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The QCD static energy is a key object:

it was calculated since the start of QCD —> compare lattice and

perturbative calculations

of the static energy

it is very well known in perturbation theory: using effective field to extract (X S
theory (pPNRQCD) we can obtain it at 3 loops
and with NNNLL accuracy

it is an observable (up to an additive constant)

it is now calculated with high precision on the lattice with 2+1 and 2+1+1 flavors

Challenges:
—> use finite temperature lattice data
Go to very short heavy quark distances distances on the lattice on the free energy
Deal with the renormalon between the mass and the potential —> calculate directly on the lattice

the static force which is renormalon free



STATIC ENERGY Bibliography FORCE



STATIC ENERGY Bibliography FORCE

A. Bazavov, N. Brambilla, X. Garcia i Tormo, P. Petrecky, J. Soto, A. Vairo, J. Weber
Determination of the QCD coupling from the static energy and the free energy
Phys. ReV. D 100 (2019), 11, 114511 arXiv:1907.11747

(1) A. Bazavov, N. Brambilla, X. Garcia i Tormo, P. Petreczky, J. Soto and A. Vairo

Determination of ccg from the QCD static energy: an update

Phys. Rev. D90 (2014) 7, 074038 arxiv:1407.8437
(2) X. Garcia i Tormo

Review on the determination of a.g from the QCD static energy

Mod. Phys. Lett. A28 (2013) 1330028 arxXiv:1307.2238
(3) A. Bazavov, N. Brambilla, X. Garcia i Tormo, P. Petreczky, J. Soto and A. Vairo

Determination of ceg from the QCD static energy

Phys. Rev. D86 (2012) 114031 arXiv:1205.6155
(4) N. Brambilla, X. Garcia i Tormo, J. Soto and A. Vairo

Precision determination of AM—S from the QCD static energy

Phys. Rev. Lett. 105 (2010) 212001 arxXxiv:1006.2066

(5) N. Brambilla, X. Garcia i Tormo, J. Soto and A. Vairo
The QCD static energy at NNNLL
Phys. Rev. D80 (2009) 034016 arxiv:0906.1390

(6) N. Brambilla, X. Garcia i Tormo, J. Soto and A. Vairo
The logarithmic contribution to the QCD static energy at N*LO
Phys. Lett. B647 (2007) 185 arXiv:hep-ph/0610143



STATIC ENERGY Bibliography FORCE

A. Bazavov, N. Brambilla, X. Garcia i Tormo, P. Petrecky, J. Soto, A. Vairo, J. Weber N. Brambilla, Hee Sok Chung, A. Vairo, X. Wang
Determination of the QCD coupling from the static energy and the free energy QCD static force in gradient flow
Phys. ReV. D 100 (2019), 11, 114511 arXiv:1907.11747 in press on JHEP arXiv:2111.07811

(1) A. Bazavov, N. Brambilla, X. Garcia i Tormo, P. Petreczky, J. Soto and A. Vairo

Determination of ceg from the QCD static energy: an update

V. Leino, N. Brambilla, J. Mayer-Steudte, A. Vairo
Static force from generalized Wilson loops using

Phys. Rev. D90 (2014) 7, 074038 arxXiv:1407.8437 gradient flow
(2) X. Garciai Tormo arXiv:2111.10212
Review on the determination of a.g from the QCD static energy
Mod. Phys. Lett. A28 (2013) 1330028 arxiv:1307.2238 N. Brambilla, V.Leino, O. Philipsen, C. Reisinger, A. Vairo, M. Wagner
(3) A. Bazavov, N. Brambilla, X. Garcia i Tormo, P. Petreczky, J. Soto and A. Vairo Lattice gauge theory computation of the static force
Determination of ag from the QCD static energy arXiv:2106.01794

Phys. Rev. D86 (2012) 114031 arxiv:1205.6155
(4) N. Brambilla, X. Garcia i Tormo, J. Soto and A. Vairo

Precision determination of ro Agg from the QCD static energy A. Vairo,
Phys. Rev. Lett. 105 (2010) 212001 arxXxiv:1006.2066 Strong coupling from QCD static energy
(5) N. Brambilla, X. Garcia i Tormo, J. Soto and A. Vairo MPLA 31 (2016) 34 1630039

The QCD static energy at NNNLL

Phys. Rev. D80 (2009) 034016 arXiv:0906.1390 N. Brambilla, A. Pineda, J. Soto, A. Vairo

