Flavour Anomalies Meet Flavour Symmetry

Tobias Felkl

In Collaboration with Innes Bigaran, Claudia Hagedorn, Michael A. Schmidt Sydney Consortium of Particle Physics & Cosmology School of Physics, University of New South Wales, Sydney, Australia

XXIX International Conference on Supersymmetry and Unification of Fundamental Interactions

28 June 2022

HFLAV 2021, 2206.07501

Neutrino oscillations \rightarrow Flavour structure of nature more complicated than in SM

Hints for LFU violation! R(D), $R(D^*)$: 3.4 σ

Muon AMM: $\Delta a_{\mu} = (2.51 \pm 0.59) \times 10^{-9}$ Muon g-2, 2104.03281;

Aoyama, T. et al., 2006.04822

Explain anomalies via scalar LQ $\phi \sim S_1^{\dagger}$

Predict interaction structure via discrete flavour symmetry!

Contents

- Model Setup
- LQ Coupling Texture
- Symmetry Breaking
- Phenomenology
 - Outline of Study
 - R(D), $R(D^*)$, Δa_μ
 - $\bullet \ \tau \to \mu \gamma$
 - $\mu
 ightarrow e \gamma$, μe conversion in Al
 - $\tau \rightarrow 3\mu$
- Conclusion

Model Setup

Extend SM by scalar LQ $\phi \sim S_1^\dagger \sim$ (3, 1, -1/3) Impose baryon-number conservation

$$\mathcal{L}_{LQ}^{int} = \overline{L^c} \, \hat{\mathbf{x}} \, Q \, \phi^{\dagger} + \overline{e_R^c} \, \hat{\mathbf{y}} \, u_R \, \phi^{\dagger} + \text{h.c.} \\ \mathcal{L}_{LQ}^{mass} = \overline{(\nu_L^m)^c} \, \mathbf{x} \, d_L^m \, \phi^{\dagger} + \overline{(e_R^m)^c} \, \mathbf{y} \, u_R^m \, \phi^{\dagger} - \overline{(e_L^m)^c} \, \mathbf{z} \, u_L^m \, \phi^{\dagger} + \text{h.c.} \\ \mathbf{z} = \mathbf{x} \, V^{\dagger}$$

Model Setup

Extend SM by scalar LQ $\phi \sim S_1^\dagger \sim$ (3, 1, -1/3) Impose baryon-number conservation

$$\mathcal{L}_{LQ}^{int} = \overline{L^c} \, \hat{\mathbf{x}} \, Q \, \phi^{\dagger} + \overline{e_R^c} \, \hat{\mathbf{y}} \, u_R \, \phi^{\dagger} + \text{h.c.}$$
$$\mathcal{L}_{LQ}^{mass} = \overline{(\nu_L^m)^c} \, \mathbf{x} \, d_L^m \, \phi^{\dagger} + \overline{(e_R^m)^c} \, \mathbf{y} \, u_R^m \, \phi^{\dagger} - \overline{(e_L^m)^c} \, \mathbf{z} \, u_L^m \, \phi^{\dagger} + \text{h.c.}$$
$$\mathbf{z} = \mathbf{x} \, V^{\dagger}$$

Formally: Type-II Higgs-Doublet Model

$$\sqrt{2} \left(\left\langle H_u^0 \right\rangle + \left\langle H_d^0 \right\rangle \right) = v_u^2 + v_d^2 = v^2 \sim (246 \text{ GeV})^2;$$
 Decoupling limit
Hall, Wise, Nucl. Phys. B (1981); Donoghue, Li, Phys. Rev. D (1979);
Haber, Nir: Nucl. Phys. B (1990)

$$\mathcal{L}_{\mathsf{Yuk}} = -\overline{Q_L} \, y_u \, u_R \, H_u - \overline{Q_L} \, y_d \, d_R \, H_d - \overline{L_L} \, y_e \, e_R \, H_d + \mathsf{h.c.}$$

Model Setup

Extend SM by scalar LQ $\phi \sim S_1^\dagger \sim (3,1,-1/3)$ Impose baryon-number conservation

$$\mathcal{L}_{LQ}^{int} = \overline{L^c} \, \hat{\mathbf{x}} \, Q \, \phi^{\dagger} + \overline{e_R^c} \, \hat{\mathbf{y}} \, u_R \, \phi^{\dagger} + \text{h.c.} \\ \mathcal{L}_{LQ}^{mass} = \overline{(\nu_L^m)^c} \, \mathbf{x} \, d_L^m \, \phi^{\dagger} + \overline{(e_R^m)^c} \, \mathbf{y} \, u_R^m \, \phi^{\dagger} - \overline{(e_L^m)^c} \, \mathbf{z} \, u_L^m \, \phi^{\dagger} + \text{h.c.} \\ \mathbf{z} = \mathbf{x} \, V^{\dagger}$$

Formally: Type-II Higgs-Doublet Model

$$\sqrt{2} \left(\left\langle H_u^0 \right\rangle + \left\langle H_d^0 \right\rangle \right) = v_u^2 + v_d^2 = v^2 \sim (246 \text{ GeV})^2;$$
 Decoupling limit
Hall, Wise, Nucl. Phys. B (1981); Donoghue, Li, Phys. Rev. D (1979);
Haber, Nir: Nucl. Phys. B (1990)

$$\mathcal{L}_{Yuk} = -\overline{Q_L} \, y_u \, u_R \, H_u - \overline{Q_L} \, y_d \, d_R \, H_d - \overline{L_L} \, y_e \, e_R \, H_d + \text{h.c.}$$

Flavour structure constrained by symmetry group $G_f = D_{17} \times Z_{17}$

- use assignment 2 + 1 for fermion generations as much as possible
- external Z_n symmetry: mass spectrum; reps of D_n are real; protect y

LQ Coupling Texture

Viable texture for $\lambda \approx 0.2$ and $\hat{m}_{\phi} \equiv \frac{m_{\phi}}{\text{TeV}} \lesssim 5$ identified in 1704.05849:

$$\begin{array}{cccc} d_{L} & s_{L} & b_{L} & & u_{R} & c_{R} & t_{R} \\ \nu_{eL} & \begin{pmatrix} 0 & 0 & 0 \\ 0 & \lambda^{3} & \lambda \\ \nu_{\tau L} & \begin{pmatrix} 0 & \lambda^{3} & \lambda \\ 0 & \lambda^{2} & 1 \end{pmatrix}, & \boldsymbol{y} \sim & \mu_{R} & \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & \lambda^{3} \\ 0 & 1 & 0 \end{pmatrix} & \begin{array}{c} \begin{array}{c} \text{Basis} \sim d_{i} \text{ and} \\ e_{i} \text{ mass basis;} \\ \nu \sim L_{\mu}^{1}; \\ R_{u} \sim 1 \end{array}$$

