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Challenges:

Go to very short  heavy quark distances distances on the lattice

Deal with the renormalon between the mass and the potential

—> use  finite temperature lattice data 
on the free energy

—> calculate directly on the lattice  
the static force which is renormalon free
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Extraction of alphas from comparing the QCD static energy 

calculated  
in perturbative QCD  

(using pNRQCD)

measured on the lattice  

known  at 3 loops and NNNLL accuracy 

given by the static Wilson loop 

Static energy

E0(r) = lim
T→∞

i

T
ln ; = exp

{

ig

∮

dzµAµ

}

Perturbation theory describes E0(r) in the short range (rΛ ! 1, αs(1/r) < 1):

E0(r) = Λs−
CFαs

r
(1+#αs+#α2

s +#α3
s +#α3

s lnαs+#α4
s ln

2 αs+#α4
s lnαs+ . . . )

• E0(r) is known at three loops.

• lnαs signals the cancellation of contributions coming from different energy scales:

lnαs = ln
µ

1/r
+ ln

αs/r

µ

◦ Brambilla Pineda Soto Vairo PRD 60 (1999) 091502
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Why the QQ̄ static energy?

E0 = E0(�QCD, r) in the chiral limit, light quark mass dependence

small

Lattice evaluations available

Perturbative evaluations available

If r�QCD << 1 both evaluations should agree

I Fix �QCD from a low enegy observable calculated on the lattice

I Evaluate E0 perturbatively in the standard MS scheme

I Get �MS by equating lattice and perturbative expressions

No lattice to MS renormalization scheme change necessary

Joan Soto ( Universitat de Barcelona ) Departament de F́ısica Quàntica i Astrof́ısica Institut de Ciències del Cosmos )–s from the QQ̄ static energy MIAPP, Garching, 23/10/18 4 / 19
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alphas extracted in this way gives one of the most precise 
determinations at a low energy scale (lattice cannot  

explore too short distances)

competitive

complementary to high energy determinations

intrinsic value-> add to our understanding of QCD  and heavily constrains the running 
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T

r
rXT
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The wilson loop calculated  
order  in perturbation theory is  

divergent from 3 loops on: one needs 
an EFT to resume and combine contribution   

from different scales

Energy scales

In the short range the static Wilson loop is characterized by a hierarchy of energy scales:

1/r ! Vo − Vs ! Λ; Vs ≈ −CF
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The Appelquist–Dine–Muzinich
diagrams

...... ... = −
CF C3

A

12

αs

r

α3
s

π
ln

[
CAαs

2r
× r

]

︸ ︷︷ ︸

∼ exp(−i(Vo − Vs) T )

Appelquist Dine Muzinich 78, Brambilla Pineda Soto Vairo 99
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8

pNRQCD (potential NonRelativistic QCD) EFT for QQbar r<< Lambda_QCD^-1 
 

pNRQCD

L = −
1

4
Fa
µνF

µν a +

nf
∑

i=1

q̄i iD/ qi +

∫

d3rTr
{

S† (i∂0 − hs) S + O† (iD0 − ho)O
}

• LO in r

θ(T ) e−iThs θ(T ) e−iTho

(

e−i
∫
dtAadj

)

+VATr
{

O†r · gE S + S†r · gEO
}

+
VB

2
Tr

{

O†r · gEO+O†Or · gE
}

• NLO in r
O†r · gE S O†{r · gE, O}

+ · · ·

Degrees of freedom: colour singlet S and colour octet O and low energy gluons (multipole expanded)
The potentials are the matching coefficients of pNRQCD : they are calculated via 

a well defined matching procedure

pNRQCD allows to address  
 scale factorization 



Effective Field Theories

EFTs allow the factorization of contributions from different energy scales.

=

QCD

+   

pNRQCD

+   ...

E0(r) = Λs + Vs(r, µ)− i
g2

N
V 2
A

∫

∞

0
dt e−it(Vo−Vs)〈Tr r ·E(t) r ·E(0)〉(µ) + . . .

res. mass potential ultrasoft contribution

◦ Brambilla Pineda Soto Vairo NPB 566 (2000) 275

The µ dependence cancels between
Vs ∼ ln rµ, ln2 rµ, ...
ultrasoft contribution ∼ ln(Vo − Vs)/µ, ln2(Vo − Vs)/µ, ... ln rµ, ln2 rµ, ...



VA

The first contributing diagrams are of the type:

Therefore

VA(r, µ) = 1 +O(α2
s )



Chromoelectric field correlator: 〈E(t)E(0)〉

Is known at two loops.

× ×

LO

× × × ×

(a) (b)

× × × ×

(c) (d)

× × × ×

(e) (f)

× × × ×

(g) (h)

NLO
◦ Eidemüller Jamin PLB 416 (1998) 415



Static octet potential

lim
T→∞

i

T
ln

〈φadj
ab 〉

=
1

2N

αs

r
(1 + #αs +#α2

s +#α3
s +#α3

s lnµr + . . . )

Is known at three loops.

◦ Anzai Prausa A.Smirnov V.Smirnov Steinhauser PRD 88 (2013) 054030



Static singlet potential at N4LO

Vs(r, µ) = −CF
αs(1/r)

r

{

1 +
αs(1/r)

4π
a1 +

(

αs(1/r)

4π

)2

a2

+

(

αs(1/r)

4π

)3 [16π2

3
C3

A ln rµ+ a3

]

+

(

αs(1/r)

4π

)4 [

aL2
4 ln2 rµ+

(

aL4 +
16

9
π2 C3

Aβ0(−5 + 6 ln 2)

)

ln rµ+ . . .

]

+ · · ·

}

◦ Anzai Kiyo Sumino PRL 104 (2010) 112003
A.Smirnov V.Smirnov Steinhauser PRL 104 (2010) 112002

Static singlet potential at N^4LO

Static singlet potential

Vs(r, µ) = −CF
αs(1/r)

r

"

1 + a1
αs(1/r)

4π
+ a2

„
αs(1/r)

4π

«2

+

„
16 π2

3
C3

A ln rµ + a3

« „
αs(1/r)

4π

«3

+

„

aL2
4 ln2 rµ +

„

aL
4 +

16

9
π2 C3

Aβ0(−5 + 6 ln 2)

«

ln rµ + a4

« „
αs(1/r)

4π

«4
#

aL2
4 = −

16π2

3
C3

A β0

aL
4 = 16π2C3

A

»

a1 + 2γEβ0 + nf

„

−
20

27
+

4

9
ln 2

«

+CA

„
149

27
−

22

9
ln 2 +

4

9
π2

«–

Brambilla et al 99, 06

˜

Billoire  80a1

a2 Schroeder 99, Peter 97

coeff lnrµ N.B. Pineda, Soto, Vairo 99 

a
L2

4 , a
L

4
N.B., Garcia, Soto, Vairo  06

ã3, a4

fermionic part of ã3

Unknown

Smirnov, Smirnov, Steinhauser 08

a3

The constant a_4 at 4 loops is not yet known

from



Static energy at N4LO

E0(r) = Λs −
CFαs(1/r)

r

{

1 +
αs(1/r)

4π
[a1 + 2γEβ0]

+

(

αs(1/r)

4π

)2 [

a2 +

(

π2

3
+ 4γ2

E

)

β2
0 + γE (4a1β0 + 2β1)

]

+

(

αs(1/r)

4π

)3 [16π2

3
C3

A ln
CAαs(1/r)

2
+ ã3

]

+

(

αs(1/r)

4π

)4 [

aL2
4 ln2

CAαs(1/r)

2
+ aL4 ln

CAαs(1/r)

2
+ . . .

]

+ · · ·

}

◦ Brambilla Pineda Soto Vairo PRD 60 (1999) 091502

Brambilla Garcia Soto Vairo PLB 647 (2007) 185



Renormalization group equations















































































µ
d

dµ
Vs = −

2

3
CF

αs

π
r2V 2

A [Vo − Vs]
3
(

1 +
αs

π
c
)

µ
d

dµ
Vo =

1

N

αs

π
r2V 2

A [Vo − Vs]
3
(

1 +
αs

π
c
)

µ
d

dµ
VA = 0

µ
d

dµ
αs = αsβ(αs); c =

−5nf + CA(6π2 + 47)

108

◦ Pineda Soto PLB 495 (2000) 323

Brambilla Garcia Soto Vairo PRD 80 (2009) 034016



Static singlet potential and energy at N3LL

Vs(r, µ) = Vs(r, 1/r)−
CFC3

A

6β0

α3
s (1/r)

r

{(

1 +
3

4

αs(1/r)

π
a1

)

ln
αs(1/r)

αs(µ)
(

β1

4β0
− 6c

)[

αs(µ)

π
−

αs(1/r)

π

]}

Summed to the ultrasoft contribution at two loops, it provides the static energy at N3LL.

◦ Brambilla Garcia Soto Vairo PRD 80 (2009) 034016

Garcia MPLA 28 (2013) 1330028



Force and mass renormalon

The perturbative expansion of Vs is affected by a renormalon ambiguity of order Λ.

This ambiguity does not affect the slope of the potential (and the extraction of αs).

It may be eliminated from the perturbative series

• either by subtracting a (constant) series in αs to Vs and reabsorb it in a redefinition

of the residual mass Λs,

• or by considering the force:

F (r,αs(ν)) =
d

dr
E0(r,αs(ν))

• The force F (r,αs(1/r)) could be directly compared with lattice,

• or integrated and compared with the static energy

E0(r) =

∫ r

r∗

dr′ F (r′,αs(1/r
′))

up to an irrelevant constant fixed by the overall normalization of the lattice data.

Note that there are no ln νr (ν = renormalization scale).



Force and mass renormalon

The perturbative expansion of Vs is affected by a renormalon ambiguity of order Λ.

This ambiguity does not affect the slope of the potential (and the extraction of αs).

It may be eliminated from the perturbative series

• either by subtracting a (constant) series in αs to Vs and reabsorb it in a redefinition

of the residual mass Λs,

• or by considering the force:

F (r,αs(ν)) =
d

dr
E0(r,αs(ν))

• The force F (r,αs(1/r)) could be directly compared with lattice,

• or integrated and compared with the static energy

E0(r) =

∫ r

r∗

dr′ F (r′,αs(1/r
′))

up to an irrelevant constant fixed by the overall normalization of the lattice data.

Note that there are no ln νr (ν = renormalization scale).

This is the formula that  
we used to compare  

to the lattice data on the static energy



alphas from the static energies: analysis

2010 extraction of  r_0Lambda_MS from quenched data
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We use the recently obtained theoretical expression for the complete QCD static energy at next-
to-next-to-next-to leading-logarithmic accuracy to determine r0ΛMS by comparison with available
lattice data, where r0 is the lattice scale and ΛMS is the QCD scale. We obtain r0ΛMS = 0.637+0.032

−0.030

for the zero-flavor case. The procedure we describe can be directly used to obtain r0ΛMS in the
unquenched case, when unquenched lattice data for the static energy at short distances becomes
available. Using the value of the strong coupling αs as an input, the unquenched result would
provide a determination of the lattice scale r0.

PACS numbers: 12.38.Aw, 12.38.Bx, 12.38.Cy, 12.38.Gc

The energy between a static quark and a static an-
tiquark is a fundamental object to understand the be-
havior of quantum chromodynamics (QCD) [1]. Its long-
distance part encodes the confining dynamics of the the-
ory while the short-distance part can be calculated to
high accuracy using perturbative techniques. Perturba-
tive computations of the short-distance part have been
performed for many years [2, 3] and the two-loop cor-
rections have been known for quite some time now [4–
6]. When using perturbation theory to calculate the
short-distance part, the virtual emission of gluons that
can change the color state of the quark-antiquark pair
(so-called ultrasoft gluons) produce infrared divergences,
which induce logarithmic terms, lnαs(1/r), in the static
energy. Those effects, which first appear at the three-
loop order, were identified in Ref. [7] and calculated
in Ref. [8, 9] using an effective field theory framework
[10, 11]. That framework also allows for resummation of
the ultrasoft logarithms [12], which may be large at small
distances r. Very recently, the complete three-loop cor-
rections to the static energy have become available [13–
15]. Combining the results of those calculations with the
resummation of the ultrasoft logarithms at sub-leading
order [16, 17], the static energy at next-to-next-to-next-
to leading-logarithmic (N3LL) accuracy, i.e. including
terms up to order α4+n

s lnn αs with n ≥ 0, is now com-
pletely known.

