α_s from soft parton-to-hadron fragmentation in jets

Redamy Pérez-Ramos¹ & David d'Enterria²

¹ Institut Polytechnique des Sciences Avancées (IPSA) Ivry-sur-Seine, France LPTHE, UMR 7589 CNRS & Sorbonne Université, Paris, France ² CERN, Geneva, Switzerland

Precision measurements of the strong coupling constant January 31-February 04 2022, Trento, Italy

Speaker (Redamy Perez Ramos)

#QCD jets, #FFs, $\#\alpha_s$, #fits

Outline

- Jets in pQCD: parton cascade
- Resummation of infrared, collinear singularities via DLA/MLLA/NMLLA approach...
- Combined NMLLA+DGLAP evolution of Fragmentation Functions (FFs). NLO splitting functions and NNLO running coupling
- Parametrization of the FFs via distorted Gaussian. Energy evolution of its moments (mean multiplicity, mean peak position, width, skewness and kurtosis)
- Data–Theory comparison for jets from e^+e^- -annihilation and DIS jets data sets in the range 2 200 GeV

• Determination of $\alpha_s(M_{Z^0}^2)$ from the energy evolution of FF moments

Speaker (Redamy Perez Ramos)

IPSA/LPTHE 2/35

World α_s determination (PDG 2021)

Determined today by comparing 7 experimental observables to pQCD NNLO,N³LO predictions, plus global average at the Z pole scale:

< ∃ ►

Motivation

The QCD coupling constant α_s

- Less precisely determined among the coupling constants of the SM of particle physics
- Importance: many fundamental SM observables at the LHC and future FCC-ee depend on this key parameter described by QCD
- Solution Current uncertainty of the strong coupling world-average value: $\alpha_s(m_Z) = 0.1179 \pm 0.0009$ is about 0.9%
- Motivation: reduce the uncertainty by combining current α_s extractions with novel high-precision observables
- Novel NMLLA+NNLO* $\alpha_s(m_Z)$ determination from the energy-evolution of the FF moments

Speaker (Redamy Perez Ramos)

#QCD jets, #FFs, $\#\alpha_s$, #fits

Motivation

Can we do better than this MLLA results in the PDG?

19. Fragmentation functions in e^+e^- , ep and pp collisions

Figure 19.5: Evolution of the peak position, ξ_p , of the ξ distribution with the CM energy \sqrt{s} . The MLLA QCD prediction using $\alpha_S(s = M_Z^2) = 0.118$ is superimposed to the data of Refs. [26,28,29,32–34,36,41,55,56,73,74,77–85].

-

Part I

Jet fragmentation in pQCD

Speaker (Redamy Perez Ramos)

#QCD jets, #FFs, $\#\alpha_s$, #fits

IPSA/LPTHE 5/35

Jets in $e^+e^- ightarrow qar{q}$, DIS, p-p, p-pbar

• Parton shower evolution in the Leading-Log Approx. (and extensions: MLLA, NMLLA,... $D \sim \delta (1 - \frac{x}{z})$ for $Q_0 \rightarrow \Lambda_{\rm QCD}$: $1 \leftrightarrow 1$)

• Hadronization in the Local Parton Hadron Duality Hypothesis (LPHD):

> Parton FFs ≃ hadron distributions modulo overall constant factor *K^{ch}*. [Dokshitzer, Khoze, Mueller]

k_t -ordering (DGLAP) vs. Angular Ordering (MLLA)

AO: $\Theta_1 \ge \Theta_2 (\ge \Theta_2') \ge \Theta_3$

Successive parton decays (soft/collinear and/or hard/collinear) ruled by:

- k_⊥-ordering → DGLAP LLA evolution equations at large x ~ 1: ev. time variable "t = ln k_⊥"
 - Hard FF x > 0.1: hard-hadrons in jets
- QCD coherence \rightarrow Angular Ordering (AO) \rightarrow MLLA evolution equations for FFs at small $x \ll 1$: ev. time variable $t = \ln \Theta$
 - Soft FF x < 0.1: bulk of hadron production in jets

A (10) < A (10) < A (10) </p>

DGLAP LO splitting functions $a[1] \rightarrow b[z]c[1-z]$:

► < ∃ ►</p>

DLA: $\alpha_s \log(1/x) \log \Theta \sim 1$

- resummation of soft and collinear gluons
- 2 main ingredient to the estimation of inclusive observables in jets
- Ineglects recoil effects (i.e. energy conservation)

