# Status of the

LUX-ZEPLIN
Experiment

Direct Detection Search for WIMP Dark Matter



On behalf of the LUX-ZEPLIN Collaboration



#### LZ (LUX-ZEPLIN) Collaboration



#### 35 Institutions: 250 scientists, engineers, and technical staff

- Black Hills State University
- Brandeis University
- Brookhaven National Laboratory
- Brown University
- Center for Underground Physics
- Edinburgh University
- Fermi National Accelerator Lab.
- Imperial College London
- Lawrence Berkeley National Lab.
- Lawrence Livermore National Lab.
- LIP Coimbra
- Northwestern University

- Northwestern University
- Pennsylvania State University
- Royal Holloway University of London
- SLAC National Accelerator Lab.
- South Dakota School of Mines & Tech
- South Dakota Science & Technology Authority
- STFC Rutherford Appleton Lab.
- Texas A&M University
- University of Albany, SUNY
- University of Alabama
- University of Bristol
- University College London

- University of California Berkeley
- University of California Davis
- University of California Los Angeles
- University of California Santa Barbara
- University of Liverpool
- University of Maryland
- University of Massachusetts, Amherst
- University of Michigan
- University of Oxford
- University of Rochester
- University of Sheffield
- University of Wisconsin, Madison



Sanford Underground Research Facility (SURF) in Lead, SD



Lead, SD

### WIMP Direct Detection with a Dual Phase TPC

- The Time Projection Chamber (TPC) allows for Reconstruction of the Number of Scatters, Interaction Position, and Energy
- Measures the Scintillation (S1) and Ionization (S2) response of LXe following an energy deposit











### LZ Detector Overview



#### The TPC

#### 1.5m Diameter, 1.5m Tall; 7 tonnes LXe



# LZ Commissioning

- TPC detector filled and leveled
- Grids biased: extraction & drift fields established
- Drift field ~190 V/cm
- Extraction field ~7.5 kV/cm gas
- Data processing chain exercised with first \$1+\$2s
- Data acquisition & trigger settings tuned
- PMT operations & characterization
- + LED measurements for after-pulsing and single photoelectron (SPE) studies
- PMTs gain-matched and gain drifts monitored
- Dark count & double photoelectron emission (DPE) analyses
- Event reconstruction algorithms highly reliable, with a Single Scatter identification accuracy >95%
- Application of machine learning to find anomalous events







#### **TPC Calibrations**

- Have calibrated the detector with <sup>220</sup>Rn, <sup>3</sup>H, D-D, AmLi, <sup>83m</sup>Kr, and more!
- Injection of tritiated methane
  - Spatially homogeneous source of  $\beta$  ER, 0-18.6 keV
- External D-D fusion
  - ♦ Monoenergetic 2.45 MeV neutron beam
  - ♦ Up to 10<sup>9</sup> neutrons per second
- Tuning with The Noble Element
   Simulation Technique, NESTv2.3.7
  - ◆ Tuned to <sup>3</sup>H and D-D calibration data to provide the detector response model
  - $\phi$  g<sub>1</sub> = 0.1149 ± 0.0021 phd/photon
  - $\Rightarrow$  g<sub>2</sub> = 46.38 ± 1.51 phd/electron
  - ♦ Extraction Efficiency = 80.49 ± 3.72%

github.com/NESTCollaboration/nest nest.physics.ucdavis.edu



Bands are the tuned NEST response for Tritium and D-D calibration sources; 90-10% CL Widths, Skew Gaussian Fits

#### Calibrating with High Energy Backgrounds

Internal mono-energetic sources provide electron lifetime (purity) and a cross-check on g<sub>1</sub>,g<sub>2</sub>

#### **Electron Lifetime**:

- Characterized with S2 size as a function of depth for 131mXe, 127Xe, injected 83mKr, and MeV-scale alphas
- Has varied between 5000 and 8000 μs during science run (Original Goal: 850 μs)
- 951 µs TPC depth (1.54 mm/µs average drift speed)