In the first part of the letter, we compare the static en-
ergy at N3LL accuracy with lattice data. The comparison
shows that, after subtracting the leading renormalon sin-
gularity, perturbation theory reproduces very accurately
the lattice data at short distances, thus confirming at
an unprecedented precision level the conclusions reached
in previous analyses [16, 18, 19]. In the second part of
the letter, the excellent agreement of perturbation the-
ory with lattice data allows us to obtain a precise deter-
mination of the quantity r0ΛMS, where r0 is the lattice
scale and ΛMS is the QCD scale (in the MS scheme), a

key ingredient to relate low energy hadronic physics with
high energy collider phenomenology. This constitutes the
main result of our work.
The static energy E0(r) at short distances can be writ-

ten as

E0(r) = Vs + Λs + δUS, (1)

where Vs and Λs are matching coefficients in potential
Non-Relativistic QCD (pNRQCD) [11] and δUS contains
the contributions from ultrasoft gluons. Vs corresponds
to the static potential and Λs inherits the residual mass
term from the Heavy Quark Effective Theory Lagrangian.
In order to obtain a rapidly converging perturbative se-
ries for the static potential in the short-distance regime,
it has been argued that it is necessary to implement a
scheme that cancels the leading renormalon singularity
[20]. The use of any such scheme introduces an addi-
tional dimensional scale (which we call ρ), upon which all
the quantities in Eq. (1) depend. We will employ the so-
called RS scheme [21], in the same way as it was done in
Ref. [16]. The explicit expressions for E0 at N3LL accu-
racy were presented in Ref. [16] and will not be repeated
here. We refer to that paper for details. The only new in-
gredient is that the three-loop gluonic contribution to the
static potential is now known. At three-loop order the
static potential presents infrared divergences, which can-
cel in the physical observable E0 after the inclusion of the
ultrasoft effects. Therefore, it is necessary to consistently
use the same scheme to factorize the ultrasoft contribu-
tions for all the terms in Eq. (1). That way one obtains
the correct three-loop coefficient for the static energy E0,
which is independent of the scheme used to factorize the
ultrasoft contributions. Refs. [14, 15] present the result
for the purely-gluonic three-loop coefficient of the static

potential in momentum space, which we call a(0)3 (fol-
lowing the notation of Ref. [15]). We emphasize again

that a(0)3 is scheme dependent. The corresponding coeffi-
cient in the static energy can be obtained by taking the



alphas from the static energies: analysis

2010 extraction of  r_0Lambda_MS from quenched data

2012 extraction  

2014 extraction 

2019 extraction 

2+1 flavour lattice data: 
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�0.0022
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We use the recently obtained theoretical expression for the complete QCD static energy at next-
to-next-to-next-to leading-logarithmic accuracy to determine r0ΛMS by comparison with available
lattice data, where r0 is the lattice scale and ΛMS is the QCD scale. We obtain r0ΛMS = 0.637+0.032

−0.030

for the zero-flavor case. The procedure we describe can be directly used to obtain r0ΛMS in the
unquenched case, when unquenched lattice data for the static energy at short distances becomes
available. Using the value of the strong coupling αs as an input, the unquenched result would
provide a determination of the lattice scale r0.
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The energy between a static quark and a static an-
tiquark is a fundamental object to understand the be-
havior of quantum chromodynamics (QCD) [1]. Its long-
distance part encodes the confining dynamics of the the-
ory while the short-distance part can be calculated to
high accuracy using perturbative techniques. Perturba-
tive computations of the short-distance part have been
performed for many years [2, 3] and the two-loop cor-
rections have been known for quite some time now [4–
6]. When using perturbation theory to calculate the
short-distance part, the virtual emission of gluons that
can change the color state of the quark-antiquark pair
(so-called ultrasoft gluons) produce infrared divergences,
which induce logarithmic terms, lnαs(1/r), in the static
energy. Those effects, which first appear at the three-
loop order, were identified in Ref. [7] and calculated
in Ref. [8, 9] using an effective field theory framework
[10, 11]. That framework also allows for resummation of
the ultrasoft logarithms [12], which may be large at small
distances r. Very recently, the complete three-loop cor-
rections to the static energy have become available [13–
15]. Combining the results of those calculations with the
resummation of the ultrasoft logarithms at sub-leading
order [16, 17], the static energy at next-to-next-to-next-
to leading-logarithmic (N3LL) accuracy, i.e. including
terms up to order α4+n

s lnn αs with n ≥ 0, is now com-
pletely known.

In the first part of the letter, we compare the static en-
ergy at N3LL accuracy with lattice data. The comparison
shows that, after subtracting the leading renormalon sin-
gularity, perturbation theory reproduces very accurately
the lattice data at short distances, thus confirming at
an unprecedented precision level the conclusions reached
in previous analyses [16, 18, 19]. In the second part of
the letter, the excellent agreement of perturbation the-
ory with lattice data allows us to obtain a precise deter-
mination of the quantity r0ΛMS, where r0 is the lattice
scale and ΛMS is the QCD scale (in the MS scheme), a

key ingredient to relate low energy hadronic physics with
high energy collider phenomenology. This constitutes the
main result of our work.
The static energy E0(r) at short distances can be writ-

ten as

E0(r) = Vs + Λs + δUS, (1)

where Vs and Λs are matching coefficients in potential
Non-Relativistic QCD (pNRQCD) [11] and δUS contains
the contributions from ultrasoft gluons. Vs corresponds
to the static potential and Λs inherits the residual mass
term from the Heavy Quark Effective Theory Lagrangian.
In order to obtain a rapidly converging perturbative se-
ries for the static potential in the short-distance regime,
it has been argued that it is necessary to implement a
scheme that cancels the leading renormalon singularity
[20]. The use of any such scheme introduces an addi-
tional dimensional scale (which we call ρ), upon which all
the quantities in Eq. (1) depend. We will employ the so-
called RS scheme [21], in the same way as it was done in
Ref. [16]. The explicit expressions for E0 at N3LL accu-
racy were presented in Ref. [16] and will not be repeated
here. We refer to that paper for details. The only new in-
gredient is that the three-loop gluonic contribution to the
static potential is now known. At three-loop order the
static potential presents infrared divergences, which can-
cel in the physical observable E0 after the inclusion of the
ultrasoft effects. Therefore, it is necessary to consistently
use the same scheme to factorize the ultrasoft contribu-
tions for all the terms in Eq. (1). That way one obtains
the correct three-loop coefficient for the static energy E0,
which is independent of the scheme used to factorize the
ultrasoft contributions. Refs. [14, 15] present the result
for the purely-gluonic three-loop coefficient of the static

potential in momentum space, which we call a(0)3 (fol-
lowing the notation of Ref. [15]). We emphasize again

that a(0)3 is scheme dependent. The corresponding coeffi-
cient in the static energy can be obtained by taking the
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2012 extraction  

2014 extraction 

2019 extraction 

2+1 flavour lattice data: 
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�0.0022
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<latexit sha1_base64="LSWNHhYWBHLBoWYsFTnlnrzsO3A="></latexit>

↵s(MZ) = 0.11660+0.00110
�0.00056

—>>>Reduce the error going to smaller  
lattice spacing and reaching to shorter distances

Lattice analysis of Phys. Rev. D 90 (2014) 074038

We consider a 2+1-flavor lattice QCD obtained from tree-level improved gauge action

and Highly-Improved Staggered Quark (HISQ) action by the HotQCD collaboration.

ms has been fixed to its physical value, while ml = ms/20.

This corresponds to a pion mass of about 160 MeV in the continuum limit.

β 7.373 7.596 7.825

r1/a 5.172(34) 6.336(56) 7.690(58)

Volume 483 × 64 644 644

The largest gauge coupling, β = 7.825, corresponds to lattice spacings of a = 0.041 fm.

◦ Bazavov et al PRD 90 (2014) 094503

The lattice spacing has been fixed using the r1 scale defined as r2
dE0(r)

dr

∣

∣

∣

∣

r=r1

= 1.0;

r1 = 0.3106± 0.0017 fm from the pion decay constant fπ .

◦ Bazavov et al PoS LATTICE 2010 (2010) 074

Lattice analysis of Phys. Rev. D 100 (2019) 114511

In the 2019 analysis the 2+1-flavor lattice QCD data of Phys. Rev. D 90 (2014) 074038

are supplemented by finer lattice data at larger light quark masses: ml = ms/5.

ml = ms/5

β a [fm] Nσ , Nτ ams mπL #TUs #MEAS

8.000 0.035 644 0.01299 3.6 4616 1000

8.200 0.029 644 0.01071 3.1 4616 1000

8.400 0.025 644 0.00887 2.6 4616 1000

◦ Bazavov Petreczky Weber PRD 97 (2018) 014510

2014

2019
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We use the recently obtained theoretical expression for the complete QCD static energy at next-
to-next-to-next-to leading-logarithmic accuracy to determine r0ΛMS by comparison with available
lattice data, where r0 is the lattice scale and ΛMS is the QCD scale. We obtain r0ΛMS = 0.637+0.032

−0.030

for the zero-flavor case. The procedure we describe can be directly used to obtain r0ΛMS in the
unquenched case, when unquenched lattice data for the static energy at short distances becomes
available. Using the value of the strong coupling αs as an input, the unquenched result would
provide a determination of the lattice scale r0.
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The energy between a static quark and a static an-
tiquark is a fundamental object to understand the be-
havior of quantum chromodynamics (QCD) [1]. Its long-
distance part encodes the confining dynamics of the the-
ory while the short-distance part can be calculated to
high accuracy using perturbative techniques. Perturba-
tive computations of the short-distance part have been
performed for many years [2, 3] and the two-loop cor-
rections have been known for quite some time now [4–
6]. When using perturbation theory to calculate the
short-distance part, the virtual emission of gluons that
can change the color state of the quark-antiquark pair
(so-called ultrasoft gluons) produce infrared divergences,
which induce logarithmic terms, lnαs(1/r), in the static
energy. Those effects, which first appear at the three-
loop order, were identified in Ref. [7] and calculated
in Ref. [8, 9] using an effective field theory framework
[10, 11]. That framework also allows for resummation of
the ultrasoft logarithms [12], which may be large at small
distances r. Very recently, the complete three-loop cor-
rections to the static energy have become available [13–
15]. Combining the results of those calculations with the
resummation of the ultrasoft logarithms at sub-leading
order [16, 17], the static energy at next-to-next-to-next-
to leading-logarithmic (N3LL) accuracy, i.e. including
terms up to order α4+n

s lnn αs with n ≥ 0, is now com-
pletely known.

In the first part of the letter, we compare the static en-
ergy at N3LL accuracy with lattice data. The comparison
shows that, after subtracting the leading renormalon sin-
gularity, perturbation theory reproduces very accurately
the lattice data at short distances, thus confirming at
an unprecedented precision level the conclusions reached
in previous analyses [16, 18, 19]. In the second part of
the letter, the excellent agreement of perturbation the-
ory with lattice data allows us to obtain a precise deter-
mination of the quantity r0ΛMS, where r0 is the lattice
scale and ΛMS is the QCD scale (in the MS scheme), a

key ingredient to relate low energy hadronic physics with
high energy collider phenomenology. This constitutes the
main result of our work.
The static energy E0(r) at short distances can be writ-

ten as

E0(r) = Vs + Λs + δUS, (1)

where Vs and Λs are matching coefficients in potential
Non-Relativistic QCD (pNRQCD) [11] and δUS contains
the contributions from ultrasoft gluons. Vs corresponds
to the static potential and Λs inherits the residual mass
term from the Heavy Quark Effective Theory Lagrangian.
In order to obtain a rapidly converging perturbative se-
ries for the static potential in the short-distance regime,
it has been argued that it is necessary to implement a
scheme that cancels the leading renormalon singularity
[20]. The use of any such scheme introduces an addi-
tional dimensional scale (which we call ρ), upon which all
the quantities in Eq. (1) depend. We will employ the so-
called RS scheme [21], in the same way as it was done in
Ref. [16]. The explicit expressions for E0 at N3LL accu-
racy were presented in Ref. [16] and will not be repeated
here. We refer to that paper for details. The only new in-
gredient is that the three-loop gluonic contribution to the
static potential is now known. At three-loop order the
static potential presents infrared divergences, which can-
cel in the physical observable E0 after the inclusion of the
ultrasoft effects. Therefore, it is necessary to consistently
use the same scheme to factorize the ultrasoft contribu-
tions for all the terms in Eq. (1). That way one obtains
the correct three-loop coefficient for the static energy E0,
which is independent of the scheme used to factorize the
ultrasoft contributions. Refs. [14, 15] present the result
for the purely-gluonic three-loop coefficient of the static

potential in momentum space, which we call a(0)3 (fol-
lowing the notation of Ref. [15]). We emphasize again

that a(0)3 is scheme dependent. The corresponding coeffi-
cient in the static energy can be obtained by taking the



alphas from the static energies: analysis

2010 extraction of  r_0Lambda_MS from quenched data

2012 extraction  

2014 extraction 

2019 extraction 

2+1 flavour lattice data: 

<latexit sha1_base64="w/ZcSl6uOTf+lrSL98dA26r+4A8="></latexit>

↵s(MZ) = 0.1156+0.0021
�0.0022

<latexit sha1_base64="d8w4hwretajmmaCP3bdhqhvNzGg="></latexit>

↵s(MZ) = 0.1166+0.0012
�0.0008

<latexit sha1_base64="LSWNHhYWBHLBoWYsFTnlnrzsO3A="></latexit>

↵s(MZ) = 0.11660+0.00110
�0.00056

reaches distances as small as  
0.0237 fm full analysis will be presented in 

talk by J. Weber, in particular lattice 
artifacts and discretisation errors  will 

be discussed in depth

—>>>Reduce the error going to smaller  
lattice spacing and reaching to shorter distances

Lattice analysis of Phys. Rev. D 90 (2014) 074038

We consider a 2+1-flavor lattice QCD obtained from tree-level improved gauge action

and Highly-Improved Staggered Quark (HISQ) action by the HotQCD collaboration.

ms has been fixed to its physical value, while ml = ms/20.

This corresponds to a pion mass of about 160 MeV in the continuum limit.

β 7.373 7.596 7.825

r1/a 5.172(34) 6.336(56) 7.690(58)

Volume 483 × 64 644 644

The largest gauge coupling, β = 7.825, corresponds to lattice spacings of a = 0.041 fm.

◦ Bazavov et al PRD 90 (2014) 094503

The lattice spacing has been fixed using the r1 scale defined as r2
dE0(r)

dr

∣

∣

∣

∣

r=r1

= 1.0;

r1 = 0.3106± 0.0017 fm from the pion decay constant fπ .

◦ Bazavov et al PoS LATTICE 2010 (2010) 074

Lattice analysis of Phys. Rev. D 100 (2019) 114511

In the 2019 analysis the 2+1-flavor lattice QCD data of Phys. Rev. D 90 (2014) 074038

are supplemented by finer lattice data at larger light quark masses: ml = ms/5.

ml = ms/5

β a [fm] Nσ , Nτ ams mπL #TUs #MEAS

8.000 0.035 644 0.01299 3.6 4616 1000

8.200 0.029 644 0.01071 3.1 4616 1000

8.400 0.025 644 0.00887 2.6 4616 1000

◦ Bazavov Petreczky Weber PRD 97 (2018) 014510
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We use the recently obtained theoretical expression for the complete QCD static energy at next-
to-next-to-next-to leading-logarithmic accuracy to determine r0ΛMS by comparison with available
lattice data, where r0 is the lattice scale and ΛMS is the QCD scale. We obtain r0ΛMS = 0.637+0.032

−0.030

for the zero-flavor case. The procedure we describe can be directly used to obtain r0ΛMS in the
unquenched case, when unquenched lattice data for the static energy at short distances becomes
available. Using the value of the strong coupling αs as an input, the unquenched result would
provide a determination of the lattice scale r0.

