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Our definition of the jet angularities
• Substructure observable dependent on 𝒑𝒑𝐓𝐓 and angular distributions 

of tracks within jets

• IRC-safe observable for 𝜅𝜅 = 1, 𝛼𝛼 > 0 calculable from pQCD
• Each 𝜅𝜅, 𝛼𝛼, and radius 𝑅𝑅 defines a different observable capable of 

probing some phase space of jet structure
• Provides a systematic way to test certain aspects of theory

𝜆𝜆𝛼𝛼𝜅𝜅 ≡ �
𝑖𝑖∈jet

𝑝𝑝T,𝑖𝑖
𝑝𝑝T,jet

𝜅𝜅 Δ𝑅𝑅𝑖𝑖,jet
𝑅𝑅

𝛼𝛼 Tunable, continuous 
parameters for relative 

weighting

Constituent 𝑝𝑝𝑇𝑇

Constituent angle in (𝜂𝜂,𝜙𝜙) space
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Angularities in pp collisions
• Also related to jet mass 𝑚𝑚jet: 𝜅𝜅 = 1, 𝛼𝛼 = 2

• These observables have
been measured several
times by ATLAS, CMS, ALICE, CDF, …

• Girth 𝑔𝑔:  𝜅𝜅 = 1, 𝛼𝛼 = 1

Goals of our recent studies:

• Provide a more systematic study with various 𝑅𝑅 and 
𝛼𝛼 to test perturbative & nonperturbative QCD
• Explore both with and without grooming
• Test validity of nonperturbative shape functions

• Provide a baseline for comparison to Pb-Pb

𝜆𝜆𝛼𝛼=2𝜅𝜅=1~
𝑚𝑚jet
2

𝑝𝑝T,jet
2
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https://arxiv.org/abs/1807.06854


• Quark-Gluon Plasma (QGP) believed to form in heavy ion collisions

• Modifies jet interactions:
• Jet quenching (see figure on right)
• Momentum broadening

• Open questions:
• Lumpy or smooth? What are the d.o.f.? q / g fraction?

Hadronization? Factorization breaking? …

• How does the QGP modify the jet angularities?
•  how can we study the QGP with the jet angularities?
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figure:
Salvatore Aiola,
Yale University
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Motivation for Pb-Pb studies
𝛼𝛼 = 1,𝑅𝑅 = 0.2: significant modification

JHEP 10 (2018) 139

𝛼𝛼 = 2,𝑅𝑅 = 0.4: no significant modification

Phys. Lett. B776 
(2018) 249-264

Goals of future Pb-Pb measurements:
• Understand observables with different 𝛼𝛼 (e.g. 1.5) and 𝑅𝑅
• Differentiate between models of jet quenching

𝑅𝑅 = 0.4
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Measuring charged jets with ALICE

• Charged tracks reconstructed
using silicon inner tracking
system (ITS) and gaseous TPC
in a 0.5 Tesla 𝐵𝐵-field 

• High-precision spatial and momentum
resolution, ideal for substructure measurements

• Good tracking efficiency (~85%) for 𝑝𝑝T ≳ 1 GeV/c

• Measure tracks down to  𝑝𝑝T ~ 150 MeV/c -- unique 
ability for low-𝑝𝑝T tracks and jets at LHC energies 

0.5 T
Magnet

Time Projection 
Chamber (TPC)

Inner Tracking 
System (ITS)
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Our measurements of the jet angularities
• Use 𝑠𝑠 = 5.02 TeV data since it exists for both pp and Pb-Pb collisions

• Perform measurement for charged anti-𝑘𝑘T
jets with parameters 𝜅𝜅 = 1,  𝛼𝛼 ∈ 1, 1.5, 2, 3 ,
and 𝑅𝑅 ∈ {0.2, 0.4}.