#### **Doke Plot:**

- Measuring  $g_1$  and  $g_2$  from mono-energetic background and calibration sources
  - Using bottom PMT  $g_2$  here; linearly related to the full TPC  $g_2$
- Results are in agreement with the results from NEST tuning with tritium and D-D  $\frac{S2c}{E} = \frac{g_2}{W} (\frac{g_2}{g_1})\frac{S1c}{E}$

$$E=W(rac{S1c}{g_1}+rac{S2c}{g_2})$$

$$\frac{S2c}{E} = \frac{g_2}{W} - \left(\frac{g_2}{g_1}\right) \frac{S1c}{E}$$





The LUX-ZEPLIN (LZ) radioactivity and cleanliness control programs

LZ Collaboration, D.S. Akerib et al. (Jun 3, 2020) Published in: Eur. Phys. J. C 80 (2020) 11, 1044 e-Print: 2006.02506

# Background Sources and Mitigation

#### Detector materials

- Nothing went into the detector without screening
- Radio-assay campaign & neutron activation analysis

#### • Rn emanation

- Four screening sites
- All major parts emanated before assembly

#### Rn daughters and dust on surfaces

- TPC assembly in Rn-reduced cleanroom
- + Dust <500 ng/cm<sup>2</sup> on all LXe wetted surfaces
- Rn-daughter plate-out on TPC walls <0.5 mBq/m<sup>2</sup>

#### Xenon contaminants — <sup>85</sup>Kr, <sup>39</sup>Ar

Charcoal chromatography at SLAC

#### Cosmogenics and externals

- + 4300 m.w.e. underground at SURF in Lead, SD
- Instrumented Xe skin region
- + Gd-LS outer detector
- + High purity water shield

# Many sources of BG Many methods for BG mitigation





Eur. Phys. J. C, 80: 1044 (2020)

## Kr Removal System

- Gas chromatography to remove Kr from Xe
  - natKr can be reduced to 0.1 ppt g/g natKr/Xe and natAr to a negligible level







### Xenon Skin Veto System

Tagging  $\gamma$ s as they enter or leave the TPC





- 4-8 cm of LXe between the TPC and inner cryostat
- $\gamma$  tagging efficiency of 78 ± 5% based on <sup>127</sup>Xe decays originating in the TPC

### The Outer Detector (OD)





- Ensemble of six acrylic tanks filled with 17 tonnes of Gd-loaded liquid scintillator
- 120 8" PMTs mounted to the water tank
- TPC Single Scatter NR tagging-efficiency:
   88.4% (from calibration with AmLi)
- Observed slightly lower backgrounds than expected
  - Leads to threshold below 200 keV



### Expected backgrounds for 5.6 t fiducial - 1000 days







# Backgrounds Analysis: Rn chain backgrounds

- Rn-222 and Rn-220 emanates from U-238 and Th-232 contamination in detector materials and diffuses into the Xenon
- Inline radon reduction system further reduces radon concentration
- The "naked betas" from Pb-214/ Pb-212 are a WIMP background
- + Pb-214 is the largest background contribution
- Preliminary analysis shows Rn-222 rate within expected range







# Constraining Xenon Activation Backgrounds

- Xenon can become activated by cosmogenics leading to background contributions from <sup>127</sup>Xe, <sup>129m</sup>Xe, <sup>131m</sup>Xe, <sup>133</sup>Xe (other Xe activation products are much shorter lived) + <sup>127</sup>Xe can contribute to low energy ER backgrounds
- Activation rates can be estimated via extrapolations from LUX results and Activia calculations (open-source package for estimating activation)



#### Xe-127 decays by electron capture



WIMP background arises from rare case where Xe-127 gamma escapes the TPC and low energy cascade occurs within bulk ⇒ Highly veto suppressed and strong positional dependence

### Projected Sensitivity (5.6 t exposure, 1000 live days)



### Outlook

- LZ is a multi-physics experiment, primed for detection of WIMPs
- Construction and Commissioning was completed successfully, and LZ has been collecting science data
- First Science Results expected this year Stay Tuned!