PACS numbers: 12.38.Aw, 12.38.Bx, 12.38.Cy, 12.38.Gc

The energy between a static quark and a static an-
tiquark is a fundamental object to understand the be-
havior of quantum chromodynamics (QCD) [1]. Its long-
distance part encodes the confining dynamics of the the-
ory while the short-distance part can be calculated to
high accuracy using perturbative techniques. Perturba-
tive computations of the short-distance part have been
performed for many years [2, 3] and the two-loop cor-
rections have been known for quite some time now [4–
6]. When using perturbation theory to calculate the
short-distance part, the virtual emission of gluons that
can change the color state of the quark-antiquark pair
(so-called ultrasoft gluons) produce infrared divergences,
which induce logarithmic terms, lnαs(1/r), in the static
energy. Those effects, which first appear at the three-
loop order, were identified in Ref. [7] and calculated
in Ref. [8, 9] using an effective field theory framework
[10, 11]. That framework also allows for resummation of
the ultrasoft logarithms [12], which may be large at small
distances r. Very recently, the complete three-loop cor-
rections to the static energy have become available [13–
15]. Combining the results of those calculations with the
resummation of the ultrasoft logarithms at sub-leading
order [16, 17], the static energy at next-to-next-to-next-
to leading-logarithmic (N3LL) accuracy, i.e. including
terms up to order α4+n

s lnn αs with n ≥ 0, is now com-
pletely known.

In the first part of the letter, we compare the static en-
ergy at N3LL accuracy with lattice data. The comparison
shows that, after subtracting the leading renormalon sin-
gularity, perturbation theory reproduces very accurately
the lattice data at short distances, thus confirming at
an unprecedented precision level the conclusions reached
in previous analyses [16, 18, 19]. In the second part of
the letter, the excellent agreement of perturbation the-
ory with lattice data allows us to obtain a precise deter-
mination of the quantity r0ΛMS, where r0 is the lattice
scale and ΛMS is the QCD scale (in the MS scheme), a

key ingredient to relate low energy hadronic physics with
high energy collider phenomenology. This constitutes the
main result of our work.
The static energy E0(r) at short distances can be writ-

ten as

E0(r) = Vs + Λs + δUS, (1)

where Vs and Λs are matching coefficients in potential
Non-Relativistic QCD (pNRQCD) [11] and δUS contains
the contributions from ultrasoft gluons. Vs corresponds
to the static potential and Λs inherits the residual mass
term from the Heavy Quark Effective Theory Lagrangian.
In order to obtain a rapidly converging perturbative se-
ries for the static potential in the short-distance regime,
it has been argued that it is necessary to implement a
scheme that cancels the leading renormalon singularity
[20]. The use of any such scheme introduces an addi-
tional dimensional scale (which we call ρ), upon which all
the quantities in Eq. (1) depend. We will employ the so-
called RS scheme [21], in the same way as it was done in
Ref. [16]. The explicit expressions for E0 at N3LL accu-
racy were presented in Ref. [16] and will not be repeated
here. We refer to that paper for details. The only new in-
gredient is that the three-loop gluonic contribution to the
static potential is now known. At three-loop order the
static potential presents infrared divergences, which can-
cel in the physical observable E0 after the inclusion of the
ultrasoft effects. Therefore, it is necessary to consistently
use the same scheme to factorize the ultrasoft contribu-
tions for all the terms in Eq. (1). That way one obtains
the correct three-loop coefficient for the static energy E0,
which is independent of the scheme used to factorize the
ultrasoft contributions. Refs. [14, 15] present the result
for the purely-gluonic three-loop coefficient of the static

potential in momentum space, which we call a(0)3 (fol-
lowing the notation of Ref. [15]). We emphasize again

that a(0)3 is scheme dependent. The corresponding coeffi-
cient in the static energy can be obtained by taking the



Procedure

We use data for each value of the lattice spacing separately, and at the end perform an
average of the different obtained values of αs with the following procedure.

• Perform fits to the lattice data for the static energy E0(r) at different orders of
perturbative accuracy. The parameter of the fits is ΛMS.

• Repeat the above fits for each of the following distance ranges: r < 0.75r1,
r < 0.7r1, r < 0.65r1, r < 0.6r1, r < 0.55r1, r < 0.5r1, and r < 0.45r1.

• Use ranges where the reduced χ2 either decreases or does not increase by more
than one unit when increasing the perturbative order, or is smaller than 1.

• To estimate the perturbative uncertainty of the result, repeat the fits
• by varying the scale in the perturbative expansion, from ν = 1/r to ν =

√
2/r

and ν = 1/(
√
2r),

• by adding/subtracting a term ±(CF /r2)αn+2
s to the expression at n loops.

Take the largest uncertainty.

General (also to make sure that the data have reached the perturbative regime) 



Analysis of the energy
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Fits for r < 0.6r1 are acceptable. In the final result we use only fits for r < 0.5r1.

The fitting curve has been normalized on the 7th lattice point.

The band shows an old but similar determination of 2012.



Analysis with the force
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The band shows the determination of 2012.

numerically reconstructed from the lattice data  
on the static energy interpolated by  splines—>bigger error 

confirms the extraction from the static energy 



The counting of the ultrasoft contributions
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Leading-ultrasoft resummation included along with the three-loop terms is consistent

with the observed size of the terms. This goes in our final result.

We chose µ = 1.26r−1
1 ∼ 0.8 GeV, for the ultrasoft factorization scale.

Variations of µ only produce small effects on the results.
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finite 3 loops  have a  alphas^4 factorized  out and same for the rest  

 we observe cancellations between the soft  
and the ultrasoft part at 3 loops, same cancellation 

may arise at 4 loops but the constant at 4 loops is not known   

The counting of the ultrasoft contributions
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with the observed size of the terms. This goes in our final result.

We chose µ = 1.26r−1
1 ∼ 0.8 GeV, for the ultrasoft factorization scale.

Variations of µ only produce small effects on the results.

Given the size of these terms 
we work at 3 loops  and count  the US log  

resummed  
terms together with the 3 loops: we work 

at 3 loops plus LL resummation, 
include in the perturbative error  

difference between 3 loop and 3 loop plus LL 



Looking for condensates
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By repeating the fits adding a monomial term proportional to r3 and r2, which could be

associated with gluon and quark local condensates, and also a term proportional to r,

we do not find evidence for a significant non-perturbative term at short distances and the

value of ΛMS remains unchanged.

and nonperturbative corrections



going to smaller distance with lattice data at finite temperature: the free energy



Finite T analysis

One reason for which it is challenging to reach very fine lattice spacings in lattice QCD

with dynamical quarks is that one has to simultaneously maintain the control over finite

volume effects coming from the propagation of the lightest hadronic modes at the pion

scale. A lattice simulation at high enough temperature avoids this infrared problem, and

enables reaching much finer lattice spacings using smaller volumes. In Phys. Rev. D 100

(2019) 114511 we have used finite temperature lattices to reach a = 0.00848 fm.

We compute the singlet free energy with Nσ/Nτ = 4 and Nτ = 12, or 16. These

ensembles correspond to the thermal QCD medium at temperatures T = 1/(aNτ ). The

finite temperature ensembles have been generated using lattice parameters that would

correspond to the same two pion masses (at zero temperature) in the continuum limit as

the zero temperature ensembles.

◦ TUMQCD coll PRD 98 (2018) 054511

The perturbative expression of the free energy agrees with the static energy at T = 0

plus thermal corrections that have been computed to some accuracy.

◦ Berwein Brambilla Petreczky Vairo PRD 96 (2017) 014025
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Singlet free energy of a quark-antiquark static pair : a thermal QCD observable

Figure 6: The nonperturbative lattice and the perturbative continuum results for the static energy multiplied by the distance,

rE(r). The HISQ data [78] are nonperturbatively corrected (NPC, colored bullets) or tree-level corrected (TLC, black crosses

and gray bullets). The color indicates the lattice spacing in units of the r1 scale, a/r1. The DWF data [74, 75] are from

a one-step analysis II that mixes the continuum extrapolation with the fit to the OPE result at N3LO, Eq. (21), using a

parametrization of discretization artifacts (green squares). The lines represent the three-loop result with resummed leading

ultrasoft logarithms, Eq. (20), corresponding to ↵s(MZ , Nf = 5) = 0.1167 (gray, solid) or ↵s(MZ , Nf = 5) = 0.1179 (green,

dashed). The former uses the central value ↵s(MZ , Nf = 5) = 0.1167 of the analysis of the (TLC or NPC) HISQ data with

r/a �
p
8 (gray bullets), the latter uses the central value ↵s(MZ , Nf = 5) = 0.1179 of the OPE-based one-step analysis II of

the DWF data [74, 75]. The NPC HISQ data with r/a <
p
8 are well-aligned with the fit excluding these data, while the TLC

HISQ data with r/a <
p
8 cannot be consistently described by a continuum result for any value of ↵s(MZ , Nf = 5).

correlation function at ⌧ = 1/T in a suitable gauge, i.e. in the Coulomb gauge, or in terms of the thermal

expectation value of the cyclic Wilson loop with spatially smeared spatial Wilson lines,

FS(r, T ) = �T
D
ln eig

R 1/T
0 d⌧A0(0,⌧)e�ig

R 1/T
0 d⌧A0(r,⌧)

E

T

, (32)

FW (r, T ) = �T ln
D
eig

H
r,1/T dz

µ
Aµ

E

T

. (33)

However, in contrast to the case of the QCD static energy at zero temperature these two quantities FS and

FW are distinguished by their distinct and temperature-dependent UV structures. A particular advantage

of the QCD lattice calculation at finite temperature is that it resolves the IR problem of QCD at zero

temperature in an elegant way. Namely, at high temperatures T & Tc the chiral symmetry is not sponta-

neously broken, and there are no associated pseudo-Goldstone bosons at the pion scale. Those would cause

severe finite volume e↵ects in zero temperature lattice simulations by propagating across the periodic lattice

20

thermal QCD expectation 
 value in Coulomb Gauge 

11

Lastly, we compare the three-loop with leading ultra-soft
resummation and the two-loop results (first three lines of
Eq. (2)). As can be read o↵ from Tabs. II and III, the dif-
ference to the two-loop result never exceeds +0.00025 and
decreases for smaller values of max(r), i.e., it is smaller
than the statistical errors and smaller than the other ef-
fects due variation of soft scale, soft higher order terms,
or variation of the ultra-soft resummation. The �2/d.o.f.
does not change significantly between using the two-loop
or three-loop with leading ultra-soft resummation results.
Hence, we confirm the criterion for having the lattice
data in the perturbative regime. We observe that the
smaller max(r) is, the smaller the variation of the cen-
tral value of ↵s between fits with di↵erent forms of the
weak-coupling results becomes. Tab. III shows clearly
that, for a given min(r/a), the perturbative errors are
dramatically reduced at smaller distances, as expected,
while the statistical error increases as less data are used
to constrain the fits.

Let us summarize the considerations of the preceding
paragraphs. We have to use max(r) . 0.1 fm to perform
the full scale variation and keep the perturbative uncer-
tainties fully under control. We should ideally use signifi-
cantly more than 10 data point to limit the impact of the
imperfectly treated discretization artifacts. Given the
considerations of the preceding paragraphs, we take the
result for 1  r/a  5 and max(r) = 0.073 fm, namely,
↵s(MZ) = 0.11660 as our final result, which corresponds

to r1⇤
Nf=3

MS
= 0.4943. The uncertainty of the scale r1 is

±0.0017 fm, which yields an error of �scale = ±1.7MeV
for ⇤

Nf=3

MS
, and �scale = ±0.00010 for ↵s(MZ , Nf = 5).

Therefore, the final result and full error budget of our
zero temperature lattice calculation are given as

↵s(MZ , Nf = 5) = 0.11660+0.00110
�0.00056, (4)

�↵s(MZ , Nf = 5) = (41)stat(21)lat(10)r1(+95
�13)

soft(28)us,
(5)

or in terms of ⇤
Nf=3

MS
as

⇤
Nf=3

MS
= 314.0+15.5

�8.0 MeV, (6)

�⇤
Nf=3

MS
= (5.8)stat(3.0)lat(1.7)r1(+13.4

�1.8 )soft(4.0)us MeV.

(7)

We have added the statistical error and the lattice dis-
cretization error of the static energy, the total error of
the r1 scale, and the perturbative error in quadrature.

In order to compare the current analysis to the
previous analysis [5], we use the smaller window
[1/(

p
2r),

p
2/r] for the variation of the soft scale ⌫, and

do not account for the uncertainty arising from the dif-
ference between resumming or not the leading ultra-soft
logarithms to obtain

�
p
2↵s(MZ , Nf = 5) = (41)stat(21)lat(10)r1(+37

�13)
pert,

(8)

�
p
2⇤

Nf=3

MS
= (5.8)stat(3.0)lat(1.7)r1(+5.2

�1.8)
pert MeV. (9)

In this case, the perturbative error is not dominant any-
more. Thus, the presented analysis has approximately
halved the uncertainties of Ref. [5]. Nevertheless our fi-
nal errors are only 10% (upper error) and 30% (lower er-
ror) smaller than the ones in [5], since we have accounted
for the other possible sources of uncertainty listed above.
The central values of Eq. (4) and of the final result in
Ref. [5] coincide.