(6) N. Brambilla, X. Garcia i Tormo, J. Soto and A. Vairo The QCD potential at order 1/m
The logarithmic contribution to the QCD static energy at N*LO

PRD 63 (2001) 014023, arXiv 000250
Phys. Lett. B647 (2007) 185 arXiv:hep-ph/0610143



Extraction of alphas from comparing the QCD static energy F(r)

calculated
in perturbative QCD known at 3 loops and NNNLL accuracy

(using pNRQCD)

measured on the lattice given by the static Wilson loop



Extraction of alphas from comparing the QCD static energy F/, (r)

calculated
in perturbative QCD known at 3 loops and NNNLL accuracy

(using pNRQCD)

measured on the lattice given by the static Wilson loop

o If rAgcp << 1 both evaluations should agree

> Fix Agcp from a low enegy observable calculated on the lattice
» Evaluate Ej perturbatively in the standard MS scheme
» Get Nz by equating lattice and perturbative expressions

MS

@ No lattice to MS renormalization scheme change necessary
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Extraction of alphas from comparing the QCD static energy F(r)

alphas extracted in this way gives one of the most precise
determinations at a low energy scale (lattice cannot
explore too short distances)

competitive

complementary to high energy determinations

intrinsic value-> add to our understanding of QCD and heavily constrains the running



Static energy ofa static quark-antiquark pair located at a distance r

T
Bo) = Jim s s o[ —ew i fara,|
T—o0o0
rXT
Perturbation theory describes Eq(7) in the short range (rA < 1, ag(1/r) < 1):
Eo(r) = As Cras (1—|—#ozs—|—#oz§—|—#oz§—l—#a§ lnozs—l—#ozg‘ In? as—l—#ag‘ Inas+...)
T

o Fy(r)is known at three loops.

e In oy signals the cancellation of contributions coming from different energy scales:

M Qs /T
- In

1/7 v

In g = In

O Brambilla Pineda Soto Vairo PRD 60 (1999) 091502



Energy scales

In the short range the static Wilson loop is characterized by a hierarchy of energy scales: The wilson |OOp calculated

1 Vv A U oo 1 order in perturbation theory is
fr> Vo= Va >4 T e TP T oN divergent from 3 loops on: one needs
an EFT to resume and combine contribution
from different scales
] i
% \
S
s ‘
6r ! — — — — i ]
o w7 L D CeChacal [Cans
P | I N I R R
o (Vo= V) BN R
= 4 \ - ——
S * e ] |
;3i .. T ; ~ exp(—i(V, = Vi) T)
20 N el T -
1 %
0.0 0.1 0.2 0.3 0.4

Appelgquist Dine Muzinich 78, Brambilla Pineda Soto Vairo 99



pN RQCD (potential NonRelativistic QCD) EFT for QQbar r<< Lambda_QCD"-1

nf
1 | . .
L= —ZFgVFWa + ) i ilPg; + /dBTTr {ST (109 — hs) S + O (iDg — ho) o}
1=1

e lLOinr
Q(T) e—iThS H(T) e—iThO (e—ifdt Aadj)

PNRQCD allows to address

scale factorization

v
+Va'lr {OTI‘ .gES + S'r - gE O} | QBTI' {OTI‘ .gEO +0O'Or - gE}

; ;

e NLO Inr &) X
OTr .- gES O {r - gE, O}

Degrees of freedom: colour singlet S and colour octet O and low energy gluons (multipole expanded)

The potentials are the matching coefficients of pPNRQCD : they are calculated via
a well defined matghing procedure



Effective Field Theories

EFTs allow the factorization of contributions from different energy scales.

00¢
A@@@ %@A
p— + X X +
QCﬁ pNRQCD

2 o0 .
Bo(r) = Ae + Va(r,p) i‘jvvj/o dte= Vo V) (Try - B(t) r - B(0)) (1) + ...

res. mass potential ultrasoft contribution

o Brambilla Pineda Soto Vairo NPB 566 (2000) 275

The 1 dependence cancels between
Ve ~Inru, In?ru, ...
ultrasoft contribution ~ In(Vy, — Vi) /p, In* (Vo — V) /... Inrp, In? rp, ...