• With and without Soft Drop grooming:
(𝑧𝑧cut = 0.2, 𝛽𝛽 = 0)

• New paper is submitted to the arXiv:
• https://arxiv.org/abs/2107.11303

• Currently undergoing journal review (JHEP)
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𝜆𝜆𝛼𝛼𝜅𝜅=1

R = 0.4     𝜂𝜂jet < 0.5

60 < p     < 80 GeV/c

𝜆𝜆𝛼𝛼𝜅𝜅=1

R = 0.2

60 < p     < 80 GeV/c

Example ungroomed measurements
• Distributions shift to the left for higher 𝛼𝛼,  𝑝𝑝T

ch jet

• Full figures (including Herwig7 comparisons) are available publicly: https://alice-publications.web.cern.ch/node/7264 
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𝜆𝜆𝛼𝛼𝜅𝜅=1

<

ALI-PUB-495580

ALI-PUB-495575

https://alice-publications.web.cern.ch/node/7264


𝜆𝜆𝛼𝛼,g
𝜅𝜅=1𝜆𝜆𝛼𝛼𝜅𝜅=1

<

Ungroomed vs. Groomed angularities (𝑅𝑅 = 0.2)
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Better agreement 
seen after 
grooming

ALI-PUB-495580 ALI-PUB-495590

• Removing some 
nonperturbative
effects from data
and models increases
the agreement, as
would be expected

• Similar improvement in agreement is seen for all 𝛼𝛼, 𝑅𝑅, and 𝑝𝑝T
ch jet bins

𝜆𝜆𝛼𝛼𝜅𝜅 ≡ �
𝑖𝑖∈jet

𝑧𝑧𝑖𝑖𝜅𝜅𝜃𝜃𝑖𝑖𝛼𝛼



Comparing to pQCD predictions with SCET
• Theoretical predictions for parton jets by F. Ringer & K. Lee (LBNL) [3]

at Next-to-Leading Log (NLL’) perturbative accuracy

• Apply a “forward folding” procedure to correct for multi-parton
interactions (MPI), hadronization, and charged jets

• 2D folding with 𝑝𝑝T,jet and 𝜆𝜆𝛼𝛼 axes; followed by bin-by-bin scaling for MPI

• There is a model dependence introduced, which we address by 
repeating the folding procedure with both Herwig and PYTHIA

Parton-level 
pQCD prediction 

at NLL’

Forward folding Charged hadron-
level prediction, 

no MPI

MPI scaling & renorm. Charged 
hadron-level 

prediction
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[3] JHEP 1804 (2018) 110
25 Oct 2021

https://arxiv.org/ct?url=https%3A%2F%2Fdx.doi.org%2F10.1007%2FJHEP04%25282018%2529110&v=2dd9a81e


Determining regions of interest

• Nonperturbative effects are larger at low 𝑝𝑝T
jet and small 𝑅𝑅:

• Parton-to-charged response is 
largely non-diagonal for small
𝑅𝑅, low 𝑝𝑝T

jet

• Due primarily to hadronization
• Corresponds to an increased

dependence on the choice
of hadronization model and tuning

• These regions can be used for 
testing & tuning MC models

11E.D. Lesser 25 Oct 2021

𝜆𝜆𝛼𝛼
NP region ≲ Λ/(𝑝𝑝T

jet𝑅𝑅) (we use Λ = 1 GeV)
2D projection for 𝑅𝑅 = 0.2,

𝑝𝑝T
ch jet ∈ [60, 80] GeV/c with PYTHIA8
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𝜆𝜆 𝛼𝛼
=
1.
5

ch
𝜆𝜆𝛼𝛼=1.5
parton



pQCD predictions with SCET  (𝑅𝑅 = 0.2)

Distributions 
dominated by 
nonperturbative 
effects at large 𝛼𝛼

Agreement 
within 
perturbative 
region is 
reasonable

12E.D. Lesser 25 Oct 2021

(no grooming)