 $\begin{array}{ll} R(D), \ R(D^{\star}): \ x_{33} \sim y_{32} \sim 1; & \Delta a_{\mu} \sim 10^{-9}: \ z_{23}y_{23} \sim x_{23}y_{23} \sim \lambda^4 \\ B \rightarrow K^{(\star)}\nu\nu, \ B_{s} - \bar{B}_{s} \ \text{mixing:} \ x_{i2}x_{i3} \lesssim \lambda^2; & D^0 \rightarrow \mu\bar{\mu}, B \rightarrow D^{(\star)}\mu\nu: \ x_{22} \end{array}$

LQ Coupling Texture

Viable texture for $\lambda \approx 0.2$ and $\hat{m}_{\phi} \equiv \frac{m_{\phi}}{\text{TeV}} \lesssim 5$ identified in 1704.05849:

$$\begin{array}{cccc} & & & & \\ & & & & \\ \mathbf{x} \sim & & \nu_{\mu L} \\ & & & \nu_{\tau L} \end{array} \begin{pmatrix} 0 & 0 & 0 \\ 0 & \lambda^3 & \lambda \\ 0 & \lambda^2 & 1 \end{pmatrix}, \quad \mathbf{y} \sim & \mu_R \\ & & & \\ & & & \\ & & & \\ \end{array} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & \lambda^3 \\ 0 & 1 & 0 \end{pmatrix} \xrightarrow[]{Basis} \sim d_i \text{ and} \\ e_i \text{ mass basis;} \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ \end{array} \right)$$

 $\begin{array}{ll} R(D), \ R(D^{\star}): \ x_{33} \sim y_{32} \sim 1; & \Delta a_{\mu} \sim 10^{-9}: \ z_{23}y_{23} \sim x_{23}y_{23} \sim \lambda^{4} \\ B \rightarrow K^{(\star)}\nu\nu, \ B_{s}\text{-}\bar{B}_{s} \ \text{mixing:} \ x_{i2}x_{i3} \lesssim \lambda^{2}; & D^{0} \rightarrow \mu\bar{\mu}, B \rightarrow D^{(\star)}\mu\nu: \ x_{22} \end{array}$

$$\phi$$
, H_u , H_d , L_3 , Q_3 , e_{R3} , u_{R2} , u_{R3} , $d_{R3} \sim \mathbf{1}_1$
• $\overline{L_3^c} \phi^{\dagger} Q_3$ unsuppressed $\rightarrow L_3$, Q_3 in complex conj. reps
• $\overline{e_{R3}^c} \phi^{\dagger} u_{R2}$ unsuppressed $\rightarrow e_{R3}$, u_{R2} in complex conj. reps
• $\overline{Q_3} H_u u_{R3}$, $\overline{Q_3} H_d d_{R3}$, $\overline{L_3} H_d e_{R3}$: 3rd-gen. charged-fermion masses

LQ Coupling Texture

Viable texture for $\lambda \approx 0.2$ and $\hat{m}_{\phi} \equiv \frac{m_{\phi}}{\text{TeV}} \lesssim 5$ identified in 1704.05849:

$$\begin{array}{cccc} & & & & \\ & & & & \\ \mathbf{x} \sim & & \nu_{\mu L} \\ & & & \nu_{\tau L} \end{array} \begin{pmatrix} 0 & 0 & 0 \\ 0 & \lambda^3 & \lambda \\ 0 & \lambda^2 & 1 \end{pmatrix}, \quad \mathbf{y} \sim & \mu_R \\ & & & \\ & & & \\ & & & \\ \end{array} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & \lambda^3 \\ 0 & 1 & 0 \end{pmatrix} \xrightarrow[]{Basis} \sim d_i \text{ and} \\ e_i \text{ mass basis;} \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ \end{array} \right)$$

$$\begin{array}{ll} R(D), R(D^{\star}): x_{33} \sim y_{32} \sim 1; & \Delta a_{\mu} \sim 10^{-9}: z_{23}y_{23} \sim x_{23}y_{23} \sim \lambda^{4} \\ B \to K^{(\star)}\nu\nu, B_{s}\text{-}\bar{B}_{s} \text{ mixing: } x_{i2}x_{i3} \lesssim \lambda^{2}; & D^{0} \to \mu\bar{\mu}, B \to D^{(\star)}\mu\nu: x_{22} \\ \phi H_{\mu} H_{d} L_{2} Q_{2} e_{P2} \mu_{P2} \mu_{P2} d_{P2} \sim \mathbf{1}_{1} \end{array}$$

•
$$\overline{L_3^c} \phi^{\dagger} Q_3$$
 unsuppressed $\rightarrow L_3$, Q_3 in complex conj. reps

•
$$\overline{e_{R3}^c} \phi^{\dagger} u_{R2}$$
 unsuppressed $\rightarrow e_{R3}$, u_{R2} in complex conj. reps

• $\overline{Q_3} H_u u_{R3}$, $\overline{Q_3} H_d d_{R3}$, $\overline{L_3} H_d e_{R3}$: 3rd-gen. charged-fermion masses

Single spurion S \sim 2₁, $\langle S \rangle \sim \lambda$ for LO elements. L \sim 2₁, Q \sim 2₂, e_R \sim 2₃

- $\overline{L^c} \phi^{\dagger} Q_3 S$: one spurion insertion $\rightarrow L$ and S in same doublet
- $\overline{L_3^c} \phi^{\dagger} Q S^2$: two spurion insertions $\rightarrow Q$ and S^2 in same doublet
- $\overline{L^c} \phi^{\dagger} Q S^3$: three spurion insertions $\rightarrow \overline{L^c} Q$ and S^3 in same doublet
- $\overline{e_R^c} \phi^{\dagger} u_{R3} S^3$: three spurion insertions $\rightarrow e_R$ and S^3 in same doublet

Symmetry: $D_{17} \times Z_{17}$

$$\mathbf{x} = \begin{array}{ccc} \nu_{eL} & s_L & b_L & u_R & c_R & t_R \\ \nu_{\mu L} & & \\ \nu_{\tau L} & & \\ \end{array} \begin{pmatrix} \nu_{eL} & & \\ \mu_{R} & & \\ \mu_{R} & \\ & & \\ \mu_{R} & \\ & & \\ & & \\ \end{array} \begin{pmatrix} e_R & & \\ \mu_R & \\ &$$

Up-type quarks: $\mathcal{L}_{\text{Yuk,LO}}^{u} = \underbrace{\alpha_{1}^{u} \overline{Q_{3}} H_{u} u_{R3}}_{m_{t}} + \alpha_{2}^{u} \overline{Q} H_{u} u_{R2} W + \alpha_{3}^{u} \overline{Q} H_{u} u_{R3} (S^{\dagger})^{2} + \alpha_{4}^{u} \overline{Q} H_{u} u_{R1} T^{2} U.$ Down-type quarks: $\mathcal{L}_{\text{Yuk,LO}}^{d} = \underbrace{\alpha_{1}^{d} \overline{Q_{3}} H_{d} d_{R3}}_{m_{b}} + \alpha_{2}^{d} \overline{Q} H_{d} d_{R} T + \alpha_{3}^{d} \overline{Q} H_{d} d_{R} U.$ Charged leptons: $\mathcal{L}_{\text{Yuk,LO}}^{e} = \underbrace{\alpha_{1}^{e} \overline{I_{3}} H_{d} e_{R3}}_{m_{\tau}} + \alpha_{2}^{e} \overline{L} H_{d} e_{R} T + \alpha_{3}^{e} \overline{L} H_{d} e_{R} U.$