(Anomalous dimension: $\gamma \sim \sqrt{\alpha_s}$

$$d\sigma_q^g = C_F \frac{\alpha_s}{\pi} \frac{dz}{z} \frac{dk_\perp^2}{k_\perp^2}, \qquad \gamma^{\rm DLA} = \frac{1}{2} \left(-\omega + \sqrt{\omega^2 + 8N_c \frac{\alpha_s}{\pi}} \right)$$

MLLA: $\alpha_s \log(1/x) \log \Theta + \alpha_s \log \Theta \sim 1 + \sqrt{\alpha_s}$

- $\mathcal{O}(\alpha_s)$ collinear splittings (i.e. LLA FFs, PDFs at large $x \sim 1$)
- partially "restores" recoil effects
- \bullet includes α_s running coupling effects ($\propto \beta_0, \beta_1$)
- (Anomalous dimension: $\gamma \sim \sqrt{\alpha_s} + \alpha_s$

$$d\sigma_q^g = C_F \frac{\alpha_s(k_\perp^2)}{\pi} P_{qg}(z) dz \frac{dk_\perp^2}{k_\perp^2}, \qquad \gamma^{\text{MLLA}} = \gamma^{\text{DLA}} + \gamma^{\text{SL}}$$

Next-to-...-MLLA anomalous dimension

After diagonalisation, the $D_{q,\bar{q},g}^{h}$ FFs can be determined throughout:

$$\gamma_{++}^{\text{NMLLA}} \sim \sqrt{\alpha_s} + \alpha_s + \alpha_s^{3/2} + \dots$$

- Further improve recoil effects
- 2 Includes higher order running coupling effects $\propto (\beta_0, \beta_1)$
- **③** Anomalous dimension: Note expansion in half-powers of α_s

DGLAP versus MLLA evolution equations:

Renormalized QCD evolution equations for $a[1] \rightarrow b[z]c[1-z]$:

$$\frac{d}{d\ln\theta} \left[x D_a^b(x,\ln E\theta) \right] = \sum_c \int_0^1 dz P_{ac}(z) \frac{\alpha_s(\ln z E\theta)}{\pi} \left[\frac{x}{z} D_c^b\left(\frac{x}{z},\ln z E\theta\right) \right]$$

- z: energy fraction of intermediate parton; x: energy fraction of the hadron
- Identical but for one detail: for hard partons the shift in $\ln z$ in the argument of D and α_s is negligible:
- for soft/collinear splittings $z \ll 1$: $|\ln z| \gg 1$, $\Theta \ll 1$: DLA
 - for hard/collinear splittings z \sim 1: ln z \sim 0, $\Theta \ll$ 1: LLA
 - for soft/collinear + hard/collinear corrections: Modified-LLA (MLLA)

Solving the evolution equations at small x (or small ω)

Mellin transform:

$$\mathcal{D}(\omega, Y) = \int_0^\infty d\xi e^{-\omega\xi} D(\xi, Y), \quad \hat{\xi} = \ln \frac{1}{z}, \quad Y = \ln \frac{E\theta}{Q_0}$$
$$\Rightarrow \frac{\partial}{\partial Y} \mathcal{D}(\omega, Y) = \int_0^\infty d\hat{\xi} \left[e^{-\omega\hat{\xi}} \right] P(\hat{\xi}) \frac{\alpha_s(Y - \hat{\xi})}{2\pi} \mathcal{D}(\omega, Y - \hat{\xi})$$

with $\overline{\mathrm{MS}}$ NLO:

$$\alpha_{s}(Y) = \frac{2\pi}{\beta_{0}(Y+\lambda)} \left[1 - \frac{\beta_{1}}{\beta_{0}^{2}} \frac{\ln 2(Y+\lambda)}{Y+\lambda} \right]$$

#QCD jets, #FFs, $\#\alpha_s$, #fits

Solving the evolution equations at small x (or ω)

- Diagonalization of the matrix for $P(\Omega)
 ightarrow 2$ eigenvalues: $P_{\pm\pm}(\Omega)$
- Express \mathcal{D}_q and \mathcal{D}_g as the linear combination of the corresponding eigenvectors: \mathcal{D}^{\pm} :

$$\frac{\partial}{\partial Y}\mathcal{D}^{\pm}(\omega, Y, \lambda) = P_{\pm\pm}(\Omega)\frac{\alpha_{s}(Y)}{2\pi}\mathcal{D}^{\pm}(\omega, Y, \lambda), \quad P_{++}(\Omega) = \frac{4N_{c}}{\Omega} - \partial_{1} + 4N_{c}\partial_{2}\Omega$$