𝜆𝜆𝛼𝛼𝜅𝜅 ≡ �
𝑖𝑖∈jet

𝑧𝑧𝑖𝑖𝜅𝜅𝜃𝜃𝑖𝑖𝛼𝛼

ALI-PUB-495595



pQCD predictions with SCET  (𝑅𝑅 = 0.2)

SD grooming 
greatly increases 
the perturbative 
region for 
predictions

Reasonable 
agreement still 
seen within 
uncertainties
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pQCD predictions with SCET  (𝑅𝑅 = 0.4)

For larger 𝑅𝑅 we 
see increased 
tension at large 
values of 𝜆𝜆𝛼𝛼

This could hint at 
the importance 
of higher-order 
terms (for 
example, power 
corrections in 𝜆𝜆𝛼𝛼)
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(no grooming)



Alternate hadronization correction
• Comparisons to Monte Carlo predictions are limited in interpretation

• Highly-tuned phenomenological models

• Apply nonperturbative shape function 𝐹𝐹 [4] from first principles:

• Single-parameter (Ω) function: hadronization effects should be described by 
one (unknown to pQCD) parameter, expected to be universal

• Still requires folding to charged level, which is mostly well-described 𝑝𝑝T shift

15E.D. Lesser 25 Oct 2021

Parton-level 
pQCD prediction 

at NLL’

⊗𝐹𝐹NP Hadron-level 
prediction, 

including MPI

Forward folding Charged 
hadron-level 

prediction

d𝜎𝜎
d𝑝𝑝T d𝜆𝜆𝛼𝛼

= �d𝑘𝑘 𝐹𝐹 𝑘𝑘
d𝜎𝜎pert

d𝑝𝑝T d𝜆𝜆𝛼𝛼
𝜆𝜆𝛼𝛼 −

𝑘𝑘
𝑝𝑝𝑇𝑇𝑅𝑅

~ 𝐹𝐹 ∗
d𝜎𝜎pert

d𝑝𝑝T d𝜆𝜆𝛼𝛼
𝜆𝜆𝛼𝛼 𝐹𝐹 𝑘𝑘 =

4𝑘𝑘
Ω𝛼𝛼2

exp −
2𝑘𝑘
Ω𝛼𝛼

where

[4] Phys. Rev. D 101, 054028 (2020)
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Ω𝛼𝛼 =
Ω

𝛼𝛼 − 1

https://doi.org/10.1103/PhysRevD.101.054028


pQCD predictions with SCET  (𝑅𝑅 = 0.2)
Best agreement 
seen with smaller 
values of Ω = 0.2
or 0.4 GeV/c

Tension with 
previous result of 
Ω = 3.5 GeV/c
(𝑅𝑅 = 0.4 full jets, 
higher 𝑝𝑝T

jet, and 
for jet mass) [5]
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(no grooming)
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ALI-PUB-495615

[5] JHEP 1810 (2018) 137

https://doi.org/10.1007/JHEP10(2018)137


What we’ve learned so far

• We have systematically measured the generalized jet angularities
for a variety of 𝑅𝑅, 𝛼𝛼, and 𝑝𝑝T

ch jet

• Sensitive to widely different physics with different configurations

• Looking at groomed-jet angularities is
useful for reducing nonperturbative effects
and more directly testing pQCD predictions

• It will be important to consider the perturbative versus non-
perturbative regions also when looking at Pb-Pb data and jet 
quenching models

17E.D. Lesser

figure from Kyle Lee
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Outlook

• Repeating with Pb-Pb data requires some changes:
• Pb-Pb has a high background

• Example: 𝑅𝑅 = 0.4 jet has roughly 𝑝𝑝T = 100 GeV/𝑐𝑐 of background!
• We have to perform event-by-event background subtraction

• For MC, we will use pp MC embedded in Pb-Pb background from data

• Fantastic opportunity to learn about how the QGP develops and 
interacts with “intermediate”-𝑝𝑝T (~60-100 GeV/c) particles

• Compare to jet quenching models: Jet broadening? In/Coherent? 
Factorization breaking? Weak or strong?