Symmetry Breaking

$$\langle S \rangle = \begin{pmatrix} \lambda \\ 0 \end{pmatrix}$$

Symmetry: $D_{17} \times Z_{17} \xrightarrow{S \to \langle S \rangle} Z_{17}^{diag}$

$$\mathbf{x} = \begin{array}{ccc} \nu_{eL} & \mathbf{s}_{L} & \mathbf{b}_{L} & \mathbf{u}_{R} & \mathbf{c}_{R} & \mathbf{t}_{R} \\ \mathbf{x} = \begin{array}{c} \nu_{eL} \\ \nu_{\mu L} \\ \nu_{\tau L} \end{array} \begin{pmatrix} \mathbf{a}_{22}\lambda^{3} & \mathbf{a}_{23}\lambda \\ \mathbf{a}_{32}\lambda^{2} & \mathbf{a}_{33} \end{pmatrix} \qquad \mathbf{y} = \begin{array}{c} \mathbf{e}_{R} \\ \mu_{R} \\ \mathbf{\tau}_{R} \end{pmatrix} \begin{pmatrix} \mathbf{b}_{23}\lambda^{3} \\ \mathbf{b}_{32} \end{pmatrix}$$

Up-type quarks:
$$\mathcal{L}_{Yuk,LO}^{u} = \underbrace{\alpha_{1}^{u} \overline{Q_{3}} H_{u} u_{R3}}_{m_{t}} + \alpha_{2}^{u} \overline{Q} H_{u} u_{R2} W + \underbrace{\alpha_{3}^{u} \overline{Q} H_{u} u_{R3} (S^{\dagger})^{2}}_{\Rightarrow \theta_{23}, (\theta_{13})} + \alpha_{4}^{u} \overline{Q} H_{u} u_{R1} T^{2} U.$$
Down-type quarks:
$$\mathcal{L}_{Yuk,LO}^{d} = \underbrace{\alpha_{1}^{d} \overline{Q_{3}} H_{d} d_{R3}}_{m_{b}} + \alpha_{2}^{d} \overline{Q} H_{d} d_{R} T + \alpha_{3}^{d} \overline{Q} H_{d} d_{R} U.$$
Charged leptons:
$$\mathcal{L}_{Yuk,LO}^{e} = \underbrace{\alpha_{1}^{e} \overline{L_{3}} H_{d} e_{R3}}_{m_{\tau}} + \alpha_{2}^{e} \overline{L} H_{d} e_{R} T + \alpha_{3}^{e} \overline{L} H_{d} e_{R} U.$$

Symmetry Breaking

$$\langle S \rangle = \begin{pmatrix} \lambda \\ 0 \end{pmatrix}, \quad \langle T \rangle = \begin{pmatrix} \lambda^2 \\ 0 \end{pmatrix}, \quad \langle U \rangle = \begin{pmatrix} 0 \\ \lambda^4 \end{pmatrix}, \quad \langle W \rangle = \begin{pmatrix} \lambda^5 \\ \lambda^4 \end{pmatrix}$$
Symmetry: $D_{17} \times Z_{17} \xrightarrow{S \to \langle S \rangle} Z_{17}^{\text{diag}} \xrightarrow{T \to \langle T \rangle, U \to \langle U \rangle, W \to \langle W \rangle}$ nil

$$\begin{array}{cccc} d_{L} & s_{L} & b_{L} & u_{R} & c_{R} & t_{R} \\ \nu_{eL} & \begin{pmatrix} a_{11}\lambda^{9} & a_{12}\lambda^{11} & a_{13}\lambda^{9} \\ a_{21}\lambda^{8} & a_{22}\lambda^{3} & a_{23}\lambda \\ a_{31}\lambda^{8} & a_{32}\lambda^{2} & a_{33} \end{pmatrix} & y = \begin{array}{c} \mu_{R} \\ \mu_{R} \\ \tau_{R} \end{pmatrix} \begin{pmatrix} b_{11}\lambda^{9} & b_{12}\lambda^{9} & b_{13}\lambda^{9} \\ b_{21}\lambda^{8} & b_{22}\lambda^{3} & b_{23}\lambda^{3} \\ b_{31}\lambda^{5} & b_{32} & b_{33}\lambda^{4} \end{pmatrix}$$

Up-type quarks:
$$\mathcal{L}_{Yuk,LO}^{u} = \underbrace{\alpha_{1}^{u} \overline{Q_{3}} H_{u} u_{R3}}_{m_{t}} + \underbrace{\alpha_{2}^{v} \overline{Q} H_{u} u_{R2} W}_{\rightarrow m_{c},\theta_{C},(\theta_{13})} + \underbrace{\alpha_{3}^{u} \overline{Q} H_{u} u_{R3} (S^{\dagger})^{2}}_{\rightarrow \theta_{23},(\theta_{13})} + \underbrace{\alpha_{4}^{u} \overline{Q} H_{u} u_{R1} T^{2} U}_{\rightarrow m_{u}}$$
Down-type quarks:
$$\mathcal{L}_{Yuk,LO}^{d} = \underbrace{\alpha_{1}^{d} \overline{Q_{3}} H_{d} d_{R3}}_{m_{b}} + \underbrace{\alpha_{2}^{d} \overline{Q} H_{d} d_{R} T}_{\rightarrow m_{s}} + \underbrace{\alpha_{3}^{d} \overline{Q} H_{d} d_{R} U}_{\rightarrow m_{d}}$$
Charged leptons:
$$\mathcal{L}_{Yuk,LO}^{e} = \underbrace{\alpha_{1}^{e} \overline{I_{3}} H_{d} e_{R3}}_{m_{T}} + \underbrace{\alpha_{2}^{e} \overline{L} H_{d} e_{R} T}_{\rightarrow m_{u}} + \underbrace{\alpha_{3}^{e} \overline{L} H_{d} e_{R} U}_{\rightarrow m_{e}}$$

Outline of Study

Classification of Observables:

- Primary: R(D), $R(D^*)$, Δa_{μ} , $\tau \to \mu\gamma$, $\mu \to e\gamma$, $\tau \to 3\mu$, $\tau \to \mu e\bar{e}$, $\mu \to 3 e$, $\mu - e \text{ conv. in Al}$, $B \to K^{(*)}\nu\bar{\nu}$, g_{τ_A} , $B_c \to \tau\nu$, $c\bar{c} \to \tau\bar{\tau}$
- Secondary: d_{μ} , g_{μ_A} , $R_D^{\mu/e}$, $R_{D^{\star}}^{e/\mu}$, $B \to \tau \nu$