IV. EXTRACTING ↵s FROM THE SINGLET
FREE ENERGY

In this section, we consider the extraction of the strong
coupling from the singlet free energy at non-zero temper-
ature, as it is expected that at small distances medium
e↵ects are small. We define the singlet free energy in
terms of the correlation function of two thermal Wilson
lines in Coulomb gauge

FS(r, T ) = �T ln

✓
1

Nc
hTr

⇥
W (r)W †(0)

⇤
i

◆
. (10)

At distances much smaller than the inverse temperature
rT ⌧ 1, we can write using pNRQCD [4]

FS(r, T ) = Vs(r, µus) + �FS(r, T, µus), (11)

where µus is the ultra-soft scale. The form of the ther-
mal correction depends on the scale hierarchy. One could
consider the case 1/r � ↵s/r � T � mD ⇠ gT or the
case 1/r � T � mD ⇠ gT � ↵s/r. In the former case
µus ⇠ ↵s/r and �FS(r, T, µus) = �EUS(µus)+�FS(r, T )
with EUS(µus) being the ultra-soft contribution to the
static energy in the vacuum. In the latter case µus ⇠ T
and �Fs(r, T, µus) has been calculated to order g5, i.e.,
see Eqs. (16) – (19) in Ref. [3]. In the latter case the
cancellation of the ultra-soft factorization scale depen-
dence cannot be verified because of the unknown g6 con-
tribution to �Fs(r, T, µus). Since Vs(r, µus) has a term
⇠ ↵3

s ln(µusr)/r, however, the di↵erence between the T =
0 static energy and singlet free energy, E(r) � FS(r, T )
should have a term ⇠ ↵3

s ln(rT )/r. This complicates the
extraction of the strong coupling from the singlet free
energy. The matching between NRQCD and pNRQCD
also induces a term ⇠ g6T in FS(r, T ) for both scale hi-
erarchies [4], which also needs to be considered.
The singlet free energy has been studied on the lat-

tice in Ref. [3] using a wide temperature range and sev-
eral lattice spacings, i.e., several temporal extents N⌧ .
The shortest distance that we can access, due to a sin-

at distances rT <<1    we can use pNRQCD at finite T  to write

Thermal effects  not visible in the short distance
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Figure 6: The nonperturbative lattice and the perturbative continuum results for the static energy multiplied by the distance,

rE(r). The HISQ data [78] are nonperturbatively corrected (NPC, colored bullets) or tree-level corrected (TLC, black crosses

and gray bullets). The color indicates the lattice spacing in units of the r1 scale, a/r1. The DWF data [74, 75] are from

a one-step analysis II that mixes the continuum extrapolation with the fit to the OPE result at N3LO, Eq. (21), using a

parametrization of discretization artifacts (green squares). The lines represent the three-loop result with resummed leading

ultrasoft logarithms, Eq. (20), corresponding to ↵s(MZ , Nf = 5) = 0.1167 (gray, solid) or ↵s(MZ , Nf = 5) = 0.1179 (green,

dashed). The former uses the central value ↵s(MZ , Nf = 5) = 0.1167 of the analysis of the (TLC or NPC) HISQ data with

r/a �
p
8 (gray bullets), the latter uses the central value ↵s(MZ , Nf = 5) = 0.1179 of the OPE-based one-step analysis II of

the DWF data [74, 75]. The NPC HISQ data with r/a <
p
8 are well-aligned with the fit excluding these data, while the TLC

HISQ data with r/a <
p
8 cannot be consistently described by a continuum result for any value of ↵s(MZ , Nf = 5).

correlation function at ⌧ = 1/T in a suitable gauge, i.e. in the Coulomb gauge, or in terms of the thermal

expectation value of the cyclic Wilson loop with spatially smeared spatial Wilson lines,

FS(r, T ) = �T
D
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. (33)

However, in contrast to the case of the QCD static energy at zero temperature these two quantities FS and

FW are distinguished by their distinct and temperature-dependent UV structures. A particular advantage

of the QCD lattice calculation at finite temperature is that it resolves the IR problem of QCD at zero

temperature in an elegant way. Namely, at high temperatures T & Tc the chiral symmetry is not sponta-

neously broken, and there are no associated pseudo-Goldstone bosons at the pion scale. Those would cause

severe finite volume e↵ects in zero temperature lattice simulations by propagating across the periodic lattice
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Lastly, we compare the three-loop with leading ultra-soft
resummation and the two-loop results (first three lines of
Eq. (2)). As can be read o↵ from Tabs. II and III, the dif-
ference to the two-loop result never exceeds +0.00025 and
decreases for smaller values of max(r), i.e., it is smaller
than the statistical errors and smaller than the other ef-
fects due variation of soft scale, soft higher order terms,
or variation of the ultra-soft resummation. The �2/d.o.f.
does not change significantly between using the two-loop
or three-loop with leading ultra-soft resummation results.
Hence, we confirm the criterion for having the lattice
data in the perturbative regime. We observe that the
smaller max(r) is, the smaller the variation of the cen-
tral value of ↵s between fits with di↵erent forms of the
weak-coupling results becomes. Tab. III shows clearly
that, for a given min(r/a), the perturbative errors are
dramatically reduced at smaller distances, as expected,
while the statistical error increases as less data are used
to constrain the fits.

Let us summarize the considerations of the preceding
paragraphs. We have to use max(r) . 0.1 fm to perform
the full scale variation and keep the perturbative uncer-
tainties fully under control. We should ideally use signifi-
cantly more than 10 data point to limit the impact of the
imperfectly treated discretization artifacts. Given the
considerations of the preceding paragraphs, we take the
result for 1  r/a  5 and max(r) = 0.073 fm, namely,
↵s(MZ) = 0.11660 as our final result, which corresponds

to r1⇤
Nf=3

MS
= 0.4943. The uncertainty of the scale r1 is

±0.0017 fm, which yields an error of �scale = ±1.7MeV
for ⇤

Nf=3

MS
, and �scale = ±0.00010 for ↵s(MZ , Nf = 5).

Therefore, the final result and full error budget of our
zero temperature lattice calculation are given as

↵s(MZ , Nf = 5) = 0.11660+0.00110
�0.00056, (4)

�↵s(MZ , Nf = 5) = (41)stat(21)lat(10)r1(+95
�13)

soft(28)us,
(5)

or in terms of ⇤
Nf=3

MS
as

⇤
Nf=3

MS
= 314.0+15.5

�8.0 MeV, (6)

�⇤
Nf=3

MS
= (5.8)stat(3.0)lat(1.7)r1(+13.4

�1.8 )soft(4.0)us MeV.

(7)

We have added the statistical error and the lattice dis-
cretization error of the static energy, the total error of
the r1 scale, and the perturbative error in quadrature.

In order to compare the current analysis to the
previous analysis [5], we use the smaller window
[1/(

p
2r),

p
2/r] for the variation of the soft scale ⌫, and

do not account for the uncertainty arising from the dif-
ference between resumming or not the leading ultra-soft
logarithms to obtain

�
p
2↵s(MZ , Nf = 5) = (41)stat(21)lat(10)r1(+37

�13)
pert,

(8)

�
p
2⇤

Nf=3

MS
= (5.8)stat(3.0)lat(1.7)r1(+5.2

�1.8)
pert MeV. (9)

In this case, the perturbative error is not dominant any-
more. Thus, the presented analysis has approximately
halved the uncertainties of Ref. [5]. Nevertheless our fi-
nal errors are only 10% (upper error) and 30% (lower er-
ror) smaller than the ones in [5], since we have accounted
for the other possible sources of uncertainty listed above.
The central values of Eq. (4) and of the final result in
Ref. [5] coincide.

IV. EXTRACTING ↵s FROM THE SINGLET
FREE ENERGY

In this section, we consider the extraction of the strong
coupling from the singlet free energy at non-zero temper-
ature, as it is expected that at small distances medium
e↵ects are small. We define the singlet free energy in
terms of the correlation function of two thermal Wilson
lines in Coulomb gauge

FS(r, T ) = �T ln
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At distances much smaller than the inverse temperature
rT ⌧ 1, we can write using pNRQCD [4]

FS(r, T ) = Vs(r, µus) + �FS(r, T, µus), (11)

where µus is the ultra-soft scale. The form of the ther-
mal correction depends on the scale hierarchy. One could
consider the case 1/r � ↵s/r � T � mD ⇠ gT or the
case 1/r � T � mD ⇠ gT � ↵s/r. In the former case
µus ⇠ ↵s/r and �FS(r, T, µus) = �EUS(µus)+�FS(r, T )
with EUS(µus) being the ultra-soft contribution to the
static energy in the vacuum. In the latter case µus ⇠ T
and �Fs(r, T, µus) has been calculated to order g5, i.e.,
see Eqs. (16) – (19) in Ref. [3]. In the latter case the
cancellation of the ultra-soft factorization scale depen-
dence cannot be verified because of the unknown g6 con-
tribution to �Fs(r, T, µus). Since Vs(r, µus) has a term
⇠ ↵3

s ln(µusr)/r, however, the di↵erence between the T =
0 static energy and singlet free energy, E(r) � FS(r, T )
should have a term ⇠ ↵3

s ln(rT )/r. This complicates the
extraction of the strong coupling from the singlet free
energy. The matching between NRQCD and pNRQCD
also induces a term ⇠ g6T in FS(r, T ) for both scale hi-
erarchies [4], which also needs to be considered.
The singlet free energy has been studied on the lat-

tice in Ref. [3] using a wide temperature range and sev-
eral lattice spacings, i.e., several temporal extents N⌧ .
The shortest distance that we can access, due to a sin-

at distances rT <<1    we can use pNRQCD at finite T  to write
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resummation and the two-loop results (first three lines of
Eq. (2)). As can be read o↵ from Tabs. II and III, the dif-
ference to the two-loop result never exceeds +0.00025 and
decreases for smaller values of max(r), i.e., it is smaller
than the statistical errors and smaller than the other ef-
fects due variation of soft scale, soft higher order terms,
or variation of the ultra-soft resummation. The �2/d.o.f.
does not change significantly between using the two-loop
or three-loop with leading ultra-soft resummation results.
Hence, we confirm the criterion for having the lattice
data in the perturbative regime. We observe that the
smaller max(r) is, the smaller the variation of the cen-
tral value of ↵s between fits with di↵erent forms of the
weak-coupling results becomes. Tab. III shows clearly
that, for a given min(r/a), the perturbative errors are
dramatically reduced at smaller distances, as expected,
while the statistical error increases as less data are used
to constrain the fits.

Let us summarize the considerations of the preceding
paragraphs. We have to use max(r) . 0.1 fm to perform
the full scale variation and keep the perturbative uncer-
tainties fully under control. We should ideally use signifi-
cantly more than 10 data point to limit the impact of the
imperfectly treated discretization artifacts. Given the
considerations of the preceding paragraphs, we take the
result for 1  r/a  5 and max(r) = 0.073 fm, namely,
↵s(MZ) = 0.11660 as our final result, which corresponds
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for ⇤
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Therefore, the final result and full error budget of our
zero temperature lattice calculation are given as
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(7)

We have added the statistical error and the lattice dis-
cretization error of the static energy, the total error of
the r1 scale, and the perturbative error in quadrature.

In order to compare the current analysis to the
previous analysis [5], we use the smaller window
[1/(
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2r),

p
2/r] for the variation of the soft scale ⌫, and

do not account for the uncertainty arising from the dif-
ference between resumming or not the leading ultra-soft
logarithms to obtain
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In this case, the perturbative error is not dominant any-
more. Thus, the presented analysis has approximately
halved the uncertainties of Ref. [5]. Nevertheless our fi-
nal errors are only 10% (upper error) and 30% (lower er-
ror) smaller than the ones in [5], since we have accounted
for the other possible sources of uncertainty listed above.
The central values of Eq. (4) and of the final result in
Ref. [5] coincide.

IV. EXTRACTING ↵s FROM THE SINGLET
FREE ENERGY

In this section, we consider the extraction of the strong
coupling from the singlet free energy at non-zero temper-
ature, as it is expected that at small distances medium
e↵ects are small. We define the singlet free energy in
terms of the correlation function of two thermal Wilson
lines in Coulomb gauge
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At distances much smaller than the inverse temperature
rT ⌧ 1, we can write using pNRQCD [4]

FS(r, T ) = Vs(r, µus) + �FS(r, T, µus), (11)

where µus is the ultra-soft scale. The form of the ther-
mal correction depends on the scale hierarchy. One could
consider the case 1/r � ↵s/r � T � mD ⇠ gT or the
case 1/r � T � mD ⇠ gT � ↵s/r. In the former case
µus ⇠ ↵s/r and �FS(r, T, µus) = �EUS(µus)+�FS(r, T )
with EUS(µus) being the ultra-soft contribution to the
static energy in the vacuum. In the latter case µus ⇠ T
and �Fs(r, T, µus) has been calculated to order g5, i.e.,
see Eqs. (16) – (19) in Ref. [3]. In the latter case the
cancellation of the ultra-soft factorization scale depen-
dence cannot be verified because of the unknown g6 con-
tribution to �Fs(r, T, µus). Since Vs(r, µus) has a term
⇠ ↵3

s ln(µusr)/r, however, the di↵erence between the T =
0 static energy and singlet free energy, E(r) � FS(r, T )
should have a term ⇠ ↵3

s ln(rT )/r. This complicates the
extraction of the strong coupling from the singlet free
energy. The matching between NRQCD and pNRQCD
also induces a term ⇠ g6T in FS(r, T ) for both scale hi-
erarchies [4], which also needs to be considered.
The singlet free energy has been studied on the lat-

tice in Ref. [3] using a wide temperature range and sev-
eral lattice spacings, i.e., several temporal extents N⌧ .
The shortest distance that we can access, due to a sin-
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Lastly, we compare the three-loop with leading ultra-soft
resummation and the two-loop results (first three lines of
Eq. (2)). As can be read o↵ from Tabs. II and III, the dif-
ference to the two-loop result never exceeds +0.00025 and
decreases for smaller values of max(r), i.e., it is smaller
than the statistical errors and smaller than the other ef-
fects due variation of soft scale, soft higher order terms,
or variation of the ultra-soft resummation. The �2/d.o.f.
does not change significantly between using the two-loop
or three-loop with leading ultra-soft resummation results.
Hence, we confirm the criterion for having the lattice
data in the perturbative regime. We observe that the
smaller max(r) is, the smaller the variation of the cen-
tral value of ↵s between fits with di↵erent forms of the
weak-coupling results becomes. Tab. III shows clearly
that, for a given min(r/a), the perturbative errors are
dramatically reduced at smaller distances, as expected,
while the statistical error increases as less data are used
to constrain the fits.

Let us summarize the considerations of the preceding
paragraphs. We have to use max(r) . 0.1 fm to perform
the full scale variation and keep the perturbative uncer-
tainties fully under control. We should ideally use signifi-
cantly more than 10 data point to limit the impact of the
imperfectly treated discretization artifacts. Given the
considerations of the preceding paragraphs, we take the
result for 1  r/a  5 and max(r) = 0.073 fm, namely,
↵s(MZ) = 0.11660 as our final result, which corresponds

to r1⇤
Nf=3

MS
= 0.4943. The uncertainty of the scale r1 is

±0.0017 fm, which yields an error of �scale = ±1.7MeV
for ⇤

Nf=3

MS
, and �scale = ±0.00010 for ↵s(MZ , Nf = 5).

Therefore, the final result and full error budget of our
zero temperature lattice calculation are given as

↵s(MZ , Nf = 5) = 0.11660+0.00110
�0.00056, (4)

�↵s(MZ , Nf = 5) = (41)stat(21)lat(10)r1(+95
�13)

soft(28)us,
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as
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(7)

We have added the statistical error and the lattice dis-
cretization error of the static energy, the total error of
the r1 scale, and the perturbative error in quadrature.