Va

The first contributing diagrams are of the type:

Therefore

Va(r,p) =14 0(al)



Chromoelectric field correlator: (E(t)E(0))

Is known at two loops. 5@@%

gm% (c) (d)

NLO
o Eidemuller Jamin PLB 416 (1998) 415



Static octet potential

) (1 t) 1 og

Iim — In
9
(&3

T—oo [’

Is known at three loops.

o Anzal Prausa A.Smirnov V.Smirnov Steinhauser PRD 88 (2013) 054030



Static singlet potential at N*LO

16 72

3

ay® In? ru

|

(

(filnru—%ag

ay

2 C3 Bo(—5 61n2)> Inruy

(I3 fom o Anzai Kiyo Sumino PRL 104 (2010) 112003
A.Smirnov V.Smirnov Steinhauser PRL 104 (2010) 112002

aq Billoire 80

a9 Schroeder 99, Peter 97

coeft Inru

L2 L
CL4 9 CL4

N.B. Pineda, Soto, Vairo 99

N.B., Garcia, Soto, Vairo 06

The constant a_4 at 4 loops is not yet known



Static energy at N*LO

Eo(r) = As Cr O‘i(l/ 7“){1 | O‘Si‘;/ ") a1 + 2vE Bo]
as(1/m)\? | m* 2\ 52 _
4+ ( - > ao + ( ; | 47]51) Bo + vE (4a1 80 + 2081)
as(1/r) 3 1672 g . Caas(1l/7) |*~_
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O Brambilla Pineda Soto Vairo PRD 60 (1999) 091502
Brambilla Garcia Soto Vairo PLB 647 (2007) 185



Renormalization group equations
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O Pineda Soto PLB 495 (2000) 323
Rrambilla Garcila Soto Vairo PRD 380 (2009) 034010



Static singlet potential and energy at N°LL

Vi) = Vi, 1/r) — 24 0L/ {(1 el "“>a1)1n (/)

6,50 r 4 o (1)
( 561 6c) os(p)  as(1l/r) }
100 L T

Summed to the ultrasoft contribution at two loops, it provides the static energy at N°LL.

O Rrambilla Garcia Soto Vairo PRD 80 (2009) 034016
Garcia MPLA 28 (2013) 1330028



Force and mass renormalon

The perturbative expansion of Vs is affected by a renormalon ambiguity of order A.
This ambiguity does not affect the slope of the potential (and the extraction of ay).

It may be eliminated from the perturbative series

either by subtracting a (constant) series in ag to Vs and reabsorb it in a redefinition
of the residual mass Az,

or by considering the force:

F(r,a5(0)) = =~ Bo(r, as(v)

e The force F'(r,as(1/r)) could be directly compared with lattice,
e Or integrated and compared with the static energy

Eo(r) = /?" dr’ F(r'", as(1/r"))

>

up to an irrelevant constant fixed by the overall normalization of the lattice data.
Note that there are no In vr (v = renormalization scale).



Force and mass renormalon

The perturbative expansion of Vs Is affected by a renormalon ambiguity of order A.
This ambiguity does not affect the slope of the potential (and the extraction of ay).

It may be eliminated from the perturbative series

either by subtracting a (constant) series in ag to Vs and reabsorb it in a redefinition
of the residual mass Az,

or by considering the force:

F(r,a5(0)) = =~ Bo(r, as(v)

e The force F'(r,as(1/r)) could be directly compared with lattice,

e Or integrated and compared with the static energy This is the formula that

we used to compare

Eo(r) = /r dr' F(r',as(1/7")) 10 thelattice data on the static energy

>

up to an irrelevant constant fixed by the overall normalization of the lattice data.
Note that there are no In vr (v = renormalization scale).
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alphas from the static energies: analysis

+0.032
2010 extraction of r OLambda MS from quenched data ! TOAMS — O°637—0.030

2+1 flavour lattice data:
—>>>Reduce the error going to smaller

lattice spacing and reaching to shorter distances

as(Mz) = 0.11567 1 0052

2012 extraction

2014
A 7.373 7.596 7.825
0.0012
. — (). r1/a 5.172(34) 6.336(56) 7.690(58
Volume | 483 x 64 644 644
2019
m; = ms/5
. +0.00110 B affm] | No, N- ams My L
2019 extraction as(Mz) =0.11660"
«(Mz) V-00056 8000 | 0.035 | 64¢ | 001299 | 3.6
8.200 | 0.029 644 0.01071 3.1
8.400 | 0.025 644 0.00887 | 2.6




alphas from the static energies: analysis

2010 extraction of r OLambda MS from quenched data ! TOAMS = 0.637

2+1 flavour lattice data:

as(Mz) = 0.1156 79 0055

2012 extraction

o (My) = 0.116679 0004

2014 extraction

as(My) = 0.1166070 9001

reaches distances as small as

0.0237 fm full analysis will be presented i
talk by J. Weber, in particular lattice