 $m_{\phi} \gtrsim 1.2 \text{ TeV}$ at 95% C.L. for BR($\phi \rightarrow t\tau$) ~ BR($\phi \rightarrow b\nu$) ATLAS, 2108.07665 \rightarrow Benchmark LQ masses: $m_{\phi} = 2, 4, 6 \text{ TeV}$

Outline of Study

Classification of Observables:

- Primary: R(D), $R(D^*)$, Δa_{μ} , $\tau \to \mu\gamma$, $\mu \to e\gamma$, $\tau \to 3\mu$, $\tau \to \mu e\bar{e}$, $\mu \to 3 e$, $\mu - e \text{ conv. in Al}$, $B \to K^{(*)}\nu\bar{\nu}$, g_{τ_A} , $B_c \to \tau\nu$, $c\bar{c} \to \tau\bar{\tau}$
- Secondary: d_{μ} , g_{μ_A} , $R_D^{\mu/e}$, $R_{D^{\star}}^{e/\mu}$, B o au
 u

 $m_{\phi} \gtrsim 1.2 \text{ TeV}$ at 95% C.L. for BR($\phi \rightarrow t\tau$) ~ BR($\phi \rightarrow b\nu$) ATLAS, 2108.07665 \rightarrow Benchmark LQ masses: $m_{\phi} = 2, 4, 6 \text{ TeV}$

1. Primary scan: Primary observables Coeffs a_{ij} , b_{ij} , c_{ij} (mostly) independently varied $\in [\lambda, 1/\lambda]$ in mass basis

- 2. Comprehensive scan: All considered observables
 - Fit of SM Yukawa parameters to charged-fermion masses, quark mixing
 - LQ couplings:
 - Suitable biases derived from primary scan
 - Otherwise independently varied $\in [\lambda, 1/\lambda]$ in interaction basis
 - Coeffs a_{ij} , b_{ij} , c_{ij} in mass basis: Functions of SM Yukawa parameters, LQ coeffs \hat{a}_{ij} , \hat{b}_{ij} in interaction basis

Explaining R(D), $R(D^{\star})$, Δa_{μ}

 $\Delta a_{\mu} = [2.51 \pm 0.59 \, (0.4)] \times 10^{-9}$

Muon g-2, 2104.03281, 1501.06858;

Aoyama, T. et al., 2006.04822

Explaining R(D), $R(D^{\star})$, Δa_{μ}

Straub, 1810.08132; Straub, Stangl, Kirk, Kumar, Niehoff, Gurler et al., 10.5281/zenodo.5543714

Charged-Lepton Flavour Violating Decay $\tau \rightarrow \mu \gamma$

Charged-Lepton Flavour Violating $\mu \rightarrow e$ Transitions

Charged-Lepton Flavour Violating $\mu \rightarrow e$ Transitions

Trilepton Decay $\tau \rightarrow 3\mu$

SM extension by scalar LQ $\phi \sim$ (3,1,-1/3), also involving H_u , H_d .

Flavour structure constrained by symmetry group $G_f = D_{17} \times Z_{17}$.

- Assignment 1 + 1 + 1 for u_{Ri} , 2 + 1 for Q_i , d_{Ri} . L_i , e_{Ri} under D_{17} .
- Broken by four spurion fields *S*, *T*, *U*, *W*, all in **2**.
- Residual symmetry Z_{17}^{diag} preserved by \hat{x} and \hat{y} at LO.

Simultaneous explanation of R(D), $R(D^*)$, Δa_{μ} at 2σ (3σ) for $\hat{m}_{\phi} = 2(2, 4)$. Successful fit to charged-fermion masses and quark mixing.

Bigaran, I., Felkl, T., Hagedorn, C. & Schmidt, M.A.; Flavour Anomalies Meet Flavour Symmetry. arXiv: 2206.XXXXX

Thank you for your attention!

Back-Up

Group theory of D_{17}

 D_n non-abelian for $n \geq 3$.

 D_{17} contains 34 distinct elements, ten real irreps: trivial singlet $\mathbf{1}_1$, non-trivial singlet $\mathbf{1}_2$, eight (faithful) doublets $\mathbf{2}_i$.

Two generators a and b with $a^{17}=e\;,\;\;b^2=e\;,\;\;a\,b\,a=b\;.$

Representation matrices:

$$\begin{split} a(\mathbf{1}_1) &= b(\mathbf{1}_1) = 1 \text{ and } a(\mathbf{1}_2) = 1 , \quad b(\mathbf{1}_2) = -1 \\ a(\mathbf{2}_i) &= \begin{pmatrix} \omega_{17}^i & 0 \\ 0 & \omega_{17}^{17-i} \end{pmatrix} \text{ and } b(\mathbf{2}_i) = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} , \\ \text{where } \omega_{17} &= e^{\frac{2\pi i}{17}}. \end{split}$$

For Kronecker products and Clebsch-Gordan coefficients:

Blum, Hagedorn, Lindner, 0709.3450.

Field	D ₁₇	<i>Z</i> ₁₇	Field
$Q=(Q_1,Q_2)^T$	2 ₂	1	$e_R = (e_{R1}, e_{R2})^T$
<i>Q</i> ₃	1_1	16	e _{R3}
<i>u</i> _{<i>R</i>1}	1_2	13	H _u
<i>u</i> _{<i>R</i>2}	1_1	8	H _d
U _{R3}	1_1	1	ϕ
$d_R = (d_{R1}, d_{R2})^T$	2_4	1	$S = (S_1, S_2)^T$
d _{R3}	1_1	7	$T = (T_1, T_2)^T$
$L = (L_1, L_2)^T$	2 ₁	2	$U=(U_1,U_2)^T$
L ₃	1_1	1	$W = (W_1, W_2)^T$

 D_{17}

2₃

 $\mathbf{1}_1$

 $\mathbf{1}_1$

1₁

 $\mathbf{1}_1$

2₁

2₂

2₂

2₂

 Z_{17}

2

9

15

9

0

16

8

8

12

\hat{m}_{ϕ}	a 33	<i>b</i> ₃₂	$\cos[\Delta(a_{33},b_{32})]$	<i>a</i> 23	$\cos[\Delta(a_{23}, b_{23})]$
2	[0.2, 0.7]	[1.1, 2.6]	[0.4, 1.0]	-	[-1.0, 0.0]
4	[0.2, 1.9]	[1.0, 4.5]	[0.1, 1.0]	[1.6, 4.4]	[-1.0, -0.5]
6	[0.2, 3.6]	[0.8, 4.5]	[0.0, 1.0]	[1.4, 4.4]	[-1.0, -0.3]

 $\Delta(r_{ij}, s_{kl}) \equiv \operatorname{Arg}(r_{ij}) - \operatorname{Arg}(s_{kl}).$

Viable sample points explaining $R(D^{(*)})$ and/or Δa_{μ} at $3 \sigma \rightarrow$ Ranges above. Furthermore impose from $\mu \rightarrow e\gamma$ and $\tau \rightarrow \mu\gamma$

$$|b_{13}| \lesssim rac{1}{|a_{23}|} \left\{ egin{array}{ccc} 0.41, & \hat{m}_{\phi} = 2 \ 1.16, & \hat{m}_{\phi} = 4 \ 2.22, & \hat{m}_{\phi} = 6 \end{array}
ight\} \hspace{1.5cm} ext{and} \hspace{1.5cm} |b_{23}| \lesssim rac{1}{|a_{33}|} \left\{ egin{array}{ccc} 0.16, & \hat{m}_{\phi} = 2 \ 0.45, & \hat{m}_{\phi} = 4 \ 0.86, & \hat{m}_{\phi} = 6 \end{array}
ight\}$$

Explanation of anomalies prefers $|b_{13}| = \left| \hat{b}_{13} - \hat{b}_{23} \frac{e_{21}}{e_{22}} + \mathcal{O}(\lambda^2) \right|$ smaller than λ .

