WZW
Horne, Horowitz ’92; Giveon, Kiritsis '94

— 2 2 ;2 2
ds® =2k (dw2+ (1 —A3) cos” wd0” + (1 + A3) sin” wdd >

1+ Azcos2w
. Az +cos2w

B=f 21 77"
1 +Ascos2w

doNdp, @ :—%ln(1+)\3cos2w)

» Obtained via an O(2,2) transformation on the SU(2)x exact string background.
Hassan, Sen 92



NON-MARGINAL DEFORMATION

The simplest example is the A-def SU(2)x/U(1) coset CFT — Ay = diag(A, A, 1)
Sfetsos 13’

k 2 1—A 2
S:;Jd "(m(wafﬁﬂot B0 od-—o)

TN

and the scalar ® = —Insin 3

(cos ;B + sinx cot B o) (cosxd P+ sino cot[SZLoc))

1. Classically integrable and the conserved charges are in involution
Hollowood, Miramontes, Schmidtt 14°, 15’

It respects the weak-strong duality Itsios, Sfetsos, KS 14’
Ao AT ko —k, k>

2. Renormalizable at one-loop in !/k expansion Itsios, Sfetsos, KS 14’

dA A KL
din I.LZ = _E — A= (%) y UV}\:O - IR)\*}I

The driving operator is relevant Ao = 2 — 2/k — parafermionic bilinear.

Dynamical promotion — preservation or restoration of conformality?




PLAN OF THE TALK

DYNAMICAL RESTORATION OF CONFORMALITY



PRESERVATION OF CONFORMALITY

Consider again the SU2xU(1)/y(1) gauged WZW Aliaj, Sfetsos, KS "22

ds? — 2k <dw2 n (1 —A3) cos” wdO” + (1 + A3) sin” wddr)

1 + Az cos2w

Az + cos 2 :
5 3 4 cos 2w dOAdd, @ =—1In(1+ A;cos 2w)

- 1 +Azcos2w 2
Set-up:
I. Add the term /= 9 td_t to the Lagrangian: £ = 5-(Gpv + By )0+ X*9_X"

2. Let the parameter A3 to be a function of ¢ & add ®@y(¢) to the dilaton @.
Greene, Shapere, Vafa, Yau 90’; Kiritsis, Kounnas *93; Tseytlin 94

3. Demand conformality at one-loop order O(1/k)
Run — iHMKLHNKL +2Vudy® =0, V(e Huwr) =0,
w=R-— TIZHMNPHMNP +4V2D — 4(6(1))2 = const.
with the central charge read through W = 4 — 3w. Tseytlin 87" & 06’



PRESERVATION OF CONFORMALITY

4. Yields the system

A3 =N | 2h— h=— h=0
’ 3( 14\5)’ A2 o
2 S (L
w= —% + 2 + 77\3[}\3 4Ash) = const.

k k 2k(1 —A3)
which can be easily integrated.

5. Trivial solution As(¢) = const. and @y (¢) = Q1, corresponding to the
SU@xUM/y(1) x Rg exact string background.

6. In the Lorentzian version ¢t — it, it corresponds to the Nappi—Witten exact CFT
% Tseytlin *94, Nappi—Witten 92

sin & + cos 2¢

1
= MMETEBZ T (1) = —= In(1 +si 2
As(1) T sinocos 2t o(1) 3 n(1 + sin cccos 2¢)
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RESTORATION OF CONFORMALITY

Consider again the A-def SU(2)x/U(1) coset CFT Aliaj, Sfetsos, KS *22

k(. [1—=A 2
‘g,%‘ldc;(m(a BO_B +cot” B, xd_«x)
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Following the same strategy
1. Add the term ¥/~ 0., 10—t to the Lagrangian.
2. Let the parameter A to depend on ¢ & add @(z) to the scalar @.