In order to compare the current analysis to the
previous analysis [5], we use the smaller window
[1/(

p
2r),
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2/r] for the variation of the soft scale ⌫, and

do not account for the uncertainty arising from the dif-
ference between resumming or not the leading ultra-soft
logarithms to obtain
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In this case, the perturbative error is not dominant any-
more. Thus, the presented analysis has approximately
halved the uncertainties of Ref. [5]. Nevertheless our fi-
nal errors are only 10% (upper error) and 30% (lower er-
ror) smaller than the ones in [5], since we have accounted
for the other possible sources of uncertainty listed above.
The central values of Eq. (4) and of the final result in
Ref. [5] coincide.
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At distances much smaller than the inverse temperature
rT ⌧ 1, we can write using pNRQCD [4]

FS(r, T ) = Vs(r, µus) + �FS(r, T, µus), (11)

where µus is the ultra-soft scale. The form of the ther-
mal correction depends on the scale hierarchy. One could
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with EUS(µus) being the ultra-soft contribution to the
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should have a term ⇠ ↵3
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does not change significantly between using the two-loop
or three-loop with leading ultra-soft resummation results.
Hence, we confirm the criterion for having the lattice
data in the perturbative regime. We observe that the
smaller max(r) is, the smaller the variation of the cen-
tral value of ↵s between fits with di↵erent forms of the
weak-coupling results becomes. Tab. III shows clearly
that, for a given min(r/a), the perturbative errors are
dramatically reduced at smaller distances, as expected,
while the statistical error increases as less data are used
to constrain the fits.

Let us summarize the considerations of the preceding
paragraphs. We have to use max(r) . 0.1 fm to perform
the full scale variation and keep the perturbative uncer-
tainties fully under control. We should ideally use signifi-
cantly more than 10 data point to limit the impact of the
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At distances much smaller than the inverse temperature
rT ⌧ 1, we can write using pNRQCD [4]

FS(r, T ) = Vs(r, µus) + �FS(r, T, µus), (11)

where µus is the ultra-soft scale. The form of the ther-
mal correction depends on the scale hierarchy. One could
consider the case 1/r � ↵s/r � T � mD ⇠ gT or the
case 1/r � T � mD ⇠ gT � ↵s/r. In the former case
µus ⇠ ↵s/r and �FS(r, T, µus) = �EUS(µus)+�FS(r, T )
with EUS(µus) being the ultra-soft contribution to the
static energy in the vacuum. In the latter case µus ⇠ T
and �Fs(r, T, µus) has been calculated to order g5, i.e.,
see Eqs. (16) – (19) in Ref. [3]. In the latter case the
cancellation of the ultra-soft factorization scale depen-
dence cannot be verified because of the unknown g6 con-
tribution to �Fs(r, T, µus). Since Vs(r, µus) has a term
⇠ ↵3

s ln(µusr)/r, however, the di↵erence between the T =
0 static energy and singlet free energy, E(r) � FS(r, T )
should have a term ⇠ ↵3

s ln(rT )/r. This complicates the
extraction of the strong coupling from the singlet free
energy. The matching between NRQCD and pNRQCD
also induces a term ⇠ g6T in FS(r, T ) for both scale hi-
erarchies [4], which also needs to be considered.
The singlet free energy has been studied on the lat-

tice in Ref. [3] using a wide temperature range and sev-
eral lattice spacings, i.e., several temporal extents N⌧ .
The shortest distance that we can access, due to a sin-
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Figure 6: The nonperturbative lattice and the perturbative continuum results for the static energy multiplied by the distance,

rE(r). The HISQ data [78] are nonperturbatively corrected (NPC, colored bullets) or tree-level corrected (TLC, black crosses

and gray bullets). The color indicates the lattice spacing in units of the r1 scale, a/r1. The DWF data [74, 75] are from

a one-step analysis II that mixes the continuum extrapolation with the fit to the OPE result at N3LO, Eq. (21), using a

parametrization of discretization artifacts (green squares). The lines represent the three-loop result with resummed leading

ultrasoft logarithms, Eq. (20), corresponding to ↵s(MZ , Nf = 5) = 0.1167 (gray, solid) or ↵s(MZ , Nf = 5) = 0.1179 (green,

dashed). The former uses the central value ↵s(MZ , Nf = 5) = 0.1167 of the analysis of the (TLC or NPC) HISQ data with

r/a �
p
8 (gray bullets), the latter uses the central value ↵s(MZ , Nf = 5) = 0.1179 of the OPE-based one-step analysis II of

the DWF data [74, 75]. The NPC HISQ data with r/a <
p
8 are well-aligned with the fit excluding these data, while the TLC

HISQ data with r/a <
p
8 cannot be consistently described by a continuum result for any value of ↵s(MZ , Nf = 5).

correlation function at ⌧ = 1/T in a suitable gauge, i.e. in the Coulomb gauge, or in terms of the thermal

expectation value of the cyclic Wilson loop with spatially smeared spatial Wilson lines,

FS(r, T ) = �T
D
ln eig

R 1/T
0 d⌧A0(0,⌧)e�ig

R 1/T
0 d⌧A0(r,⌧)

E

T

, (32)

FW (r, T ) = �T ln
D
eig

H
r,1/T dz

µ
Aµ

E

T

. (33)

However, in contrast to the case of the QCD static energy at zero temperature these two quantities FS and

FW are distinguished by their distinct and temperature-dependent UV structures. A particular advantage

of the QCD lattice calculation at finite temperature is that it resolves the IR problem of QCD at zero

temperature in an elegant way. Namely, at high temperatures T & Tc the chiral symmetry is not sponta-

neously broken, and there are no associated pseudo-Goldstone bosons at the pion scale. Those would cause

severe finite volume e↵ects in zero temperature lattice simulations by propagating across the periodic lattice
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Lastly, we compare the three-loop with leading ultra-soft
resummation and the two-loop results (first three lines of
Eq. (2)). As can be read o↵ from Tabs. II and III, the dif-
ference to the two-loop result never exceeds +0.00025 and
decreases for smaller values of max(r), i.e., it is smaller
than the statistical errors and smaller than the other ef-
fects due variation of soft scale, soft higher order terms,
or variation of the ultra-soft resummation. The �2/d.o.f.
does not change significantly between using the two-loop
or three-loop with leading ultra-soft resummation results.
Hence, we confirm the criterion for having the lattice
data in the perturbative regime. We observe that the
smaller max(r) is, the smaller the variation of the cen-
tral value of ↵s between fits with di↵erent forms of the
weak-coupling results becomes. Tab. III shows clearly
that, for a given min(r/a), the perturbative errors are
dramatically reduced at smaller distances, as expected,
while the statistical error increases as less data are used
to constrain the fits.

Let us summarize the considerations of the preceding
paragraphs. We have to use max(r) . 0.1 fm to perform
the full scale variation and keep the perturbative uncer-
tainties fully under control. We should ideally use signifi-
cantly more than 10 data point to limit the impact of the
imperfectly treated discretization artifacts. Given the
considerations of the preceding paragraphs, we take the
result for 1  r/a  5 and max(r) = 0.073 fm, namely,
↵s(MZ) = 0.11660 as our final result, which corresponds

to r1⇤
Nf=3

MS
= 0.4943. The uncertainty of the scale r1 is

±0.0017 fm, which yields an error of �scale = ±1.7MeV
for ⇤

Nf=3

MS
, and �scale = ±0.00010 for ↵s(MZ , Nf = 5).

Therefore, the final result and full error budget of our
zero temperature lattice calculation are given as

↵s(MZ , Nf = 5) = 0.11660+0.00110
�0.00056, (4)

�↵s(MZ , Nf = 5) = (41)stat(21)lat(10)r1(+95
�13)

soft(28)us,
(5)

or in terms of ⇤
Nf=3

MS
as

⇤
Nf=3

MS
= 314.0+15.5

�8.0 MeV, (6)

�⇤
Nf=3

MS
= (5.8)stat(3.0)lat(1.7)r1(+13.4

�1.8 )soft(4.0)us MeV.

(7)

We have added the statistical error and the lattice dis-
cretization error of the static energy, the total error of
the r1 scale, and the perturbative error in quadrature.

In order to compare the current analysis to the
previous analysis [5], we use the smaller window
[1/(

p
2r),

p
2/r] for the variation of the soft scale ⌫, and

do not account for the uncertainty arising from the dif-
ference between resumming or not the leading ultra-soft
logarithms to obtain

�
p
2↵s(MZ , Nf = 5) = (41)stat(21)lat(10)r1(+37

�13)
pert,

(8)

�
p
2⇤

Nf=3

MS
= (5.8)stat(3.0)lat(1.7)r1(+5.2

�1.8)
pert MeV. (9)

In this case, the perturbative error is not dominant any-
more. Thus, the presented analysis has approximately
halved the uncertainties of Ref. [5]. Nevertheless our fi-
nal errors are only 10% (upper error) and 30% (lower er-
ror) smaller than the ones in [5], since we have accounted
for the other possible sources of uncertainty listed above.
The central values of Eq. (4) and of the final result in
Ref. [5] coincide.

IV. EXTRACTING ↵s FROM THE SINGLET
FREE ENERGY

In this section, we consider the extraction of the strong
coupling from the singlet free energy at non-zero temper-
ature, as it is expected that at small distances medium
e↵ects are small. We define the singlet free energy in
terms of the correlation function of two thermal Wilson
lines in Coulomb gauge

FS(r, T ) = �T ln
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At distances much smaller than the inverse temperature
rT ⌧ 1, we can write using pNRQCD [4]

FS(r, T ) = Vs(r, µus) + �FS(r, T, µus), (11)

where µus is the ultra-soft scale. The form of the ther-
mal correction depends on the scale hierarchy. One could
consider the case 1/r � ↵s/r � T � mD ⇠ gT or the
case 1/r � T � mD ⇠ gT � ↵s/r. In the former case
µus ⇠ ↵s/r and �FS(r, T, µus) = �EUS(µus)+�FS(r, T )
with EUS(µus) being the ultra-soft contribution to the
static energy in the vacuum. In the latter case µus ⇠ T
and �Fs(r, T, µus) has been calculated to order g5, i.e.,
see Eqs. (16) – (19) in Ref. [3]. In the latter case the
cancellation of the ultra-soft factorization scale depen-
dence cannot be verified because of the unknown g6 con-
tribution to �Fs(r, T, µus). Since Vs(r, µus) has a term
⇠ ↵3

s ln(µusr)/r, however, the di↵erence between the T =
0 static energy and singlet free energy, E(r) � FS(r, T )
should have a term ⇠ ↵3

s ln(rT )/r. This complicates the
extraction of the strong coupling from the singlet free
energy. The matching between NRQCD and pNRQCD
also induces a term ⇠ g6T in FS(r, T ) for both scale hi-
erarchies [4], which also needs to be considered.
The singlet free energy has been studied on the lat-

tice in Ref. [3] using a wide temperature range and sev-
eral lattice spacings, i.e., several temporal extents N⌧ .
The shortest distance that we can access, due to a sin-
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Lastly, we compare the three-loop with leading ultra-soft
resummation and the two-loop results (first three lines of
Eq. (2)). As can be read o↵ from Tabs. II and III, the dif-
ference to the two-loop result never exceeds +0.00025 and
decreases for smaller values of max(r), i.e., it is smaller
than the statistical errors and smaller than the other ef-
fects due variation of soft scale, soft higher order terms,
or variation of the ultra-soft resummation. The �2/d.o.f.
does not change significantly between using the two-loop
or three-loop with leading ultra-soft resummation results.
Hence, we confirm the criterion for having the lattice
data in the perturbative regime. We observe that the
smaller max(r) is, the smaller the variation of the cen-
tral value of ↵s between fits with di↵erent forms of the
weak-coupling results becomes. Tab. III shows clearly
that, for a given min(r/a), the perturbative errors are
dramatically reduced at smaller distances, as expected,
while the statistical error increases as less data are used
to constrain the fits.

Let us summarize the considerations of the preceding
paragraphs. We have to use max(r) . 0.1 fm to perform
the full scale variation and keep the perturbative uncer-
tainties fully under control. We should ideally use signifi-
cantly more than 10 data point to limit the impact of the
imperfectly treated discretization artifacts. Given the
considerations of the preceding paragraphs, we take the
result for 1  r/a  5 and max(r) = 0.073 fm, namely,
↵s(MZ) = 0.11660 as our final result, which corresponds
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MS
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±0.0017 fm, which yields an error of �scale = ±1.7MeV
for ⇤
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MS
, and �scale = ±0.00010 for ↵s(MZ , Nf = 5).

Therefore, the final result and full error budget of our
zero temperature lattice calculation are given as
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�1.8 )soft(4.0)us MeV.

(7)

We have added the statistical error and the lattice dis-
cretization error of the static energy, the total error of
the r1 scale, and the perturbative error in quadrature.

In order to compare the current analysis to the
previous analysis [5], we use the smaller window
[1/(

p
2r),

p
2/r] for the variation of the soft scale ⌫, and

do not account for the uncertainty arising from the dif-
ference between resumming or not the leading ultra-soft
logarithms to obtain
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(8)
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= (5.8)stat(3.0)lat(1.7)r1(+5.2

�1.8)
pert MeV. (9)

In this case, the perturbative error is not dominant any-
more. Thus, the presented analysis has approximately
halved the uncertainties of Ref. [5]. Nevertheless our fi-
nal errors are only 10% (upper error) and 30% (lower er-
ror) smaller than the ones in [5], since we have accounted
for the other possible sources of uncertainty listed above.
The central values of Eq. (4) and of the final result in
Ref. [5] coincide.