$R(D), R(D^{\star}), \Delta a_{\mu}$

au ightarrow 3 μ , $au ightarrow \mu e ar{e}$

 $B \rightarrow \underline{K}^{(\star)} \nu \overline{\nu}$

$$\begin{split} & \text{Belle, 1702.03224: } R_{K^{\star}}^{\nu} < 2.7 \left(90\% \text{ C.L.}\right) \\ & \text{Belle II, 1808.10567:} \\ & R_{K^{\star}}^{\nu} = 1.0 \pm 0.25 \left(0.1\right) \quad \text{for 5 (50) ab}^{-1} \\ & R_{K^{(\star)}}^{\nu} \approx 1 + 1.69 \frac{|a_{33}a_{32}|}{\hat{m}_{\phi}^2} \cos\left(\text{Arg}(a_{33}) - \text{Arg}(a_{32})\right) \\ & + 2.15 \frac{|a_{33}a_{32}|^2}{\hat{m}_{\phi}^4} \end{split}$$

Assumption: Lepton flavour conserved for SM couplings $\rightarrow g_{e_A}^{SM} = g_{e_L}^{SM} - g_{e_R}^{SM} \equiv g_A^{SM} (< 0)$

$$egin{aligned} g_{ au_A}/g_A^{
m SM} &pprox 1 - \left\{egin{aligned} 4.5, & \hat{m}_{\phi} = 2 \ 1.5, & \hat{m}_{\phi} = 4 \ 0.8, & \hat{m}_{\phi} = 6 \ \end{bmatrix} \ egin{aligned} |c_{33}|^2 imes 10^{-4} \ \end{array}
ight. \end{aligned}$$

 $g_{ au_A, ext{exp}}/g_A^{ ext{SM}}$: 1.00154 ± 0.00128 at 1σ $_{ ext{hep-ex/0509008}}$

Angelescu et al., 1808.08179: Reinterpretation of LHC search 1709.07242 for Z' in high- p_T $\tau \bar{\tau}$ tails

From top right in figure 4 in 1808.08179 (LHC does not distinguish between chiralities): $|y_{32}| = |b_{32}| < \hat{m}_{\phi} + 0.6$

Electric Dipole Moment of the Muon

 $|d_{\mu}| < 1.5 imes 10^{-19} \, e \, {
m cm}$ Muon g-2, 0811.1207

Future searches: $|d_{\mu}| < 1000 (60) [1] \times 10^{-24} e \,\mathrm{cm}$

EPJ Web Conf. 118 (2016) 01005; 1506.01465; 2102.08838; hep-ph/0012087;

hep-ph/0307006

Axial-Vector Z-Boson Coupling to Muons

SM Yukawa sector: Up-Type Quarks (Scenario A)

$$M_{u} = \begin{pmatrix} f_{11}\lambda^{8} & f_{12}\lambda^{5} & f_{13}\lambda^{8} \\ f_{21}\lambda^{10} & f_{22}\lambda^{4} & f_{23}\lambda^{2} \\ f_{31}\lambda^{12} & f_{32}\lambda^{4} & f_{33} \end{pmatrix} \langle H_{u}^{0} \rangle$$

$$L_{u} = \begin{pmatrix} 1 - \frac{f_{12}^{2}}{2f_{22}^{2}}\lambda^{2} + \mathcal{O}(\lambda^{4}) & \frac{f_{12}}{f_{22}}\lambda + \mathcal{O}(\lambda^{3}) & \frac{f_{13}}{f_{33}}\lambda^{8} + \mathcal{O}(\lambda^{9}) \\ - \frac{f_{12}}{f_{22}}\lambda + \mathcal{O}(\lambda^{3}) & 1 - \frac{f_{12}^{2}}{2f_{22}^{2}}\lambda^{2} + \mathcal{O}(\lambda^{4}) & \frac{f_{23}}{f_{33}}\lambda^{2} + \mathcal{O}(\lambda^{6}) \\ \frac{f_{12}f_{23}}{f_{22}f_{33}}\lambda^{3} + \mathcal{O}(\lambda^{5}) & - \frac{f_{23}}{f_{33}}\lambda^{2} + \mathcal{O}(\lambda^{4}) & 1 - \frac{f_{23}^{2}}{2f_{33}^{2}}\lambda^{4} + \mathcal{O}(\lambda^{8}) \end{pmatrix}$$

$$R_{u} = \begin{pmatrix} 1 + \mathcal{O}(\lambda^{10}) & \frac{f_{11}f_{12}}{f_{22}^{2}}\lambda^{5} + \mathcal{O}(\lambda^{6}) & \frac{f_{21}f_{23}+f_{31}f_{33}}{f_{33}}\lambda^{12} + i(\lambda^{12}) \\ - \frac{f_{11}f_{12}f_{32}}{f_{22}f_{33}}\lambda^{9} + \mathcal{O}(\lambda^{10}) & - \frac{f_{32}}{f_{33}}\lambda^{4} + \mathcal{O}(\lambda^{6}) & 1 + \mathcal{O}(\lambda^{8}) \end{pmatrix}.$$

SM Yukawa sector: Up-Type Quarks (Scenario B)

Consider enhancement $(M_u)_{13} = \tilde{f}_{13} \lambda^3$ to correctly predict J_{CP} .