2019 extraction

+0.032
—0.030

—>>>Reduce the error going to smaller

lattice spacing and reaching to shorter distances

v

artifacts and discretisation errors will

be discussed in depth

2014
B 7.373 7.596 7.825
ri/a 5.172(34) 6.336(56) 7.690(58)
Volume | 483 x 64 644
2019
m; = ms/5
B a [fm] Ngs, N~ A M L
8.000 | 0.035 644 0.01299 3.6
8.200 | 0.029 644 0.01071 3.1
8.400 | 0.025 644 0.00887 2.6




Procedure (also to make sure that the data have reached the perturbative regime)

We use data for each value of the lattice spacing separately, and at the end perform an
average of the different obtained values of a with the following procedure.

Perform fits to the lattice data for the static energy FEq(r) at different orders of
perturbative accuracy. The parameter of the fits is A=

Repeat the above fits for each of the following distance ranges: » < 0.75r1,
r <0.7r1,r <0.6br1,r < 0.6r1,r < 0.557r1, r < 0.5r1,and r < 0.457r1.

Use ranges where the reduced x? either decreases or does not increase by more
than one unit when increasing the perturbative order, or is smaller than 1.

To estimate the perturbative uncertainty of the result, repeat the fits

e by varying the scale in the perturbative expansion, fromv = 1/rtov = v/2/r
and v = 1/(v/27),

e by adding/subtracting a term +(Cr /r2)a% = to the expression at n loops.

Take the largest uncertainty.




Analysis of the energy

B=7.825 —— Nyp=7

3 1oop —— Nie=7

. I’<O.757"1 . .
15 15 f ® 3=7.596 |
| 0.52 m 3=7.825 ) 10.52
f CIZID r<0.5ry | 0.50 T 050
r<O.45r1 I ]
o 10- - 10 i nol e ]
S 2 0.48 |- |14 048
C\IQ < i 1 ]
N < L e
0.46 - 10.46
5 5 0.44 0.44
0.42 0.42
oo B = \ 40 0.40 - | | | | 10.40
tree level I loop 2 loop 3 loop r<0.67; r<0.557; r<0.57r; r<0.45r,

Fits for r < 0.6r1 are acceptable. In the final result we use only fits for » < 0.5r1.
The fitting curve has been normalized on the 7th lattice point.
The band shows an old but similar determination of 2012.



numerically reconstruc

‘ed from the lattice data

on the static energy interpola:

Analysis with the force

Y*/dof.

B=7.825;7.596; 7.373 —— Force

ed by splines—>bigger error

i 6 3 loop —— Force
- @ r<0.75r, ] . P |
i 1 0.54 - T 0.54
iE I 1
, i 0.52+ 10.52
- O I'<O.57‘1 ] I ]
- 0 r<0.45r, 14 0.50 - 10.50
] : il ]
13 2 048 0 10.48
] <
[N S
] 0.46 - -1 0.46
42 i i
| 0.44 - 0.4
e, A | I ]
i 0421 10.42
: = 5 £) | - ?
& = = | 10 0.40 - | ‘ ‘ | 10.40
tree level 1 loop 2 loop 3 loop 1<0.67y r<0.55r; r<0.5r; r<0.45r;

The band shows the determination of 2012.

confirms the extraction from the static energy



The counting of the ultrasoft contributions

finite 3 loops have a alphas”®4 factorized out and same for the rest

we observe cancellations between the soft

L and the ultrasoft part at 3 loops, same cancellation
finite 3 loops may arise at 4 loops but the constant at 4 loops is not known
1.0~ - 1.0
finite 2 loops |
e "3 Given the size of these terms
5 00w LL 0 we work at 3 loops and count the US log
g — - resummed
05 05 terms together with the 3 loops: we work
L at 3 loops plus LL resummation,
o o include in the perturbative error
T N A difference between 3 loop and 3 loop plus LL
0.1 0.2 0.3 0.4 0.5 0.6 0.7

r[r

Leading-ultrasoft resummation included along with the three-loop terms is consistent

with the observed size of the terms. This goes in our final result.
We chose u = 1.267; ' ~ 0.8 GeV, for the ultrasoft factorization scale.