IV. EXTRACTING ↵s FROM THE SINGLET
FREE ENERGY

In this section, we consider the extraction of the strong
coupling from the singlet free energy at non-zero temper-
ature, as it is expected that at small distances medium
e↵ects are small. We define the singlet free energy in
terms of the correlation function of two thermal Wilson
lines in Coulomb gauge

FS(r, T ) = �T ln
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At distances much smaller than the inverse temperature
rT ⌧ 1, we can write using pNRQCD [4]

FS(r, T ) = Vs(r, µus) + �FS(r, T, µus), (11)

where µus is the ultra-soft scale. The form of the ther-
mal correction depends on the scale hierarchy. One could
consider the case 1/r � ↵s/r � T � mD ⇠ gT or the
case 1/r � T � mD ⇠ gT � ↵s/r. In the former case
µus ⇠ ↵s/r and �FS(r, T, µus) = �EUS(µus)+�FS(r, T )
with EUS(µus) being the ultra-soft contribution to the
static energy in the vacuum. In the latter case µus ⇠ T
and �Fs(r, T, µus) has been calculated to order g5, i.e.,
see Eqs. (16) – (19) in Ref. [3]. In the latter case the
cancellation of the ultra-soft factorization scale depen-
dence cannot be verified because of the unknown g6 con-
tribution to �Fs(r, T, µus). Since Vs(r, µus) has a term
⇠ ↵3

s ln(µusr)/r, however, the di↵erence between the T =
0 static energy and singlet free energy, E(r) � FS(r, T )
should have a term ⇠ ↵3

s ln(rT )/r. This complicates the
extraction of the strong coupling from the singlet free
energy. The matching between NRQCD and pNRQCD
also induces a term ⇠ g6T in FS(r, T ) for both scale hi-
erarchies [4], which also needs to be considered.
The singlet free energy has been studied on the lat-

tice in Ref. [3] using a wide temperature range and sev-
eral lattice spacings, i.e., several temporal extents N⌧ .
The shortest distance that we can access, due to a sin-
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Lastly, we compare the three-loop with leading ultra-soft
resummation and the two-loop results (first three lines of
Eq. (2)). As can be read o↵ from Tabs. II and III, the dif-
ference to the two-loop result never exceeds +0.00025 and
decreases for smaller values of max(r), i.e., it is smaller
than the statistical errors and smaller than the other ef-
fects due variation of soft scale, soft higher order terms,
or variation of the ultra-soft resummation. The �2/d.o.f.
does not change significantly between using the two-loop
or three-loop with leading ultra-soft resummation results.
Hence, we confirm the criterion for having the lattice
data in the perturbative regime. We observe that the
smaller max(r) is, the smaller the variation of the cen-
tral value of ↵s between fits with di↵erent forms of the
weak-coupling results becomes. Tab. III shows clearly
that, for a given min(r/a), the perturbative errors are
dramatically reduced at smaller distances, as expected,
while the statistical error increases as less data are used
to constrain the fits.

Let us summarize the considerations of the preceding
paragraphs. We have to use max(r) . 0.1 fm to perform
the full scale variation and keep the perturbative uncer-
tainties fully under control. We should ideally use signifi-
cantly more than 10 data point to limit the impact of the
imperfectly treated discretization artifacts. Given the
considerations of the preceding paragraphs, we take the
result for 1  r/a  5 and max(r) = 0.073 fm, namely,
↵s(MZ) = 0.11660 as our final result, which corresponds

to r1⇤
Nf=3

MS
= 0.4943. The uncertainty of the scale r1 is

±0.0017 fm, which yields an error of �scale = ±1.7MeV
for ⇤

Nf=3

MS
, and �scale = ±0.00010 for ↵s(MZ , Nf = 5).

Therefore, the final result and full error budget of our
zero temperature lattice calculation are given as

↵s(MZ , Nf = 5) = 0.11660+0.00110
�0.00056, (4)

�↵s(MZ , Nf = 5) = (41)stat(21)lat(10)r1(+95
�13)

soft(28)us,
(5)

or in terms of ⇤
Nf=3

MS
as

⇤
Nf=3

MS
= 314.0+15.5

�8.0 MeV, (6)
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= (5.8)stat(3.0)lat(1.7)r1(+13.4

�1.8 )soft(4.0)us MeV.

(7)

We have added the statistical error and the lattice dis-
cretization error of the static energy, the total error of
the r1 scale, and the perturbative error in quadrature.

In order to compare the current analysis to the
previous analysis [5], we use the smaller window
[1/(

p
2r),

p
2/r] for the variation of the soft scale ⌫, and

do not account for the uncertainty arising from the dif-
ference between resumming or not the leading ultra-soft
logarithms to obtain
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2↵s(MZ , Nf = 5) = (41)stat(21)lat(10)r1(+37
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pert,
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pert MeV. (9)

In this case, the perturbative error is not dominant any-
more. Thus, the presented analysis has approximately
halved the uncertainties of Ref. [5]. Nevertheless our fi-
nal errors are only 10% (upper error) and 30% (lower er-
ror) smaller than the ones in [5], since we have accounted
for the other possible sources of uncertainty listed above.
The central values of Eq. (4) and of the final result in
Ref. [5] coincide.

IV. EXTRACTING ↵s FROM THE SINGLET
FREE ENERGY

In this section, we consider the extraction of the strong
coupling from the singlet free energy at non-zero temper-
ature, as it is expected that at small distances medium
e↵ects are small. We define the singlet free energy in
terms of the correlation function of two thermal Wilson
lines in Coulomb gauge

FS(r, T ) = �T ln
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At distances much smaller than the inverse temperature
rT ⌧ 1, we can write using pNRQCD [4]

FS(r, T ) = Vs(r, µus) + �FS(r, T, µus), (11)

where µus is the ultra-soft scale. The form of the ther-
mal correction depends on the scale hierarchy. One could
consider the case 1/r � ↵s/r � T � mD ⇠ gT or the
case 1/r � T � mD ⇠ gT � ↵s/r. In the former case
µus ⇠ ↵s/r and �FS(r, T, µus) = �EUS(µus)+�FS(r, T )
with EUS(µus) being the ultra-soft contribution to the
static energy in the vacuum. In the latter case µus ⇠ T
and �Fs(r, T, µus) has been calculated to order g5, i.e.,
see Eqs. (16) – (19) in Ref. [3]. In the latter case the
cancellation of the ultra-soft factorization scale depen-
dence cannot be verified because of the unknown g6 con-
tribution to �Fs(r, T, µus). Since Vs(r, µus) has a term
⇠ ↵3

s ln(µusr)/r, however, the di↵erence between the T =
0 static energy and singlet free energy, E(r) � FS(r, T )
should have a term ⇠ ↵3

s ln(rT )/r. This complicates the
extraction of the strong coupling from the singlet free
energy. The matching between NRQCD and pNRQCD
also induces a term ⇠ g6T in FS(r, T ) for both scale hi-
erarchies [4], which also needs to be considered.
The singlet free energy has been studied on the lat-
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resummation and the two-loop results (first three lines of
Eq. (2)). As can be read o↵ from Tabs. II and III, the dif-
ference to the two-loop result never exceeds +0.00025 and
decreases for smaller values of max(r), i.e., it is smaller
than the statistical errors and smaller than the other ef-
fects due variation of soft scale, soft higher order terms,
or variation of the ultra-soft resummation. The �2/d.o.f.
does not change significantly between using the two-loop
or three-loop with leading ultra-soft resummation results.
Hence, we confirm the criterion for having the lattice
data in the perturbative regime. We observe that the
smaller max(r) is, the smaller the variation of the cen-
tral value of ↵s between fits with di↵erent forms of the
weak-coupling results becomes. Tab. III shows clearly
that, for a given min(r/a), the perturbative errors are
dramatically reduced at smaller distances, as expected,
while the statistical error increases as less data are used
to constrain the fits.

Let us summarize the considerations of the preceding
paragraphs. We have to use max(r) . 0.1 fm to perform
the full scale variation and keep the perturbative uncer-
tainties fully under control. We should ideally use signifi-
cantly more than 10 data point to limit the impact of the
imperfectly treated discretization artifacts. Given the
considerations of the preceding paragraphs, we take the
result for 1  r/a  5 and max(r) = 0.073 fm, namely,
↵s(MZ) = 0.11660 as our final result, which corresponds
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for ⇤
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the r1 scale, and the perturbative error in quadrature.
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previous analysis [5], we use the smaller window
[1/(

p
2r),

p
2/r] for the variation of the soft scale ⌫, and

do not account for the uncertainty arising from the dif-
ference between resumming or not the leading ultra-soft
logarithms to obtain

�
p
2↵s(MZ , Nf = 5) = (41)stat(21)lat(10)r1(+37

�13)
pert,

(8)

�
p
2⇤

Nf=3

MS
= (5.8)stat(3.0)lat(1.7)r1(+5.2

�1.8)
pert MeV. (9)

In this case, the perturbative error is not dominant any-
more. Thus, the presented analysis has approximately
halved the uncertainties of Ref. [5]. Nevertheless our fi-
nal errors are only 10% (upper error) and 30% (lower er-
ror) smaller than the ones in [5], since we have accounted
for the other possible sources of uncertainty listed above.
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rT ⌧ 1, we can write using pNRQCD [4]

FS(r, T ) = Vs(r, µus) + �FS(r, T, µus), (11)

where µus is the ultra-soft scale. The form of the ther-
mal correction depends on the scale hierarchy. One could
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static energy in the vacuum. In the latter case µus ⇠ T
and �Fs(r, T, µus) has been calculated to order g5, i.e.,
see Eqs. (16) – (19) in Ref. [3]. In the latter case the
cancellation of the ultra-soft factorization scale depen-
dence cannot be verified because of the unknown g6 con-
tribution to �Fs(r, T, µus). Since Vs(r, µus) has a term
⇠ ↵3

s ln(µusr)/r, however, the di↵erence between the T =
0 static energy and singlet free energy, E(r) � FS(r, T )
should have a term ⇠ ↵3

s ln(rT )/r. This complicates the
extraction of the strong coupling from the singlet free
energy. The matching between NRQCD and pNRQCD
also induces a term ⇠ g6T in FS(r, T ) for both scale hi-
erarchies [4], which also needs to be considered.
The singlet free energy has been studied on the lat-

tice in Ref. [3] using a wide temperature range and sev-
eral lattice spacings, i.e., several temporal extents N⌧ .
The shortest distance that we can access, due to a sin-
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Figure 6: The nonperturbative lattice and the perturbative continuum results for the static energy multiplied by the distance,

rE(r). The HISQ data [78] are nonperturbatively corrected (NPC, colored bullets) or tree-level corrected (TLC, black crosses

and gray bullets). The color indicates the lattice spacing in units of the r1 scale, a/r1. The DWF data [74, 75] are from

a one-step analysis II that mixes the continuum extrapolation with the fit to the OPE result at N3LO, Eq. (21), using a

parametrization of discretization artifacts (green squares). The lines represent the three-loop result with resummed leading

ultrasoft logarithms, Eq. (20), corresponding to ↵s(MZ , Nf = 5) = 0.1167 (gray, solid) or ↵s(MZ , Nf = 5) = 0.1179 (green,

dashed). The former uses the central value ↵s(MZ , Nf = 5) = 0.1167 of the analysis of the (TLC or NPC) HISQ data with

r/a �
p
8 (gray bullets), the latter uses the central value ↵s(MZ , Nf = 5) = 0.1179 of the OPE-based one-step analysis II of

the DWF data [74, 75]. The NPC HISQ data with r/a <
p
8 are well-aligned with the fit excluding these data, while the TLC

HISQ data with r/a <
p
8 cannot be consistently described by a continuum result for any value of ↵s(MZ , Nf = 5).

correlation function at ⌧ = 1/T in a suitable gauge, i.e. in the Coulomb gauge, or in terms of the thermal

expectation value of the cyclic Wilson loop with spatially smeared spatial Wilson lines,

FS(r, T ) = �T
D
ln eig

R 1/T
0 d⌧A0(0,⌧)e�ig

R 1/T
0 d⌧A0(r,⌧)

E

T

, (32)

FW (r, T ) = �T ln
D
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µ
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E

T

. (33)

However, in contrast to the case of the QCD static energy at zero temperature these two quantities FS and

FW are distinguished by their distinct and temperature-dependent UV structures. A particular advantage

of the QCD lattice calculation at finite temperature is that it resolves the IR problem of QCD at zero

temperature in an elegant way. Namely, at high temperatures T & Tc the chiral symmetry is not sponta-

neously broken, and there are no associated pseudo-Goldstone bosons at the pion scale. Those would cause

severe finite volume e↵ects in zero temperature lattice simulations by propagating across the periodic lattice
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Lastly, we compare the three-loop with leading ultra-soft
resummation and the two-loop results (first three lines of
Eq. (2)). As can be read o↵ from Tabs. II and III, the dif-
ference to the two-loop result never exceeds +0.00025 and
decreases for smaller values of max(r), i.e., it is smaller
than the statistical errors and smaller than the other ef-
fects due variation of soft scale, soft higher order terms,
or variation of the ultra-soft resummation. The �2/d.o.f.
does not change significantly between using the two-loop
or three-loop with leading ultra-soft resummation results.
Hence, we confirm the criterion for having the lattice
data in the perturbative regime. We observe that the
smaller max(r) is, the smaller the variation of the cen-
tral value of ↵s between fits with di↵erent forms of the
weak-coupling results becomes. Tab. III shows clearly
that, for a given min(r/a), the perturbative errors are
dramatically reduced at smaller distances, as expected,
while the statistical error increases as less data are used
to constrain the fits.

Let us summarize the considerations of the preceding
paragraphs. We have to use max(r) . 0.1 fm to perform
the full scale variation and keep the perturbative uncer-
tainties fully under control. We should ideally use signifi-
cantly more than 10 data point to limit the impact of the
imperfectly treated discretization artifacts. Given the
considerations of the preceding paragraphs, we take the
result for 1  r/a  5 and max(r) = 0.073 fm, namely,
↵s(MZ) = 0.11660 as our final result, which corresponds

to r1⇤
Nf=3

MS
= 0.4943. The uncertainty of the scale r1 is

±0.0017 fm, which yields an error of �scale = ±1.7MeV
for ⇤

Nf=3

MS
, and �scale = ±0.00010 for ↵s(MZ , Nf = 5).

Therefore, the final result and full error budget of our
zero temperature lattice calculation are given as

↵s(MZ , Nf = 5) = 0.11660+0.00110
�0.00056, (4)

�↵s(MZ , Nf = 5) = (41)stat(21)lat(10)r1(+95
�13)

soft(28)us,
(5)

or in terms of ⇤
Nf=3

MS
as

⇤
Nf=3

MS
= 314.0+15.5

�8.0 MeV, (6)

�⇤
Nf=3

MS
= (5.8)stat(3.0)lat(1.7)r1(+13.4

�1.8 )soft(4.0)us MeV.