$$M_{u} = \begin{pmatrix} f_{11} \lambda^{8} & f_{12} \lambda^{5} & \tilde{f}_{13} \lambda^{3} \\ f_{21} \lambda^{10} & f_{22} \lambda^{4} & f_{23} \lambda^{2} \\ f_{31} \lambda^{12} & f_{32} \lambda^{4} & f_{33} \end{pmatrix} \langle H_{u}^{0} \rangle$$

$$L_{u} = \begin{pmatrix} 1 - \frac{f_{12}^{\prime}}{2f_{22}^{\prime}}\lambda^{2} + \mathcal{O}(\lambda^{4}) & \frac{f_{12}}{f_{22}}\lambda + \mathcal{O}(\lambda^{3}) & \frac{f_{13}}{f_{33}}\lambda^{3} + \mathcal{O}(\lambda^{7}) \\ - \frac{f_{12}}{f_{22}}\lambda + \mathcal{O}(\lambda^{3}) & 1 - \frac{f_{12}^{\prime}}{2f_{22}^{\prime}}\lambda^{2} + \mathcal{O}(\lambda^{4}) & \frac{f_{23}}{f_{33}}\lambda^{2} + \mathcal{O}(\lambda^{6}) \\ \left(\frac{f_{12}f_{23}}{f_{22}f_{33}} - \frac{f_{13}}{f_{33}}\right)\lambda^{3} + \mathcal{O}(\lambda^{5}) & - \frac{f_{23}}{f_{33}}\lambda^{2} + \mathcal{O}(\lambda^{4}) & 1 - \frac{f_{22}^{\prime}}{2f_{22}^{\prime}}\lambda^{4} + \mathcal{O}(\lambda^{6}) \end{pmatrix}$$

$$R_{u} = \begin{pmatrix} 1 + \mathcal{O}(\lambda^{10}) & \frac{f_{11}f_{12}}{f_{22}^{2}}\lambda^{5} + \mathcal{O}(\lambda^{6}) & \frac{f_{11}f_{13}}{f_{33}^{2}}\lambda^{11} + \mathcal{O}(\lambda^{12}) \\ -\frac{f_{11}f_{12}}{f_{22}^{2}}\lambda^{5} + \mathcal{O}(\lambda^{6}) & 1 + \mathcal{O}(\lambda^{8}) & \frac{f_{22}}{f_{33}}\lambda^{4} + \mathcal{O}(\lambda^{6}) \\ \frac{f_{11}f_{12}f_{32}}{f_{22}^{2}f_{33}}\lambda^{9} + \mathcal{O}(\lambda^{10}) & -\frac{f_{32}}{f_{33}}\lambda^{4} + \mathcal{O}(\lambda^{6}) & 1 + \mathcal{O}(\lambda^{8}) \end{pmatrix}$$

SM Yukawa Sector: Down-Type Quarks

$$M_{d} = \begin{pmatrix} d_{11} \lambda^{4} & d_{12} \lambda^{0} & d_{13} \lambda^{0} \\ d_{21} \lambda^{10} & d_{22} \lambda^{2} & d_{23} \lambda^{2} \\ d_{31} \lambda^{12} & d_{32} \lambda^{4} & d_{33} \end{pmatrix} \langle H_{d}^{0} \rangle$$

$$\begin{pmatrix} 1 - \frac{d_{12}^{2}}{2d_{22}^{2}} \lambda^{12} + o(\lambda^{12}) & \frac{d_{12}}{d_{22}} \lambda^{6} + \mathcal{O}(\lambda^{10}) & \frac{d_{13}}{d_{33}} \lambda^{8} + \mathcal{O}(\lambda^{12}) \\ - \frac{d_{12}}{2d_{22}} \lambda^{6} + \mathcal{O}(\lambda^{10}) & 1 - \frac{d_{23}^{2}}{2d_{23}^{2}} \lambda^{4} + \mathcal{O}(\lambda^{8}) & \frac{d_{23}}{d_{23}} \lambda^{2} + \mathcal{O}(\lambda^{6}) \end{pmatrix}$$

$$L_{d} = \begin{pmatrix} -\frac{d_{12}}{d_{22}}\lambda^{6} + \mathcal{O}(\lambda^{10}) & 1 - \frac{d_{23}^{2}}{2d_{33}^{2}}\lambda^{4} + \mathcal{O}(\lambda^{8}) & \frac{d_{23}}{d_{33}}\lambda^{2} + \mathcal{O}(\lambda^{6}) \\ L_{d,31}\lambda^{8} + \mathcal{O}(\lambda^{12}) & -\frac{d_{23}}{d_{33}}\lambda^{2} + \mathcal{O}(\lambda^{6}) & 1 - \frac{d_{23}^{2}}{2d_{33}^{2}}\lambda^{4} + \mathcal{O}(\lambda^{8}) \end{pmatrix}$$

with

$$L_{d,31} = \frac{d_{12}d_{23} - d_{13}d_{22}}{d_{22}d_{33}} \,.$$

$$R_{d} = \begin{pmatrix} 1 + o(\lambda^{12}) & R_{d,12} \lambda^{8} + \mathcal{O}(\lambda^{12}) & R_{d,13} \lambda^{12} + o(\lambda^{12}) \\ -R_{d,12} \lambda^{8} - \mathcal{O}(\lambda^{12}) & 1 + \mathcal{O}(\lambda^{8}) & \frac{(d_{22}d_{23} + d_{32}d_{33})}{d_{33}^{2}} \lambda^{4} + \mathcal{O}(\lambda^{8}) \\ \mathcal{O}(\lambda^{12}) & -\frac{(d_{22}d_{23} + d_{32}d_{33})}{d_{33}^{2}} \lambda^{4} + \mathcal{O}(\lambda^{8}) & 1 + \mathcal{O}(\lambda^{8}) \end{pmatrix}$$

with

$$R_{d,12} = \frac{d_{11}d_{12} + d_{21}d_{22}}{d_{22}^2} \quad \text{and} \quad R_{d,13} = \frac{d_{11}d_{13} + d_{21}d_{23} + d_{31}d_{33}}{d_{33}^2} \ .$$

Quark Mixing (Scenario A)

$$\begin{split} V &= L_{u}^{\dagger} L_{d} \\ &= \begin{pmatrix} 1 - \frac{f_{12}^{2}}{2f_{22}^{2}} \lambda^{2} + \mathcal{O}(\lambda^{4}) & -\frac{f_{12}}{f_{22}} \lambda + \mathcal{O}(\lambda^{3}) & \frac{f_{12}}{f_{22}} V_{32} \lambda^{3} + \mathcal{O}(\lambda^{5}) \\ \frac{f_{12}}{f_{22}} \lambda + \mathcal{O}(\lambda^{3}) & 1 - \frac{f_{12}^{2}}{2f_{22}^{2}} \lambda^{2} + \mathcal{O}(\lambda^{4}) & -V_{32} \lambda^{2} + \mathcal{O}(\lambda^{4}) \\ V_{31} \lambda^{8} + \mathcal{O}(\lambda^{9}) & V_{32} \lambda^{2} + \mathcal{O}(\lambda^{6}) & 1 - \frac{1}{2} (V_{32})^{2} \lambda^{4} + \mathcal{O}(\lambda^{6}) \end{pmatrix} \end{split}$$

with

$$V_{32} \equiv \frac{f_{23}}{f_{33}} - \frac{d_{23}}{d_{33}}$$

and

$$V_{31} \equiv rac{f_{13}}{f_{33}} - rac{d_{13}}{d_{33}} - rac{d_{12}}{d_{22}}V_{32} \; .$$