• Which other observables are most useful for probing different stages 
of jet / QGP evolution?

18E.D. Lesser 25 Oct 2021



Backup
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QCD jets

• Interesting probe for various scales of strong interactions:
• Initial, hard (high-𝑄𝑄2) scattering
• Parton shower
• Fragmentation into hadrons

• Experimentally reconstructed from grouped hadrons

• Dynamically recombined, tunable objects 
which can be sensitive to either/both 
perturbative and nonperturbative physics

20E.D. Lesser

𝐸𝐸, 𝑝⃗𝑝 jet

𝑅𝑅jet
Δ𝑅𝑅jet,𝑖𝑖
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Analysis procedure
• Generate 4D response matrix using PYTHIA8 Monte Carlo simulation 

followed by GEANT3 detector simulation

𝑝𝑝T,det
ch jet, 𝑝𝑝T,tru

ch jet, 𝜆𝜆𝛼𝛼det, 𝜆𝜆𝛼𝛼tru

• Apply unfolding procedure to correct for detector effects
(tracking efficiency, particle-detector interactions)

• Quality assurance checks:
• Response matrix projections
• Kinematic efficiency
• Unfolding tests

21E.D. Lesser 25 Oct 2021
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Jet substructure
• Looking at the structure composed from constituents inside of 

reconstructed jets, e.g.:
• What does the (transverse) momentum distribution look like?
• What are most of the particles located?
• Are there smaller “subjets” inside? (Higgs/BSM searches: 𝐻𝐻 → 𝑏𝑏�𝑏𝑏) [1]

• …

• With such a large space, what questions are most useful to ask? 
Meaning, what observables are most useful to study? 

• We want to be able to:
• 1) Test our theoretical predictions from QCD (on the lattice, pQCD, effective theories, …)
• 2) Gain some overarching intuition and measure nonperturbative physics

22E.D. Lesser
[1] Phys. Rev. Lett. 100, 242001 (2008)
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https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.100.242001


Jet grooming
• Procedure used to modify jet structure 

after the initial reconstruction

• Often aimed at removing soft, wide-angle
radiations, which are strongly affected by
underlying event and nonperturbative effects

• One of the most popular algorithms is called Soft Drop
• 1) Recluster jet with C/A algorithm into tree (~angularly ordered);
• 2) Remove branches until the Soft Drop Condition is satisfied, then stop
• Process can also be applied to theoretical calculations

23E.D. Lesser

Larkowski et al., JHEP 1405 (2014) 146

Diagram by 
James Mulligan, LBNL

25 Oct 2021

https://dx.doi.org/10.1007/JHEP05(2014)146


ALICE Inner Tracking System (ITS)

24E.D. Lesser

• 6 layers (two each of pixel, drift, and strip detectors)

• SSD & SDD can measure charge  d𝐸𝐸
d𝑥𝑥

Example: SSD

25 Oct 2021



ALICE TPC

25E.D. Lesser

David Nygren

• HV electrode creates high-gradient 𝐸𝐸
• Ionization electrons drift to

wire chamber readout 

• Drift time gives 𝑧𝑧
• Amount of charge

(pulse height) 
correlates to the energy

• The first TPC was invented by 
David Nygren at LBNL

25 Oct 2021



Systematic uncertainties
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• Primarily dominated by tracking efficiency and model dependence

• Unfolding uncertainty probed via variation of:
• the regularization parameter
• the prior distribution;

• the binning of 𝜆𝜆𝛼𝛼;
• truncation region for 𝑝𝑝T,det

ch jet.

• The total unfolding systematic uncertainty is then the standard 
deviation of the variations

25 Oct 2021

𝑝𝑝T
±0.5 × [1 ± 0.5 2𝜆𝜆𝛼𝛼 − 1 ]
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What is IRC safety?