(7)

We have added the statistical error and the lattice dis-
cretization error of the static energy, the total error of
the r1 scale, and the perturbative error in quadrature.

In order to compare the current analysis to the
previous analysis [5], we use the smaller window
[1/(

p
2r),

p
2/r] for the variation of the soft scale ⌫, and

do not account for the uncertainty arising from the dif-
ference between resumming or not the leading ultra-soft
logarithms to obtain

�
p
2↵s(MZ , Nf = 5) = (41)stat(21)lat(10)r1(+37

�13)
pert,

(8)

�
p
2⇤

Nf=3

MS
= (5.8)stat(3.0)lat(1.7)r1(+5.2

�1.8)
pert MeV. (9)

In this case, the perturbative error is not dominant any-
more. Thus, the presented analysis has approximately
halved the uncertainties of Ref. [5]. Nevertheless our fi-
nal errors are only 10% (upper error) and 30% (lower er-
ror) smaller than the ones in [5], since we have accounted
for the other possible sources of uncertainty listed above.
The central values of Eq. (4) and of the final result in
Ref. [5] coincide.

IV. EXTRACTING ↵s FROM THE SINGLET
FREE ENERGY

In this section, we consider the extraction of the strong
coupling from the singlet free energy at non-zero temper-
ature, as it is expected that at small distances medium
e↵ects are small. We define the singlet free energy in
terms of the correlation function of two thermal Wilson
lines in Coulomb gauge

FS(r, T ) = �T ln

✓
1

Nc
hTr

⇥
W (r)W †(0)

⇤
i

◆
. (10)

At distances much smaller than the inverse temperature
rT ⌧ 1, we can write using pNRQCD [4]

FS(r, T ) = Vs(r, µus) + �FS(r, T, µus), (11)

where µus is the ultra-soft scale. The form of the ther-
mal correction depends on the scale hierarchy. One could
consider the case 1/r � ↵s/r � T � mD ⇠ gT or the
case 1/r � T � mD ⇠ gT � ↵s/r. In the former case
µus ⇠ ↵s/r and �FS(r, T, µus) = �EUS(µus)+�FS(r, T )
with EUS(µus) being the ultra-soft contribution to the
static energy in the vacuum. In the latter case µus ⇠ T
and �Fs(r, T, µus) has been calculated to order g5, i.e.,
see Eqs. (16) – (19) in Ref. [3]. In the latter case the
cancellation of the ultra-soft factorization scale depen-
dence cannot be verified because of the unknown g6 con-
tribution to �Fs(r, T, µus). Since Vs(r, µus) has a term
⇠ ↵3

s ln(µusr)/r, however, the di↵erence between the T =
0 static energy and singlet free energy, E(r) � FS(r, T )
should have a term ⇠ ↵3

s ln(rT )/r. This complicates the
extraction of the strong coupling from the singlet free
energy. The matching between NRQCD and pNRQCD
also induces a term ⇠ g6T in FS(r, T ) for both scale hi-
erarchies [4], which also needs to be considered.
The singlet free energy has been studied on the lat-

tice in Ref. [3] using a wide temperature range and sev-
eral lattice spacings, i.e., several temporal extents N⌧ .
The shortest distance that we can access, due to a sin-

at distances rT <<1    we can use pNRQCD at finite T  to write

we consider the hierarchy   
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resummation and the two-loop results (first three lines of
Eq. (2)). As can be read o↵ from Tabs. II and III, the dif-
ference to the two-loop result never exceeds +0.00025 and
decreases for smaller values of max(r), i.e., it is smaller
than the statistical errors and smaller than the other ef-
fects due variation of soft scale, soft higher order terms,
or variation of the ultra-soft resummation. The �2/d.o.f.
does not change significantly between using the two-loop
or three-loop with leading ultra-soft resummation results.
Hence, we confirm the criterion for having the lattice
data in the perturbative regime. We observe that the
smaller max(r) is, the smaller the variation of the cen-
tral value of ↵s between fits with di↵erent forms of the
weak-coupling results becomes. Tab. III shows clearly
that, for a given min(r/a), the perturbative errors are
dramatically reduced at smaller distances, as expected,
while the statistical error increases as less data are used
to constrain the fits.

Let us summarize the considerations of the preceding
paragraphs. We have to use max(r) . 0.1 fm to perform
the full scale variation and keep the perturbative uncer-
tainties fully under control. We should ideally use signifi-
cantly more than 10 data point to limit the impact of the
imperfectly treated discretization artifacts. Given the
considerations of the preceding paragraphs, we take the
result for 1  r/a  5 and max(r) = 0.073 fm, namely,
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We have added the statistical error and the lattice dis-
cretization error of the static energy, the total error of
the r1 scale, and the perturbative error in quadrature.

In order to compare the current analysis to the
previous analysis [5], we use the smaller window
[1/(

p
2r),
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2/r] for the variation of the soft scale ⌫, and

do not account for the uncertainty arising from the dif-
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logarithms to obtain
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In this case, the perturbative error is not dominant any-
more. Thus, the presented analysis has approximately
halved the uncertainties of Ref. [5]. Nevertheless our fi-
nal errors are only 10% (upper error) and 30% (lower er-
ror) smaller than the ones in [5], since we have accounted
for the other possible sources of uncertainty listed above.
The central values of Eq. (4) and of the final result in
Ref. [5] coincide.
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In this section, we consider the extraction of the strong
coupling from the singlet free energy at non-zero temper-
ature, as it is expected that at small distances medium
e↵ects are small. We define the singlet free energy in
terms of the correlation function of two thermal Wilson
lines in Coulomb gauge
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At distances much smaller than the inverse temperature
rT ⌧ 1, we can write using pNRQCD [4]

FS(r, T ) = Vs(r, µus) + �FS(r, T, µus), (11)

where µus is the ultra-soft scale. The form of the ther-
mal correction depends on the scale hierarchy. One could
consider the case 1/r � ↵s/r � T � mD ⇠ gT or the
case 1/r � T � mD ⇠ gT � ↵s/r. In the former case
µus ⇠ ↵s/r and �FS(r, T, µus) = �EUS(µus)+�FS(r, T )
with EUS(µus) being the ultra-soft contribution to the
static energy in the vacuum. In the latter case µus ⇠ T
and �Fs(r, T, µus) has been calculated to order g5, i.e.,
see Eqs. (16) – (19) in Ref. [3]. In the latter case the
cancellation of the ultra-soft factorization scale depen-
dence cannot be verified because of the unknown g6 con-
tribution to �Fs(r, T, µus). Since Vs(r, µus) has a term
⇠ ↵3

s ln(µusr)/r, however, the di↵erence between the T =
0 static energy and singlet free energy, E(r) � FS(r, T )
should have a term ⇠ ↵3

s ln(rT )/r. This complicates the
extraction of the strong coupling from the singlet free
energy. The matching between NRQCD and pNRQCD
also induces a term ⇠ g6T in FS(r, T ) for both scale hi-
erarchies [4], which also needs to be considered.
The singlet free energy has been studied on the lat-
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Lastly, we compare the three-loop with leading ultra-soft
resummation and the two-loop results (first three lines of
Eq. (2)). As can be read o↵ from Tabs. II and III, the dif-
ference to the two-loop result never exceeds +0.00025 and
decreases for smaller values of max(r), i.e., it is smaller
than the statistical errors and smaller than the other ef-
fects due variation of soft scale, soft higher order terms,
or variation of the ultra-soft resummation. The �2/d.o.f.
does not change significantly between using the two-loop
or three-loop with leading ultra-soft resummation results.
Hence, we confirm the criterion for having the lattice
data in the perturbative regime. We observe that the
smaller max(r) is, the smaller the variation of the cen-
tral value of ↵s between fits with di↵erent forms of the
weak-coupling results becomes. Tab. III shows clearly
that, for a given min(r/a), the perturbative errors are
dramatically reduced at smaller distances, as expected,
while the statistical error increases as less data are used
to constrain the fits.

Let us summarize the considerations of the preceding
paragraphs. We have to use max(r) . 0.1 fm to perform
the full scale variation and keep the perturbative uncer-
tainties fully under control. We should ideally use signifi-
cantly more than 10 data point to limit the impact of the
imperfectly treated discretization artifacts. Given the
considerations of the preceding paragraphs, we take the
result for 1  r/a  5 and max(r) = 0.073 fm, namely,
↵s(MZ) = 0.11660 as our final result, which corresponds

to r1⇤
Nf=3

MS
= 0.4943. The uncertainty of the scale r1 is

±0.0017 fm, which yields an error of �scale = ±1.7MeV
for ⇤

Nf=3

MS
, and �scale = ±0.00010 for ↵s(MZ , Nf = 5).

Therefore, the final result and full error budget of our
zero temperature lattice calculation are given as

↵s(MZ , Nf = 5) = 0.11660+0.00110
�0.00056, (4)

�↵s(MZ , Nf = 5) = (41)stat(21)lat(10)r1(+95
�13)

soft(28)us,
(5)

or in terms of ⇤
Nf=3

MS
as
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= 314.0+15.5

�8.0 MeV, (6)
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= (5.8)stat(3.0)lat(1.7)r1(+13.4

�1.8 )soft(4.0)us MeV.

(7)

We have added the statistical error and the lattice dis-
cretization error of the static energy, the total error of
the r1 scale, and the perturbative error in quadrature.

In order to compare the current analysis to the
previous analysis [5], we use the smaller window
[1/(

p
2r),

p
2/r] for the variation of the soft scale ⌫, and

do not account for the uncertainty arising from the dif-
ference between resumming or not the leading ultra-soft
logarithms to obtain
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2↵s(MZ , Nf = 5) = (41)stat(21)lat(10)r1(+37

�13)
pert,

(8)
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= (5.8)stat(3.0)lat(1.7)r1(+5.2

�1.8)
pert MeV. (9)

In this case, the perturbative error is not dominant any-
more. Thus, the presented analysis has approximately
halved the uncertainties of Ref. [5]. Nevertheless our fi-
nal errors are only 10% (upper error) and 30% (lower er-
ror) smaller than the ones in [5], since we have accounted
for the other possible sources of uncertainty listed above.
The central values of Eq. (4) and of the final result in
Ref. [5] coincide.

IV. EXTRACTING ↵s FROM THE SINGLET
FREE ENERGY

In this section, we consider the extraction of the strong
coupling from the singlet free energy at non-zero temper-
ature, as it is expected that at small distances medium
e↵ects are small. We define the singlet free energy in
terms of the correlation function of two thermal Wilson
lines in Coulomb gauge

FS(r, T ) = �T ln
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At distances much smaller than the inverse temperature
rT ⌧ 1, we can write using pNRQCD [4]

FS(r, T ) = Vs(r, µus) + �FS(r, T, µus), (11)

where µus is the ultra-soft scale. The form of the ther-
mal correction depends on the scale hierarchy. One could
consider the case 1/r � ↵s/r � T � mD ⇠ gT or the
case 1/r � T � mD ⇠ gT � ↵s/r. In the former case
µus ⇠ ↵s/r and �FS(r, T, µus) = �EUS(µus)+�FS(r, T )
with EUS(µus) being the ultra-soft contribution to the
static energy in the vacuum. In the latter case µus ⇠ T
and �Fs(r, T, µus) has been calculated to order g5, i.e.,
see Eqs. (16) – (19) in Ref. [3]. In the latter case the
cancellation of the ultra-soft factorization scale depen-
dence cannot be verified because of the unknown g6 con-
tribution to �Fs(r, T, µus). Since Vs(r, µus) has a term
⇠ ↵3

s ln(µusr)/r, however, the di↵erence between the T =
0 static energy and singlet free energy, E(r) � FS(r, T )
should have a term ⇠ ↵3

s ln(rT )/r. This complicates the
extraction of the strong coupling from the singlet free
energy. The matching between NRQCD and pNRQCD
also induces a term ⇠ g6T in FS(r, T ) for both scale hi-
erarchies [4], which also needs to be considered.
The singlet free energy has been studied on the lat-
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eral lattice spacings, i.e., several temporal extents N⌧ .
The shortest distance that we can access, due to a sin-
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does not change significantly between using the two-loop
or three-loop with leading ultra-soft resummation results.
Hence, we confirm the criterion for having the lattice
data in the perturbative regime. We observe that the
smaller max(r) is, the smaller the variation of the cen-
tral value of ↵s between fits with di↵erent forms of the
weak-coupling results becomes. Tab. III shows clearly
that, for a given min(r/a), the perturbative errors are
dramatically reduced at smaller distances, as expected,
while the statistical error increases as less data are used
to constrain the fits.

Let us summarize the considerations of the preceding
paragraphs. We have to use max(r) . 0.1 fm to perform
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erarchies [4], which also needs to be considered.
The singlet free energy has been studied on the lat-

tice in Ref. [3] using a wide temperature range and sev-
eral lattice spacings, i.e., several temporal extents N⌧ .
The shortest distance that we can access, due to a sin-

and 

US T=0 term

Static energy vs lattice data (finite T ) @ very short distances

ΛMS = 310.9+13.5
−12.3 MeV or αs(MZ) = 0.11638+0.00095

−0.00087

◦ TUMQCD coll PRD 100 (2019) 114511

Static energy vs lattice data (finite T ) @ very short distances

ΛMS = 310.9+13.5
−12.3 MeV or αs(MZ) = 0.11638+0.00095

−0.00087

◦ TUMQCD coll PRD 100 (2019) 114511

We fit the free energy at short distance with the  3 loop plus LL formula that we used for the static energy 
and we obtain:

Thermal effects  not visible in the short distance
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FIG. 9. The di↵erence between the static energy at T = 0 and
the singlet free energy for � = 8.4 calculated withN⌧ = 10, 12
and 16 in units of the temperature as function of distance
in units of the lattice spacing. The lines correspond to the
�F (r, T ) calculated at order g5. The dotted vertical lines show
the boundary rT = 0.3 for di↵erent N⌧ . The solid or dashed
vertical lines show the boundaries between r/a <

p
5 and

r/a �
p
5, or between r/a <

p
8 and r/a �

p
8, respectively.

gle lattice spacing on our finest lattice at T > 0, is
0.00814 fm. For our analysis the relevant data correspond
to N⌧ = 10, 12 and 16, since rT has to be small. From
the analysis of Ref. [3] we know that thermal e↵ects are
small for rT . 0.3. To understand the temperature de-
pendence of the singlet free energy in more detail we show
the lattice results for the di↵erence6 between the singlet
free energy at T > 0 and the static energy at T = 0
for � = 8.4 (corresponding to the finest zero tempera-
ture lattice) in Fig. 9. For other � values the results are
similar.