 $J_{\mathrm{CP}} = \mathrm{Im} \left(V_{ud} \; V_{ub}^* \; V_{td}^* \; V_{tb}
ight) \sim \lambda^{11} \, .$

Quark Mixing (Scenario B)

$$\begin{split} V &= L_{u}^{\dagger} L_{d} \\ &= \begin{pmatrix} 1 - \frac{f_{12}^{2}}{2f_{22}^{2}} \lambda^{2} + \mathcal{O}(\lambda^{4}) & -\frac{f_{12}}{f_{22}} \lambda + \mathcal{O}(\lambda^{3}) & \left(\frac{f_{12}}{f_{22}} V_{32} - \frac{f_{13}}{f_{33}}\right) \lambda^{3} + \mathcal{O}(\lambda^{5}) \\ & \frac{f_{12}}{f_{22}} \lambda + \mathcal{O}(\lambda^{3}) & 1 - \frac{f_{12}^{2}}{2f_{22}^{2}} \lambda^{2} + \mathcal{O}(\lambda^{4}) & -V_{32} \lambda^{2} + \mathcal{O}(\lambda^{4}) \\ & \frac{f_{13}}{f_{33}} \lambda^{3} + \mathcal{O}(\lambda^{7}) & V_{32} \lambda^{2} + \mathcal{O}(\lambda^{6}) & 1 - \frac{1}{2}(V_{32})^{2} \lambda^{4} + \mathcal{O}(\lambda^{6}) \end{pmatrix} \end{split}$$

with

$$V_{32} \equiv rac{f_{23}}{f_{33}} - rac{d_{23}}{d_{33}} \; .$$

 $J_{\mathrm{CP}} = \mathrm{Im} \left(V_{ud} \; V_{ub}^* \; V_{td}^* \; V_{tb}
ight) \sim \lambda^6 \, .$

SM Yukawa Sector: Charged Leptons

$$\begin{split} \mathcal{M}_{e} &= \begin{pmatrix} e_{11} \lambda^{4} & e_{12} \lambda^{12} & o(\lambda^{12}) \\ e_{21} \lambda^{8} & e_{22} \lambda^{2} & e_{23} \lambda \\ e_{31} \lambda^{9} & e_{32} \lambda^{3} & e_{33} \end{pmatrix} \langle \mathcal{H}_{d}^{0} \rangle \\ \mathcal{L}_{e} &= \begin{pmatrix} 1 + o(\lambda^{12}) & \frac{e_{11}e_{21}}{e_{22}^{2}} \lambda^{8} + \mathcal{O}(\lambda^{10}) & 0(\lambda^{12}) \\ -\frac{e_{11}e_{21}}{e_{22}^{2}} \lambda^{8} + \mathcal{O}(\lambda^{10}) & 1 - \frac{e_{23}^{2}}{2e_{33}^{2}} \lambda^{2} + \mathcal{O}(\lambda^{4}) & \frac{e_{23}}{e_{33}} \lambda + \mathcal{O}(\lambda^{3}) \\ \frac{e_{11}e_{21}e_{22}e_{33}}{e_{22}^{2}e_{33}^{2}} \lambda^{9} + \mathcal{O}(\lambda^{11}) & -\frac{e_{23}}{e_{23}} \lambda^{2} + \mathcal{O}(\lambda^{3}) & 1 - \frac{e_{23}^{2}}{2e_{23}^{2}} \lambda^{2} + \mathcal{O}(\lambda^{4}) \end{pmatrix} \\ \mathcal{R}_{e} &= \begin{pmatrix} 1 - \frac{e_{21}^{2}}{2e_{22}^{2}} \lambda^{12} + o(\lambda^{12}) & \frac{e_{21}}{e_{22}} \lambda^{6} + \mathcal{O}(\lambda^{8}) & \frac{(e_{21}e_{23}+e_{31}e_{33})}{e_{33}^{2}} \lambda^{9} + \mathcal{O}(\lambda^{11}) \\ -\frac{e_{21}}{2e_{22}} \lambda^{6} + \mathcal{O}(\lambda^{8}) & 1 - \frac{1}{2}(R_{e,23})^{2} \lambda^{6} + \mathcal{O}(\lambda^{8}) & R_{e,23} \lambda^{3} + \mathcal{O}(\lambda^{5}) \\ \mathcal{R}_{e,31} \lambda^{9} + \mathcal{O}(\lambda^{11}) & -R_{e,23} \lambda^{3} + \mathcal{O}(\lambda^{5}) & 1 - \frac{1}{2}(R_{e,23})^{2} \lambda^{6} + \mathcal{O}(\lambda^{8}) \end{pmatrix} \\ \text{with} \\ \mathcal{R}_{e,23} \equiv \frac{e_{22}e_{23} + e_{32}e_{33}}{e_{33}^{2}} & \text{and} \qquad \mathcal{R}_{e,31} \equiv \frac{1}{e_{33}} \left(\frac{e_{21}e_{32}}{e_{22}} - e_{31} \right) \,. \end{split}$$

Leptoquark Coupling x

$$\begin{split} \mathbf{x} &= L_e^T \left(\begin{array}{cccc} \hat{a}_{11} \lambda^9 & \hat{a}_{12} \lambda^{12} & \mathrm{o}(\lambda^{12}) \\ \hat{a}_{21} \lambda^8 & \hat{a}_{22} \lambda^3 & \hat{a}_{23} \lambda \\ \hat{a}_{31} \lambda^8 & \hat{a}_{32} \lambda^2 & \hat{a}_{33} \end{array} \right) L_d = \left(\begin{array}{cccc} a_{11} \lambda^9 & a_{12} \lambda^{11} & a_{13} \lambda^9 \\ a_{21} \lambda^8 & a_{22} \lambda^3 & a_{23} \lambda \\ a_{31} \lambda^8 & \hat{a}_{32} \lambda^2 & \hat{a}_{33} \end{array} \right) \\ \mathbf{a}_{11} &= \hat{a}_{11} + \mathrm{o}(\lambda^3) , \\ \mathbf{a}_{12} &= -\frac{\hat{a}_{22} \mathbf{e}_{11} \mathbf{e}_{21}}{\mathbf{e}_{22}^2} + \frac{\hat{a}_{23} \mathbf{d}_{23} \mathbf{e}_{11} \mathbf{e}_{21}}{\mathbf{d}_{33} \mathbf{e}_{22}^2} + \frac{\hat{a}_{33} \mathbf{d}_{12} \mathbf{e}_{12} \mathbf{e}_{23}}{\mathbf{e}_{22}^2 \mathbf{e}_{33}} - \frac{\hat{a}_{33} \mathbf{d}_{23} \mathbf{e}_{11} \mathbf{e}_{21} \mathbf{e}_{23}}{\mathbf{d}_{33} \mathbf{e}_{22}^2 \mathbf{e}_{33}} + \mathcal{O}(\lambda) , \\ \mathbf{a}_{13} &= -\frac{\hat{a}_{23} \mathbf{e}_{11} \mathbf{e}_{21}}{\mathbf{e}_{22}^2} + \frac{\hat{a}_{33} \mathbf{e}_{11} \mathbf{e}_{12} \mathbf{e}_{23}}{\mathbf{e}_{22}^2 \mathbf{e}_{33}} + \mathcal{O}(\lambda^2) , \\ \mathbf{a}_{21} &= \hat{a}_{21} + \mathcal{O}(\lambda) , \\ \mathbf{a}_{22} &= \hat{a}_{22} - \frac{\mathbf{d}_{23}}{\mathbf{d}_{33}} \left(\hat{a}_{23} - \frac{\hat{a}_{33} \mathbf{e}_{23}}{\mathbf{e}_{33}} \right) - \frac{\hat{a}_{32} \mathbf{e}_{23}}{\mathbf{e}_{33}} + \mathcal{O}(\lambda^2) , \\ \mathbf{a}_{31} &= \hat{a}_{31} - \frac{\hat{a}_{32} \mathbf{d}_{12}}{\mathbf{d}_{22}} - \frac{\hat{a}_{33} \mathbf{d}_{13}}{\mathbf{d}_{33}} + \frac{\hat{a}_{33} \mathbf{d}_{12} \mathbf{d}_{23}}{\mathbf{d}_{22} \mathbf{d}_{33}} + \mathcal{O}(\lambda) , \\ \mathbf{a}_{32} &= \hat{a}_{32} - \frac{\hat{a}_{33} \mathbf{d}_{23}}{\mathbf{d}_{33}} + \mathcal{O}(\lambda^2) , \\ \mathbf{a}_{33} &= \hat{a}_{33} + \mathcal{O}(\lambda^2) . \end{split}$$