• Stands for Infra-Red and Collinear (IRC) safety

• Class of reconstruction algorithms & observables which satisfy certain 
conditions in order to avoid singularities from appearing in a well-
defined path towards theoretical calculation 

27E.D. Lesser

Collinear safety: the observable 
should not change if one particle 
splits into two collinear particles

Infra-Red safety: the observable should not 
change if an infinitely-low-momentum 

particle is added to the event/jet

𝜆𝜆𝛽𝛽
𝜅𝜅 ≡ �

𝑖𝑖∈jet

𝑝𝑝T,𝑖𝑖

𝑝𝑝T,jet

𝜅𝜅 Δ𝑅𝑅jet,𝑖𝑖
𝑅𝑅

𝛼𝛼

≡ �
𝑖𝑖∈jet

𝑧𝑧𝑖𝑖𝜅𝜅𝜃𝜃𝑖𝑖𝛼𝛼

𝜆𝜆𝛽𝛽,new
𝜅𝜅 = �

𝑖𝑖∈jet

𝑧𝑧𝑖𝑖𝜅𝜅𝜃𝜃𝑖𝑖
𝛽𝛽 + 𝑧𝑧𝑗𝑗𝜅𝜅𝜃𝜃𝑗𝑗

𝛽𝛽

𝑧𝑧𝑗𝑗 = 0 → 𝑧𝑧𝑗𝑗𝜅𝜅𝜃𝜃𝑗𝑗
𝛽𝛽 = 0 (𝜅𝜅 > 0)

𝜆𝜆𝛽𝛽,new
𝜅𝜅 = 𝜆𝜆𝛽𝛽,old

𝜅𝜅

𝜆𝜆𝛽𝛽,new
𝜅𝜅 = �

(𝑖𝑖≠𝑗𝑗)∈jet

𝑧𝑧𝑖𝑖𝜅𝜅𝜃𝜃𝑖𝑖
𝛽𝛽 + 𝜆𝜆𝑧𝑧𝑗𝑗

𝜅𝜅𝜃𝜃𝑗𝑗
𝛽𝛽 + 1 − 𝜆𝜆 𝑧𝑧𝑗𝑗

𝜅𝜅𝜃𝜃𝑗𝑗
𝛽𝛽

Need 𝜆𝜆𝜅𝜅 + 1 − 𝜆𝜆 𝜅𝜅 = 1 ∀ 𝜆𝜆 ∈ 0,1 → 𝜅𝜅 = 1

Consider 1-particle jet:   𝜆𝜆𝛽𝛽,new
𝜅𝜅 = 𝜆𝜆𝑧𝑧𝑗𝑗

𝜅𝜅𝜃𝜃𝑗𝑗
𝛽𝛽 + 1 − 𝜆𝜆 𝑧𝑧𝑗𝑗

𝜅𝜅𝜃𝜃𝑗𝑗
𝛽𝛽

𝜃𝜃𝑗𝑗 = 0 → 𝑧𝑧𝑗𝑗𝜅𝜅𝜃𝜃𝑗𝑗
𝛽𝛽 = 0 (𝛽𝛽 > 0)

𝑗𝑗

25 Oct 2021



Theoretical calculations
• Kang/Lee/Ringer: NLL’ calculations within 

Soft Collinear Effective Theory [2]: JHEP 1804 (2018) 110

(𝛼𝛼 = 2) (𝛼𝛼 = 1.5)

PDFs (NP)

Hard Function (P)

≡ 𝜆𝜆𝛼𝛼=2−𝑎𝑎𝜅𝜅=1 ∗ 𝑅𝑅2−𝑎𝑎

siAJFs (P / NP)

We can directly compare 
our data to predictions 

from theory
28E.D. Lesser [2] Phys. Rev. D 63 (2000) 014006 25 Oct 2021
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https://arxiv.org/abs/hep-ph/0005275