Variations of n only produce small effects on the results.



Looking for condensates and nonperturbative corrections

$=7.825 —— Nref=7 —— 3 loop | r° term

*
I * i _ ]
0.066 - - I 10.066
0.064 - | | 0064
PO . ¢ %
< 1 -

S i 1 ¢ . T i
0.062 - $ 1 I -0.062
0.060 - 1 ) - 0.060

* = 73 monomial
| | |

T | | |
1<0.75n r<0.7r; r<0.65r; 1<0.6r r<0.55n r<0.5r; 1<0.45r;

By repeating the fits adding a monomial term proportional to »3 and »2, which could be
associated with gluon and quark local condensates, and also a term proportional to r,
we do not find evidence for a significant non-perturbative term at short distances and the
value of Ajzg remains unchanged.



going to smaller distance with lattice data at finite temperature: the free energy



Finite 7" analysis Lattice data HOT QCD collaboration

One reason for which it is challenging to reach very fine lattice spacings in lattice QCD
with dynamical quarks is that one has to simultaneously maintain the control over finite
volume effects coming from the propagation of the lightest hadronic modes at the pion
scale. A lattice simulation at high enough temperature avoids this infrared problem, and
enables reaching much finer lattice spacings using smaller volumes. In Phys. Rev. D 100
(2019) 114511 we have used finite temperature lattices to reach a = 0.00848 fm.

We compute the singlet free energy with N, /N, = 4 and N, = 12, or 16. These
ensembles correspond to the thermal QCD medium at temperatures T' = 1/(aN-). The
finite temperature ensembles have been generated using lattice parameters that would
correspond to the same two pion masses (at zero temperature) in the continuum limit as
the zero temperature ensembles.

The perturbative expression of the free energy agrees with the static energy at 7' = 0
plus thermal corrections that have been computed to some accuracy.

0 Berwein Brambilla Petreczky Vairo PRD 96 (2017) 014025



Singlet free energy of a quark-antiquark static pair : a thermal QCD observable

(LT o (YT g thermal QCD expectation
Fs(r,T)= =T <1n e'9 Jo' " drAo(0,7) —ig [ dT O(T’T)>T value in Coulomb Gauge

at distances rT <<1 we can use pNRQCD at finite T to write Fs(r,T) = Vi(r, pus) + 0Fs(r, T, prus),

Thermal effects not visible in the short distance
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Singlet free energy of a quark-antiquark static pair : a thermal QCD observable

(LT o (YT g thermal QCD expectation
Fs(r,T)= =T <1n e'9 Jo' " drAo(0,7) —ig [ dT O(T’T)>T value in Coulomb Gauge

at distances rT <<1 we can use pNRQCD at finite T to write Fs(r,T) = Vi(r, pus) + 0Fs(r, T, prus),

The form of the thermal corrections depends on the hierarchy of scales

/

we consider the hierarchy Ll/fr > ag/r > T > mp ~ gl that applies at short distance and then Hus ™ S/T and

- _5FS (7, T; Mu:S) — 5/@US (Mu§_) T _AFS (7, T)

US T=0 term

We fit the free energy at short distance with the 3 loop plus LL formula that we used for the static energy
and we obtain:

B 13.5 B 10.00095
o TUMOCD coll PRD 100 (2019) 114511 AM—S—310-9J_F12,3 MeV or as(Mz) = 0.11638" joog7

Thermal effects not visible in the short distance
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FIG. 9. The difference between the static energy at 7' = 0 and
the singlet free energy for § = 8.4 calculated with N, = 10, 12
and 16 in units of the temperature as function of distance
in units of the lattice spacing. The lines correspond to the
§F(r,T) calculated at order g°. The dotted vertical lines show
the boundary rI' = 0.3 for different N-. The solid or dashed
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as a matter of fact F_s an be reproduced by E in a
range bigger than the one we used for the extraction of alphas




alpha s from the force



The force as a Wilson loop with a chromoelectric field

A direct computation of the force that avoids interpolating the static energy and taking
numerically the derivative is possible from the expression of a rectangular Wilson loop,
W, <1, with a chromoelectric field insertion on a quark line:

- d . ATr{P Wyt - gE(r,t*)})
By = g o) = i = W)

An equivalent expression can be written using a Polyakov loop instead of a Wilson loop.
At fixed t* for T' — oo, the rhs is independent of ¢*.
The force is mass renormalon free and finite after charge renormalization.