Leptoquark Coupling z

$$\mathbf{z} = L_e^T \,\hat{\mathbf{x}} \, L_u = \begin{pmatrix} c_{11} \,\lambda^9 & c_{12} \,\lambda^{10} & c_{13} \,\lambda^9 \\ c_{21} \,\lambda^4 & c_{22} \,\lambda^3 & c_{23} \,\lambda \\ c_{31} \,\lambda^3 & c_{32} \,\lambda^2 & c_{33} \end{pmatrix}$$

$$\begin{array}{rcl} c_{11} & = & \hat{a}_{11} + \mathcal{O}(\lambda^2) \ , \\ c_{12} & = & \frac{\hat{a}_{11}f_{12}}{f_{22}} + \mathcal{O}(\lambda) \ , \\ c_{13} & = & -\frac{\hat{a}_{23}e_{11}e_{21}}{e_{22}^2} + \frac{\hat{a}_{33}e_{11}e_{21}e_{23}}{e_{22}^2e_{33}} + \mathcal{O}(\lambda^2) \ , \\ c_{21} & = & -\frac{\hat{h}_{12}}{e_{33}f_{22}f_{33}} \left(\hat{a}_{33}e_{23}f_{23} - \hat{a}_{23}e_{33}f_{23} - \hat{a}_{32}e_{23}f_{33} + \hat{a}_{22}e_{33}f_{33} \right) \\ & & -\frac{\tilde{h}_{13}}{f_{33}} \left(\hat{a}_{23} - \frac{\hat{a}_{33}e_{23}}{e_{33}} \right) + \mathcal{O}(\lambda^2) \ , \\ c_{22} & = & \hat{a}_{22} - \frac{\hat{a}_{32}e_{23}}{e_{33}} - \left(\hat{a}_{23} - \frac{\hat{a}_{33}e_{23}}{e_{33}} \right) \frac{f_{23}}{f_{33}} + \mathcal{O}(\lambda^2) \ , \\ c_{23} & = & \hat{a}_{23} - \frac{\hat{a}_{33}e_{23}}{e_{33}} + \mathcal{O}(\lambda^2) \ , \\ c_{31} & = & \frac{f_{12}(\hat{a}_{33}f_{23} - \hat{a}_{32}f_{33})}{f_{22}f_{33}} - \frac{\tilde{h}_{33}}{f_{33}} \hat{a}_{33} + \mathcal{O}(\lambda^2) \ , \\ c_{32} & = & \hat{a}_{32} - \frac{\hat{a}_{33}f_{23}}{f_{33}} + \mathcal{O}(\lambda^2) \ , \\ c_{33} & = & \hat{a}_{33} + \mathcal{O}(\lambda^2) \ . \end{array}$$

Tobias Felkl

Leptoquark Coupling y

$$\begin{split} \mathbf{y} &= R_e^T \left(\begin{array}{cccc} \hat{b}_{11} \lambda^9 & \hat{b}_{12} \lambda^9 & \hat{b}_{13} \lambda^9 \\ \hat{b}_{21} \lambda^9 & \hat{b}_{22} \lambda^3 & \hat{b}_{23} \lambda^3 \\ \hat{b}_{31} \lambda^{12} & \hat{b}_{32} & \hat{b}_{33} \lambda^4 \end{array} \right) R_u = \left(\begin{array}{cccc} b_{11} \lambda^9 & b_{12} \lambda^9 & b_{13} \lambda^9 \\ b_{21} \lambda^8 & b_{22} \lambda^3 & b_{23} \lambda^3 \\ b_{31} \lambda^5 & b_{32} & b_{33} \lambda^4 \end{array} \right) \\ \\ b_{11} &= \hat{b}_{11} + o(\lambda^3) , \\ b_{12} &= \hat{b}_{12} - \frac{\hat{b}_{22}e_{21}}{e_{22}} - \frac{\hat{b}_{32}e_{31}}{e_{33}} + \frac{\hat{b}_{32}e_{21}e_{32}}{e_{22}e_{33}} + \mathcal{O}(\lambda^2) , \\ \\ b_{13} &= \hat{b}_{13} - \frac{\hat{b}_{23}e_{21}}{e_{22}} + \mathcal{O}(\lambda^2) , \\ \\ b_{21} &= -\frac{\hat{b}_{22}f_{11}f_{12}}{f_{22}^2} + \frac{\hat{b}_{32}e_{22}e_{33}f_{11}f_{12}}{e_{33}^2f_{22}^2} + \mathcal{O}(\lambda) , \\ \\ b_{22} &= \hat{b}_{22} - \frac{\hat{b}_{32}(e_{22}e_{23} + e_{32}e_{33})}{e_{33}^2} + \mathcal{O}(\lambda^2) , \\ \\ b_{23} &= \hat{b}_{23} + \mathcal{O}(\lambda^4) , \\ \\ b_{31} &= -\frac{\hat{b}_{32}f_{11}f_{12}}{f_{22}^2} + \mathcal{O}(\lambda) , \\ \\ b_{32} &= \hat{b}_{32} + \mathcal{O}(\lambda^6) , \\ \\ b_{33} &= \hat{b}_{33} + \frac{\hat{b}_{32}f_{2}}{f_{33}} + \mathcal{O}(\lambda^2) . \end{split}$$