3. Demand conformality at one-loop order O(/k)

" ; AA , A? .
R AN A T S
W——; (2]’1 —h) +Em = const



RESTORATION OF CONFORMALITY

4. Trivial solution with A(#) = 0 and ®¢(¢) = Q't, corresponding to the
SU@k/u(1) x Ro CFT

2

5. In the dynamical case A(¢) acquires dimension and at the linear level as
t — —oo we find

At) ~ ce" sin {‘/4—h? (t— zo)] o Oo(t) ~ hit

D (1)

Here 0 < h; < 2 for reality, weak string coupling e <L l,ast — —o0.

6. The scaling dimension (A, A) of A(z) is read through

K @ PR
Tm:fg(aX)erQazX, Vas=e%:, A=A=

yielding A = A = 1/ and A(¢)O is a marginal operator.

7. The central charge reads

6 6h>
W=3—-3w=2——+1 i
w k+ + X

= C2d + Cra.



RESTORATION OF CONFORMALITY

8. Conformality beyond O(A) is ensured from the consistency conditions

. : AA : A2
— A2 (h— h=—"
A A+ )\(1 17A1>, ) 1)

9. As time progresses the model approaches the strong coupling region

_ 1
t— 0, )\:1,(,{2) oc:th, eCDOzf;

where the corresponding the constant w = 0 or equivalently /; = 1.



CONCLUSION & OUTLOOK

Dynamical restoration of conformal invariance in a class of integrable o-models:
» The deformation parameters Ay, become dynamical functions of time.

ODE ensure conformal invariance at one-loop order.

We revisited the SU(2)xU(1)/y(1) CFT — preservation of conformality.

We studied the A-def SU(2)i/u(1) — restoration of conformality.

vV v.VvYyy

Extensions: Restoring conformality in exact CFT interpolating models
Aliaj, Sfetsos, KS ’22

UV: Gy xGy, = IR: Gy X Gy
or

le X sz IR: sz*kl X le

UuVv:
Gy 1k, Gy,

» Extension in multi-parameter cases.

» Similarly, for the integrable Yang—Baxter deformed PCMs. Klim¢ik "02
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FERMIONIC MODEL

Solvable QFT describing self-interacting massless Dirac fields in 1+1 dimensions. )

Fermion in 1+1 dimension with SU(N) symmetry Dashen, Frishman *73 & *75
L=ipy" b — pJapdt s Jap = Wiy
where 7, are Hermitian matrices with vanishing trace and
[l‘a)lb} :fabcl}, Tr(tatb) = 5ab, a= 1,2, cee ,Nz —1.

Properties:

> Abelian case N = 1

Thirring *58; Johnson ’61; Hagen ’67; Klaiber *68; Koperin *79
» Classically integrable Vega, Eichenherr, Maillet "83
» (UV) Conformal point at p = 0 with Ay, = %

» Two (anti-)chiral conserved currents satisfying current algebras (OPE) at level
one

o

ab l zlz % j( 22
Ja(z1)Ih(22) = 7/ + M +

V1w

» (IR) Conformal point at
47t 1 N-—1
N+1 2 N

Px =



INTERPOLATING BETWEEN EXACT CFTSs
Consider the A-deformed SU(2)x, x SU(2)x, Georgiou, Sfetsos (2017)

S = S, (91) + Sk, (92) — 711 AszcJﬁJﬁ)
1. The model is not marginal
dA e NA= M)A
dinp2 ~ 2k (1—A2)2 0 k2
and it flows between

UV: Gy, x Gy, = IR: Gy X Gy

2. Dynamical extension leads to the system for A(7) and h(r) = Do(r)
ANA=N) A=A AN

A =2hA — T Y
i A =2)A=A)  3NAT 3
(1—A2)3 (1—2A22 1—A?

3. It admits interpolations
t — —00:SUQ2)k, X SURk, X Ry, =t — 400 : SU(2)k, X SU(2)ky—k, X Rhf
}\3
ith 7 —h = 2> >0
R A T T vy
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