2022 will be an exciting year for LZ and the Dark Matter Research Community!



#### Thank You!



# Thanks to our sponsors and 35 participating institutions!





Science and Technology Facilities Council





U.S. Department of Energy

Office of Science





# Backup Slides

### Expected backgrounds for 5.6 t fiducial - 1000 days

| Background Source                     |       |  | ER<br>(cts) | NR<br>(cts) |
|---------------------------------------|-------|--|-------------|-------------|
| Detector Components                   |       |  | 9           | 0,07        |
| Surface Contamination                 |       |  | 40          | 0,39        |
| Laboratory and Cosmogenics            |       |  | 5           | 0,06        |
| Xenon Contaminants                    |       |  | 819         | 0           |
| Radon is the                          | 222Rn |  | 681         | 0           |
| dominant                              | 220Rn |  | 111         | 0           |
| background!<br>natKr (0.015 ppt g/g/) |       |  | 24,5        | 0           |
| natAr (0.45 pub g/g)                  |       |  | 2,5         | 0           |
| Physics                               |       |  | 258         | 0,51        |
| 136Χe 2νββ                            |       |  | 67          | 0           |
| Solar neutrinos (pp+7Be+13N)          |       |  | 191         | 0*          |
| Diffuse supernova neutrinos           |       |  | 0           | 0,05        |
| Atmospheric neutrinos                 |       |  | 0           | 0,46        |
| Total                                 |       |  | 1131        | 1,03        |
| with 99.5% ER discrim., 50% NR eff.   |       |  | 5,66        | 0,52        |



50<sup>2</sup>

r<sup>2</sup> [cm<sup>2</sup>]

 $60^{2}$ 

D.S. Akerib et al (LZ collaboration) Phys. Rev. D 101, 052002 (2020)

<sup>\* 6</sup> keV NR threshold used

## Sensitivity reach vs Pb-214 rate

Impact on 40 GeV WIMP sensitivity with increasing Pb-214 rate, as a proxy for increasing flat ER backgrounds



# Early Science Backgrounds

- Background model in WIMP ROI is built using tuned background simulations and normalizations derived from the measures described
  - Predicted normalizations using PhysRevD 101.052002
  - \* \* <sup>37</sup>Ar extrapolated based on results in arXiv 2201.02858
  - \* \* 127Xe extrapolated using LUX results AstroPart Phys 62, 33



\*Ar-37 and Xe-127 have 35 d and 36.4 d half-lives, respectively, and are only backgrounds for early science operations

### TPC & Skin Integration in the Surface Assembly Lab



Detector integration started in December 2018 at Surface Assembly Laboratory (SURF) ~13,500 working hours





Insertion into inner cryostat vessel





# Transport of TPC Underground

October 2019









# Underground deployment I



# Underground deployment II



# Underground deployment III



# LZ Cryogenics

 Cooling provided by thermosyphon technology (also used in LUX)



G. Rischbieter, SUNY at





## **Xenon Circulation System**



Time

### Xenon Circulation System & Cryogenics Commissioning

- Design gas circulation rate: 500 slpm
  - + Turnover full Xe mass every 2.4 days
  - Underground commissioning completed
    - Up to 600 slpm demonstrated
- Purification using hot zirconium getter
  - Removes non-noble impurities







# LZ Physics Reach

- CEVNS
- Solar axions
- Axion-like particles (ALPs)
- Leptophilic dark matter
- Neutrino magnetic moment
- Mirror dark matter
- DM-EFT Couplings
- •2νββ of <sup>134</sup>Xe with competitive sensitivity to 0νββ
- •Sensitivity to the  $0\nu\beta\beta$  decay of 136 Xe
- Enhanced sensitivity to low mass
   DM through Migdal effect
- Annual rate modulations
- •And more!

Phys. Rev. D 104, 092009 (2021) Phys. Rev. C. 104, 065501 (2021) Phys. Rev. C. 102, 014602 (2020)