O Rrambilla Pineda Soto Vairo PRD 63 (2001) 014023
Vairo MPLA 31 (201e6) 34, 1630039



Lattice analysis of 2111.07916

For a study of concept, we have computed the Wilson loop and Polyakov loop with a
chromoelectric field on three quenched QCD (n s = 0) ensembles.

ensemble B (L/a)? x T/a  79/a a in fm
A 6.284 20% x 40 8.333  0.060
B 6.451 262 x 50 10.417  0.048
C 6.594 30° x 60 12.500  0.040

o TUMQCD coll. 2111.079160



Renormalization constant £
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The convergence of the direct force towards the continuum, i.e. the derivative of the static
potential, is slow. The ratio of the two determinations is an r independent constant Z
that may be computed once forever at some fixed (arbitrary) distance r* (rg = 0.5 fm).

ensemble ainfm Zg from Wilson loops Zg from Polyakov loops
A 0.060 1.4068(63) 1.4001(20)
B 0.048 1.3853(30) 1.3776(10)
C 0.040 1.348(11) 1.3628(13)




Direct force vs lattice data

6 [ | | | |
ensemble A —— ——
5 ensemble B WL —=—PL —— -
ensemble C
w4 OrVoornel(7)/0r Voornen (r*) —— 7

1 /10
~ o Remove Zg by dividing with measurement at r* = 0.48n

e Proof of concept:

e Both derivative of potential and direct force agree

w e Both Wilson loop and Polyakov loops agree

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

r/To

Once normalized by Z g the direct force agrees well with the Cornell parameterization
based on quenched lattice data of the QCD static energy.
We have chosen r* = 0.48 rg =~ 0.24 fm.

o TUMQOCD coll. 2111.0791¢6



Gradient flow

The converge towards the continuum limit may be improved by using gradient flow.

Gradient flow consists in replacing the gluon fields gA,, (z) by the flowed fields B, (x; 1),
where B,, is defined through the flow equation

0

DVGI/,u + D,uasz/

G/u/ 3,1,3,/ — 8,/BM —+ [B’u, B,/]7 D,u, — 8’u | [B’u’ ]

with the initial condition B, (z;t =0) = gA,.(x).

The new theory reduces to QCD in the limit of zero flow time t. But at any finite ¢ it
typically shows a much better behaviour than QCD in the ultraviolet (large momenta).

We expect that the theory at finite flow time converges faster towards the continuum.

o Luscher JHEP 08 (2010) 071, Luscher Weisz JHEP 02 (2011) 051



The potential from gradient tlow up to NLO

In the MS scheme, we find at NLO in momentum space (¢ = g>t)

V(g;t) =

2
dmos (1) Cre” > t{l s ()
47

- . Bo log(1?/q?) + a1 + Ca W0 ()

The leading order term decreases like e—24°t for large momentum transfer g2.
Also the NLO one, which is analytically known, decreases exponentially like e~ 't




The torce from gradient flow at NLO

In the MS scheme, we find at NLO in coordinate space

o as(w)CF Qs .
F(r:t) = - _(1 . 47Ta1> Fo(r:t)
I g L I O{SC{A/4 F -
| BoFnro(Tit; 1) - Frro (75 t)
47 47

The functions Fo(7;t), Fiip o (15t 1) and Fiq o (r; t) are analytically known.

0 Brambilla Chung Vairo Wang 2111.07811



The force from gradient flow at NLO

Fr(r;t; p)/ Folr;t)

1.2 —

Fo(r;t)

|] lllllllllll
U
! —_— u=(r?+8t)7Y?
e =
SUREELLELE p=1/v8t .
L e
\ o’
\ S
\ »
\
\
\
\

- -
-----
-'--
s
.
-

()

15 20

AAAAAAAAAAAAAAAAA

()



Lattice analysis of 2111.10212

For a preliminary study, we have computed the Wilson loop with a chromoelectric field in
gradient flow on three quenched QCD (n s = 0) ensembles.

