My experience as Data Scientist at BIX

Digital Innovation Lab @ Boehringer Ingelheim

Elena Bruna CERN Career Networking event Nov 15, 2021

My career as physicist

- Master (2003) and PhD Thesis (2007) in ALICE @ LHC
- Post-doc in STAR @ RHIC (2008-2010)
- Researcher in ALICE (2011-2018)

Main activities:

- Simulations for ALICE ITS and EMCal
- Open charm analyses in heavy-ion collisions
- Jets and B-tagged jets

What is BI X

BI X is the Digital Lab of Boehringer Ingelheim

Goals

1. Develop innovative digital products for better healthcare

2. Drive Boehringer Ingelheim's digital transformation

Examples

Software to improve pharma production

Applications to help human/animal lives

Medical device software

What is Data Science (@Bi X)?

Data science is a combination of ...

Machine learning & statistics & optimization

Computer science & software engineering

Business understanding

Communication & visualization

The Data Scientist's journey

dive into the problem

data availability and preparation

algorithm choice

model training / evaluation

model deployment

- Based on my experience -

High-energy physics

- data structure usually designed in advance
- large data availability

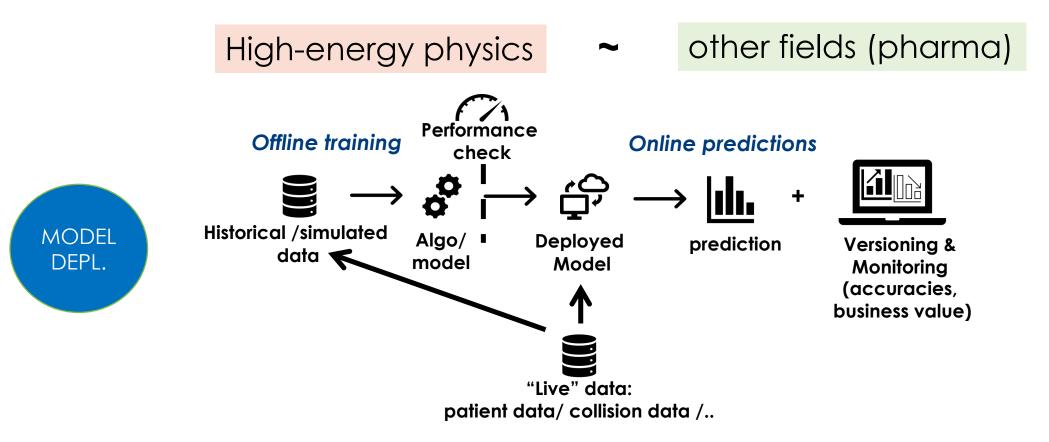
other fields (pharma)

value of data not always known a priori:

- data not often available, or little, or messy
- exploratory data analysis crucial
- often a plan to collect data is needed

- Based on my experience -

High-energy physics


other fields (pharma)

Data can be simulated (MC truth) to develop model/algo

- Choice of algo depends on available data
- Not always time for deep dive and/or best choice
- Model should be easy to explain (e.g. need of transparency in medical device software)

- Based on my experience -

oneside

n the other side

- Based on my experience -

(on a more subjective level)

- Missing research atmosphere, discuss results in large communities
 - Personal 'attachment' to physics
 - Less freedom to work on a given topic

- Apply analytical skills to projects and see them being used in real world
- Connection to science (Pharma/chemistry)
- Expand skills by working in different projects
- Smaller teams, more focused, quick support, fast iterations

Skills (often asked)

- python
- databases (e.g. SQL)
- data analysis on distributed resources (e.g. Spark)
- analytical/critical approach
- presentation/visualization of results (e.g. Dashboard)

Suggestions for the CV

- two pages max and well organized
- emphasise skills & tools like :
 - big data analysis
 - ML techniques (with examples)
 - Monte Carlo simulations
 - experience in different projects/analyses
 - work in international teams

Skills (often asked)

- python
- databases (e.g. SQL)
- data analysis on distributed resources (e.g. Spark)
- analytical/critical approach
- presentation/visualization of results (e.g. Dashboard)

Suggestions for the CV

- two pages max and well organized
- emphasise skills & tools like :
 - big data analysis
 - ML techniques (with some examples)
 - Monte Carlo simulations
 - experience in different projects/analyses
 - work in international teams

Get familiar with tools you are not using on a daily basis

Find parallels with your work in physics (programming language, databases,...)

Underline that you know the concept, already used a similar tool and can quickly catch up

Some suggestions for the DS interview

Prepare on some work where you used some **DS-specific techniques** (classification of rare signal, clustering hits in detector, ...)

Discuss the **steps** (data preparation, algorithm testing, deployment, ...), **bottlenecks** and **results**: **communication is crucial**

• Be quantitative but explain in a high-level way

Keep in mind: often in business environment it is not clear what is the **"value"** of a given project in academy. **Find parallels**, like:

Online/offline data reconstruction → there will be N users/physicists using the reconstructed data for their research

Be **open and confident** that with your experience you can always learn new tools

Thank you!