Jet reconstruction
• Jets are reconstructed from charged particle tracks using the anti-𝒌𝒌𝐓𝐓

sequential recombination algorithm [5]

• From an IRC-safe class of algorithms
• Soft-resilient: shape is not strongly affected by soft, wide-angle radiation

• 𝑬𝑬-scheme recombination (adding four vectors):

29E.D. Lesser
[5]  JHEP 0804:063,2008

𝑑𝑑𝑖𝑖𝑖𝑖 = min 𝑘𝑘T𝑖𝑖
2𝑝𝑝,𝑘𝑘T𝑗𝑗

2𝑝𝑝 Δ𝑖𝑖𝑖𝑖
2

𝑅𝑅2

𝑑𝑑𝑖𝑖B = 𝑘𝑘T𝑖𝑖
2𝑝𝑝

𝑝𝑝 = �
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−1, anti 𝑘𝑘T

𝐸𝐸, 𝑝⃗𝑝 jet
𝑅𝑅jet
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𝑖𝑖𝐸𝐸, 𝑝⃗𝑝 jet = �

𝑖𝑖∈jet

𝐸𝐸, 𝑝⃗𝑝 𝑖𝑖
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Event / track selection requirements
• Minimum bias events (hit in both V0A and V0C)

• Require there is a successfully reconstructed primary vertex within 10cm 
longitudinally of the nominal IP

• 𝑝𝑝T > 0.15 GeV/c
• 70 space points found in the TPC
• At least 3 hits in the ITS
• If no hits in SPD, add primary vertex to track fit

(improves momentum resolution)
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Unfolding tests
• Convergence test: unfolding process must converge as 𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 increases

• Refolding test: multiply RM by unfolded solution & compare to original

• Statistical closure test: 
• Smear MC det-level by statistical errors on measured data
• Unfold the smeared MC det-level spectrum
• Compare to MC truth-level

• Shape closure test: 
• Vary shape of input in some reasonable way
• Do as above
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Perturbative versus Non-Perturbative regions
• In the theoretical calculations of the jet angularities, there are 5 

different characteristic factorization scales
• These are varied to produce the NLL’ uncertainty bands

• The prediction can become NP-dominated if the “soft scale” (𝜆𝜆𝛽𝛽𝑝𝑝T𝑅𝑅) 
approaches a non-perturbative value (say, Λ ~ 1 GeV)

• This divides plots into perturbative (P) and NP-dominated regions

• Similarly, the entire distribution can become NP-dominated if the 
“hard scale” (𝑝𝑝T) or “jet scale” (𝑝𝑝T𝑅𝑅) approach some NP value

• We don’t have to worry about this for our (ungroomed) jet measurements
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Angularity response matrix projections

33

20 ≤ 𝑝𝑝T
ch jet < 40 GeV/𝑐𝑐 60 ≤ 𝑝𝑝T

ch jet < 80 GeV/𝑐𝑐

Consider the (Green’s function-like)  response of a delta function at parton-level   …and for  a second value

 Output distributions are smeared & shifted from input distributions, and appear more similar at ch-level
 Large (but well-defined) model dependence & output shape bias, especially at lower 𝑝𝑝T

ch jet

• PYTHIA
• 𝜆𝜆𝛽𝛽=1.5; 𝑅𝑅 = 0.2



PYTHIA8 response matrix projection onto 𝑝𝑝T
• Some contribution at 
𝑝𝑝T,jet
ch ∈ [20, 40] GeV/c 

from 𝑝𝑝T,jet
parton < 20 GeV/c

• Strongly emphasized by 
~order-of-magnitude 
scaling per 𝑝𝑝T,jet

parton bin 
(increments of 10 GeV/c)

• Sensitive to low- 𝑝𝑝T,jet
parton

distributions
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Parton-level distributions per 𝑝𝑝T,jet
parton bin 

• Agreement improves with increased 𝑅𝑅 and increased 𝑝𝑝T,jet
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