5 Nos X N¢  a|fm] E configurations
6.284 20 x40  0.060 1949
6.481 26 x 56  0.046 1999
6.594 30 x 60  0.040 1997

0 Brambi1lla Leino Mayer—-Steudte Vairo 2111.10212



Renormalization constant Zx with gradient flow

- T T T T 7772

at zero flow time we reobtain the previous result for Z E

At finite flow time the renormalization constant Z g is about 1. F@V(V*, a)

® Gradient flow
+ ®  Multilevel

Fav(r™)/Fe(r*)

ZE=
©

o Brambilla Leino Mayer—-Steudte Vairo 2111.10212 for each flow time find the plateau in r*



Renormalization constant Zx with gradient flow

- T T T T 7772

at zero flow time we reobtain the previous result for Z E

At finite flow time the renormalization constant Z g is about 1. F@V(V*, a)
Zi(a) = T
e(r,a)
® Gradient flow
1.354 o + ¢ Multilevel
1.30
;:1.25 b
< e Gradient flow automatically renormalizes the force at finite flowtime
Z 115 ¢ — No need for Zg
N
1.10
()
1.05
1.00
0 1 2 3 éll 5 6 7
\/877-1-'/8

o Brambilla Leino Mayer—-Steudte Vairo 2111.10212 for each flow time find the plateau in r*



Direct force vs lattice data with gradient flow

Cornell potential from previous lattice data on the
Wilson and Polyakov loop

V8T = 1.6a
2.00
—— Multilevel 0,Vcornel
1751 ® No=20 |
v N,= 26 17 1
Ns= 30

1.50 v

1.25
S 0o despite the lack of continuum
L and zero flow time limit the force

0.75 from gradient flow seems to agree with the

force measured from the derivative of the potential

0.50 calculated previously

0.25

0.00

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
riro

0 Brambilla Leino Mayer-Steudte Vailiro 2111.10212



OUTLOOK

The computation of the static energy and force in QCD has seen remarkable progress in
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the strong coupling constant, .
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OUTLOOK

The computation of the static energy and force in QCD has seen remarkable progress in

recent years both analytically and numerically resulting in a competitive determination of
the strong coupling constant, .

—>the next talk by J. Weber will give all the details and the error budget of the latest alphas extraction of 2019

For the near future: extraction of alphas for the lattice static energy with 2+1+1 flavours

extraction of alphas from the force directly calculated ob the Iattice

The information about ag is contained in the force. The force may be determined by
numerically taking the derivative of the static energy, which requires a precise
determination of the static energy. An alternative determination consists in computing a
Wilson loop with a chromoelectric field insertion. If this way of determining the force is
more or less efficient than the derivative of the static energy remains to be established.

Gradient flow seems to be a promising method for determining the force from a Wilson
loop with a chromoelectric field insertion. What remains to be done is a consistent
analysis of the zero flow time limit of the lattice data. For this purpose it is certainly of
help having the analytical expression of the force in gradient flow at NLO.

Also lattice computations should be extended to full (unquenched) QCD.



backup



Numerical results for the force from gradient flow at NLO

Numerical results for 7 F'(r; t) in QCD with ny = 4 massless quarks.
We have set i = (12 4 8t)~1/2,

r2]7(r;t)

ceme /B = 0fm

—— /8t =0.018fm -

VSt = 0.025fm | i
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o Brambilla Chung
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Numerical results for the force from gradient flow at NLO

Numerical results for 2 F(r; t) in the pure SU(3) gauge theory (n s = 0).
We have set p = (r2 4 8t)~1/2.

: 0.34— —
0.35;— np =0 _ ng=>0
030l 0-32I" » = 0.12fm
-~ 0.253— % ~ 0.30}
e I | < | = 0.10 fm
Er: 0.20f ~==+ V8t =0fm O
= : — /8t =0.018fm = '
0.15[ | | = 0.08 fm
: V8t = 0.025fm 0.26F oo e
019y V8t =0.03fm | | ~
: f 0.24F r = 0.06 fm :
0-05:‘ ----- V8t = 0.04fm | : ——— !
000: "". R R A S SR RS S S S 022- """"" \ ---------------------- 7
0.0 0.05 0.10 0.15 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
r (fm) V8t  (fm)
As a special feature of the quenched case the approach to zero flow time is almost
: . _ QOéZCF’n t
constant (in general it goes like — ! 5)-
T r
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