• NMLLA evolution equation for \mathcal{D}^+ :

$$\left(\omega + \frac{\partial}{\partial Y}\right)\frac{\partial}{\partial Y}\mathcal{D}^{+} = \left[1 - \frac{a_{1}}{4N_{c}}\left(\omega + \frac{\partial}{\partial Y}\right) + a_{2}\left(\omega + \frac{\partial}{\partial Y}\right)^{2}\right]4N_{c}\frac{\alpha_{s}}{2\pi}\mathcal{D}^{+}$$

•
$$\overline{\mathrm{MS}}$$
 NLO: $\alpha_s(Y) = \frac{2\pi}{\beta_0(Y+\lambda)} \left[1 - \frac{\beta_1}{\beta_0^2} \frac{\ln 2(Y+\lambda)}{Y+\lambda} \right]$

- DLA term: $\propto \mathcal{O}(1)$.
- Hard single logs: $\propto a_1 \sim \mathcal{O}(\sqrt{\alpha_s})$ (MLLA) & $\propto a_2 \sim \mathcal{O}(\alpha_s)$ (NMLLA)

Speaker (Redamy Perez Ramos)

IPSA/LPTHE 12/35

Solution throughout anomalous dimension γ

• Replace the ansatz:

$$\mathcal{D}^+(\omega, Y, \lambda) = \exp\left[\int_0^Y dy \, \gamma(\omega, lpha_s(y+\lambda))
ight] \mathcal{D}^+(\omega, \lambda)$$

• \Rightarrow quadratic equation for the anomalous dimension γ_{++} :

$$(\omega+\gamma_{++})\gamma_{++}-\frac{2N_c\alpha_s}{\pi}=-\beta(\alpha_s)\frac{d\gamma_{++}}{d\alpha_s}-a_1(\omega+\gamma_{++})\frac{\alpha_s}{2\pi}-\frac{a_1}{2\pi}\beta(\alpha_s)+a_2(\omega^2+2\omega\gamma_{++}+\gamma_{++}^2)\frac{\alpha_s}{2\pi},$$

• Approximate NLO (NLO*): Splitting functions at LO, $\overline{\rm MS}$ NLO $\alpha_s.$ Solved iteratively:

$$\beta(\alpha_s) = -\beta_0 \frac{\alpha_s^2}{2\pi} - \beta_1 \frac{\alpha_s^3}{4\pi^2} + \mathcal{O}(\alpha_s^4)$$

NMLLA anomalous dimension $\gamma_{++}^{\text{NMLLA}} = \gamma^{\text{DLA}} \left[\mathcal{O}(\sqrt{\alpha_s}) \right] + \delta \gamma^{\text{MLLA}} \left[\mathcal{O}(\alpha_s) \right] + \delta \gamma^{\text{NMLLA}} \left[\mathcal{O}(\alpha_s^{3/2}) \right]$ Speaker (Redamy Perez Ramos) #QCD jets, #FFs, # α_s , #fits IPSA/LPTHE 13/35

NMLLA anomalous dimension

Average multiplicity rate in QCD jets (for $\omega = 0$):

$$\gamma_{++}^{\mathrm{NMLLA}} = P_{++}^{(0)}(\omega) + P_{++}^{(1)}(\omega) + P_{++}^{*(2)}(\omega)$$

DLA:

$$P_{++}^{(0)} = \frac{1}{2}\omega(s-1) = \mathcal{O}(\sqrt{\alpha_s})$$

with

$$s = \sqrt{1 + rac{4\gamma_0^2}{\omega^2}}, ext{ where } \gamma_0^2 = rac{4N_clpha_s}{2\pi}$$

Speaker (Redamy Perez Ramos)

#QCD jets, #FFs, $\#\alpha_s$, #fits

- - E

NMLLA anomalous dimension

Average multiplicity rate in QCD jets (for $\omega = 0$):

$$\gamma_{++}^{\mathrm{NMLLA}} = P_{++}^{(0)}(\omega) + P_{++}^{(1)}(\omega) + P_{++}^{*(2)}(\omega)$$

MLLA:

$$D_{++}^{(1)} = rac{lpha_s}{2\pi} \left[-rac{1}{2} a_1 (1+s^{-1}) + rac{eta_0}{4} (1-s^{-2})
ight] = \mathcal{O}(lpha_s)$$

with

$$s = \sqrt{1 + rac{4\gamma_0^2}{\omega^2}}, ext{ where } \gamma_0^2 = rac{4N_c lpha_s}{2\pi}$$