From the figure we see that for r/a 
p
6 the di↵er-

ence approaches a constant proportional to the tempera-
ture according to the above expectations and no temper-
ature e↵ects beyond this constant can be seen in this
range within the errors of the lattice results. There-
fore, we conclude that in this regime the scale hierarchy
1/r � ↵s/r � T is appropriate. We treat the finite
temperature data in this range as if at zero temperature
and fit them with the three-loop with leading ultra-soft

6 The discretization artifacts between both quantities cancel ex-
actly at tree level. Nonetheless, we still use the tree-level im-
proved distance in Fig. 9, in order to permit the visual distinction
between data that are inequivalent in the full QCD result. More-
over, we matched the perturbative result to the lattice data at
r/a = 1 using a constant that mimics the e↵ect of the unknown
g6T term.

resummation result for the static energy with standard
scales. Alternatively one could use the N⌧ = 12 data
in the range where thermal e↵ects appear to be small
together with the two-loop result for the static energy,
where the problem of the US scale dependence does not
enter at all. This, however, would lead to a larger theo-
retical uncertainty.
For distances r/a >

p
6 we see some temperature de-

pendence. For the lattice data with N⌧ = 12 this tem-
perature dependence is to some extent captured by the
known g5 result for �FS(r, T ), but forN⌧ = 10 and 16 it is
o↵. On the one hand, for N⌧ = 16, i.e., for a lower tem-
perature, the temperature e↵ects are larger than what
is expected based on the g5 result. Since the deviation
of the temperature e↵ects from a constant or from the
g5 result is quite similar to the size of the typical dis-
cretization artifacts or the statistical errors of the data
for r/a >

p
6, it is unclear whether this is truly an e↵ect

due to the finite temperature. On the other hand, for
N⌧ = 10, where the same temperature corresponds to a
coarser lattice, the temperature e↵ects are in the opposite
direction and may be caused by temperature-dependent
discretization errors [3].
The known g5 result consists of two contributions with

opposite sign but similar magnitude for the temperatures
under consideration, and, therefore, the overall temper-
ature e↵ect is small due to cancellations. As these two
contributions are due to either non-static or static Mat-
subara modes at orders g4 or g5, respectively, it is clear
that this is an accidental cancellation in the temperature
window of our lattice simulations. Furthermore, there is
no reason to expect that discretization artifacts in both
contributions are similar enough to achieve a cancellation
between them. In fact, it has been shown that the O(a2)
discretization errors appear to be more pronounced in
the di↵erence E � FS than in E or FS individually [3].
For these reasons, we conclude that for r/a >

p
6 we do

not have su�cient understanding of thermal e↵ects to use
FS for extraction of ↵s with fully controlled uncertainties.
Nonetheless, the cancellations that appear to be at work
both in the g5 result and in the lattice data suggest that
a fit of the lattice data with the zero temperature result
may still be possible as a cross-check. Hence, we again
treat the finite temperature data in this range as if at zero
temperature and fit them with the three-loop with leading
ultra-soft resummation result with standard scales.
In order to determine ↵s from the singlet free energy

at T > 0 we proceed as follows. We analyze the T = 0
static energy result (N⌧ = 64) in the same r/a inter-
vals for which we expect that temperature e↵ects in the
singlet free energy are under control or are small due to
accidental cancellations. We use the same weak-coupling
result, namely, the three-loop with leading ultra-soft re-
summation result with standard scales to obtain ↵s from
the singlet free energy. We estimate the uncertainty due
to discretization artifacts to be the same as in the zero
temperature analysis, i.e., �lat = ±0.00021. Similarly,

the difference between E and F_s at short distance is a constant times T 
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as a matter of fact F_s an be reproduced by E in a  
range bigger than the one we used for the extraction of alphas



alpha_s from the force



The force as a Wilson loop with a chromoelectric field

A direct computation of the force that avoids interpolating the static energy and taking

numerically the derivative is possible from the expression of a rectangular Wilson loop,

Wr×T , with a chromoelectric field insertion on a quark line:

F (r) =
d

dr
E0(r) = lim

T→∞

−i
〈Tr{PWr×T r̂ · gE(r, t∗)}〉

〈Tr{PWr×T }〉

An equivalent expression can be written using a Polyakov loop instead of a Wilson loop.

At fixed t∗ for T → ∞, the rhs is independent of t∗.

The force is mass renormalon free and finite after charge renormalization.

◦ Brambilla Pineda Soto Vairo PRD 63 (2001) 014023

Vairo MPLA 31 (2016) 34, 1630039



Lattice analysis of 2111.07916

For a study of concept, we have computed the Wilson loop and Polyakov loop with a

chromoelectric field on three quenched QCD (nf = 0) ensembles.

ensemble β (L/a)3 × T/a r0/a a in fm

A 6.284 203 × 40 8.333 0.060

B 6.451 263 × 50 10.417 0.048

C 6.594 303 × 60 12.500 0.040

◦ TUMQCD coll. 2111.07916



Renormalization constant ZE

;ΜΠΩΣΡ'ΠΣΣΤ 4ΣΠ]ΕΟΣΖ'ΠΣΣΤ

The convergence of the direct force towards the continuum, i.e. the derivative of the static

potential, is slow. The ratio of the two determinations is an r independent constant ZE

that may be computed once forever at some fixed (arbitrary) distance r∗ (r0 ≈ 0.5 fm).

ensemble a in fm ZE from Wilson loops ZE from Polyakov loops

A 0.060 1.4068(63) 1.4001(20)

B 0.048 1.3853(30) 1.3776(10)

C 0.040 1.348(11) 1.3628(13)



Direct force vs lattice data

Once normalized by ZE the direct force agrees well with the Cornell parameterization

based on quenched lattice data of the QCD static energy.

We have chosen r∗ = 0.48 r0 ≈ 0.24 fm.

◦ TUMQCD coll. 2111.07916

Multilevel result
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• Remove ZE by dividing with measurement at r⇤ = 0.48r0
• Proof of concept:

• Both derivative of potential and direct force agree
• Both Wilson loop and Polyakov loops agree
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Gradient flow

The converge towards the continuum limit may be improved by using gradient flow.

Gradient flow consists in replacing the gluon fields gAµ(x) by the flowed fields Bµ(x; t),

where Bµ is defined through the flow equation

∂

∂t
Bµ(x; t) = DνGνµ +Dµ∂νBν

Gµν = ∂µBν − ∂νBµ + [Bµ, Bν ], Dµ = ∂µ + [Bµ, ·]

with the initial condition Bµ(x; t = 0) = gAµ(x).

The new theory reduces to QCD in the limit of zero flow time t. But at any finite t it

typically shows a much better behaviour than QCD in the ultraviolet (large momenta).

We expect that the theory at finite flow time converges faster towards the continuum.

◦ Lüscher JHEP 08 (2010) 071, Lüscher Weisz JHEP 02 (2011) 051



The potential from gradient flow up to NLO

In the MS scheme, we find at NLO in momentum space (t̄ ≡ q2t)

Ṽ (q; t) = −
4παs(µ)CF e−2q2t

q2

{

1 +
αs(µ)

4π

[

β0 log(µ
2/q2) + a1 + CA WF

NLO(t̄)

]}

The leading order term decreases like e−2q2t for large momentum transfer q2.

Also the NLO one, which is analytically known, decreases exponentially like e−q
2t.

◦ Brambilla Chung Vairo Wang 2111.07811



The force from gradient flow at NLO

In the MS scheme, we find at NLO in coordinate space

F (r; t) =
αs(µ)CF

r2

[

(

1 +
αs

4π
a1

)

F0(r; t)

+
αs

4π
β0F

L
NLO(r; t;µ) +

αsCA

4π
FF

NLO(r; t)

]

The functions F0(r; t), FL
NLO(r; t;µ) and FF

NLO(r; t) are analytically known.

◦ Brambilla Chung Vairo Wang 2111.07811



The force from gradient flow at NLO



Lattice analysis of 2111.10212

For a preliminary study, we have computed the Wilson loop with a chromoelectric field in

gradient flow on three quenched QCD (nf = 0) ensembles.

β Nσ ×Nt a[fm] # configurations

6.284 20× 40 0.060 1949

6.481 26× 56 0.046 1999

6.594 30× 60 0.040 1997

◦ Brambilla Leino Mayer-Steudte Vairo 2111.10212



Renormalization constant ZE with gradient flow

At finite flow time the renormalization constant ZE is about 1.

◦ Brambilla Leino Mayer-Steudte Vairo 2111.10212

Figure 1. The renormalization factor ZE = F@V/FE as a function of the flow radius
p

8⌧F . The point in
orange shows the measured ZE at zero flow time from Ref. [10].

as discussed in Refs. [11, 13–16]. This renormalization factor is the main di↵erence in dis-
cretization e↵ects between the two definitions of the static force FE(r, a) and F@V (r, a) given
by Eqs. (6) and (3) respectively. Hence, we can define a multiplicative improvement factor
ZE that determines this renormalization,

ZE(a) =
F@V (r⇤, a)
FE(r⇤, a)

, (18)

where r⇤ is an arbitrary separation. We use the tree-level improved (17) static force and
potential when taking the ratio.

For each flow time ⌧F , we vary r⇤ over all values of r and find a range of intermediate
r values, where the data can be described with a constant fit. This constant then defines the
renormalization factor ZE as a function of flow time. The flow time dependent renormaliza-
tion constant is shown in Fig. 1. We observe that at zero flow time we replicate the result from
the previous study [10]. As the flow time is increased, ZE decreases rapidly until settling to a
constant value ZE ⇡ 1 for

p
8⌧F > 1.6a. The renormalization factor becoming unity indicates

that the gradient flow, indeed, removes the sizable discretization e↵ects caused by the finite
discretization of the chromoelectric field. The remaining structure in ZE for

p
8⌧F > 1.6a is

most likely due to underestimated systematic errors.
Next, we compare the gradient flow result to an existing zero flow time measurement of

the derivative of the static potential. In Ref. [10], we measured the static potential traditionally
at zero flow time and performed a fit to the Cornell ansatz. The Cornell potential can then be

for each flow time find the plateau in r*

at zero flow time we reobtain the previous result for Z_E
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Figure 1. The renormalization factor ZE = F@V/FE as a function of the flow radius
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orange shows the measured ZE at zero flow time from Ref. [10].

as discussed in Refs. [11, 13–16]. This renormalization factor is the main di↵erence in dis-
cretization e↵ects between the two definitions of the static force FE(r, a) and F@V (r, a) given
by Eqs. (6) and (3) respectively. Hence, we can define a multiplicative improvement factor
ZE that determines this renormalization,

ZE(a) =
F@V (r⇤, a)
FE(r⇤, a)

, (18)

where r⇤ is an arbitrary separation. We use the tree-level improved (17) static force and
potential when taking the ratio.

For each flow time ⌧F , we vary r⇤ over all values of r and find a range of intermediate
r values, where the data can be described with a constant fit. This constant then defines the
renormalization factor ZE as a function of flow time. The flow time dependent renormaliza-
tion constant is shown in Fig. 1. We observe that at zero flow time we replicate the result from
the previous study [10]. As the flow time is increased, ZE decreases rapidly until settling to a
constant value ZE ⇡ 1 for

p
8⌧F > 1.6a. The renormalization factor becoming unity indicates

that the gradient flow, indeed, removes the sizable discretization e↵ects caused by the finite
discretization of the chromoelectric field. The remaining structure in ZE for

p
8⌧F > 1.6a is

most likely due to underestimated systematic errors.
Next, we compare the gradient flow result to an existing zero flow time measurement of

the derivative of the static potential. In Ref. [10], we measured the static potential traditionally
at zero flow time and performed a fit to the Cornell ansatz. The Cornell potential can then be

Gradient flow results

PRELIMINARY PRELIMINARY

• Gradient flow automatically renormalizes the force at finite flowtime
! No need for ZE

• Divide with the leading flow time dependence for potential
• Early GF results indicate a good agreement to multilevel results
• The continuum and zero flowtime limits still need to be done
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for each flow time find the plateau in r*

at zero flow time we reobtain the previous result for Z_E



Direct force vs lattice data with gradient flow

◦ Brambilla Leino Mayer-Steudte Vairo 2111.10212

Cornell potential from previous lattice data on the  
Wilson and Polyakov loop

despite the lack of continuum  
and zero flow time limit  the force  

from gradient flow seems to agree with the  
force measured from the derivative of the potential 

calculated previously



OUTLOOK
Conclusions and outlook

The computation of the static energy and force in QCD has seen remarkable progress in

recent years both analytically and numerically resulting in a competitive determination of

the strong coupling constant, αs.

The information about αs is contained in the force. The force may be determined by

numerically taking the derivative of the static energy, which requires a precise

determination of the static energy. An alternative determination consists in computing a

Wilson loop with a chromoelectric field insertion. If this way of determining the force is

more or less efficient than the derivative of the static energy remains to be established.

Gradient flow seems to be a promising method for determining the force from a Wilson

loop with a chromoelectric field insertion. What remains to be done is a consistent

analysis of the zero flow time limit of the lattice data. For this purpose it is certainly of

help having the analytical expression of the force in gradient flow at NLO.

Also lattice computations should be extended to full (unquenched) QCD.

—>the next talk by J. Weber will give all the details and the error budget of the latest alphas extraction of 2019
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Numerical results for the force from gradient flow at NLO

Numerical results for r2F (r; t) in QCD with nf = 4 massless quarks.

We have set µ = (r2 + 8t)−1/2.

◦ Brambilla Chung Vairo Wang 2111.07811



Numerical results for the force from gradient flow at NLO

Numerical results for r2F (r; t) in the pure SU(3) gauge theory (nf = 0).

We have set µ = (r2 + 8t)−1/2.

As a special feature of the quenched case the approach to zero flow time is almost

constant (in general it goes like
2α2

sCFnf

π

t

r2
).

◦ Brambilla Chung Vairo Wang 2111.07811