▶ ∢ ⊒

NMLLA anomalous dimension

Average multiplicity rate in QCD jets (for $\omega = 0$):

$$\gamma_{++}^{\text{NMLLA}} = P_{++}^{(0)}(\omega) + P_{++}^{(1)}(\omega) + P_{++}^{*(2)}(\omega)$$

NMLLA:

$$P_{++}^{*(2)} = \frac{\alpha_s^2(\omega s)^{-1}}{104\pi^2} \left[4a_1^2(1-s^{-2}) + 8a_1\beta_0(1-s^{-3}) + \beta_0^2(1-s^{-2})(3+5s^{-2}) - 64N_c \frac{\beta_1}{\beta_0} \ln(Y+\lambda) \right] + \frac{N_c \alpha_s}{2\pi} a_2(\omega s) \left[\left(1+s^{-1}\right)^2 \right] = \mathcal{O}\left(\alpha_s^{3/2}\right)$$

with

$$s = \sqrt{1 + rac{4\gamma_0^2}{\omega^2}}, ext{ where } \gamma_0^2 = rac{4N_clpha_s}{2\pi}$$

Image: A match a ma

Extension using $\overline{\rm MS}$ NLO+resummed (small-x) splittings functions (based on C.-H. Kom, A. Vogt, K. Yeats JHEP 1210 (2012) 033)

$$\begin{split} P_{qq}^{T}(N) &= \frac{4}{3} \frac{C_{F} n_{f}}{C_{A}} a_{s} \left\{ \frac{1}{2\xi} (S-1)(\mathcal{L}+1) + 1 \right\} \\ &+ \frac{1}{18} \frac{C_{F} n_{f}}{C_{A}^{2}} a_{s} \tilde{N} \left\{ (-11C_{A}^{2} + 6C_{A} n_{f} - 20C_{F} n_{f}) \frac{1}{2\xi} (S-1+2\xi) + 10C_{A}^{2} \frac{1}{\xi} (S-1)\mathcal{L} \\ &- (51C_{A}^{2} - 6C_{A} n_{f} + 12C_{F} n_{f}) \frac{1}{2} (S-1) + (11C_{A}^{2} + 2C_{A} n_{f} - 4C_{F} n_{f}) S^{-1}\mathcal{L} \\ &+ (5C_{A}^{2} - 2C_{A} n_{f} + 6C_{F} n_{f}) \frac{1}{\xi} (S-1)\mathcal{L}^{2} + (51C_{A}^{2} - 14C_{A} n_{f} + 36C_{F} n_{f}) \frac{1}{\xi} \right\}, \quad (3.2) \end{split}$$

$$P_{qg}^{T}(N) = \frac{C_{A}}{C_{F}} P_{qq}^{T}(N) - \frac{2}{9} \frac{n_{r}}{C_{A}^{2}} a_{g} \bar{N} \left(C_{A}^{2} + C_{A} n_{f} - 2C_{F} n_{f}\right) \left\{\frac{1}{2\xi} (S-1)(\mathcal{L}+1) + 1\right\},$$
(3.3)

$$\begin{split} P_{gg}^{T}(N) &= \frac{1}{4}\bar{N}(S-1) - \frac{1}{6C_{A}}a_{g}(11C_{A}^{2}+2C_{A}n_{f}-4C_{F}n_{f})(S^{-1}-1) - P_{qq}^{T}(N) \\ &+ \frac{1}{576C_{A}^{2}}a_{g}\bar{N}\Big\{ \Big([1193-576\zeta_{2}]C_{A}^{4}-140C_{A}^{3}n_{f}+4C_{A}^{2}n_{f}^{2}-56C_{A}^{2}C_{F}n_{f}+16C_{A}C_{F}n_{f}^{2} \\ &- 48C_{F}^{2}n_{f}^{2} \Big)(S-1) + ([830-576\zeta_{2}]C_{A}^{4}+96C_{A}^{3}n_{f}-8C_{A}^{2}n_{f}^{2}-208C_{A}^{2}C_{F}n_{f} \\ &+ 64C_{A}C_{F}n_{f}^{2}-96C_{F}^{2}n_{f}^{2} \Big)(S^{-1}-1) + (11C_{A}^{2}+2C_{A}n_{f}-4C_{F}n_{f})^{2}(S^{-3}-1) \Big\}, \ (3.4) \end{split}$$

$$\begin{split} P_{gq}^{T}(N) &= \frac{C_{F}}{C_{A}} P_{gg}^{T}(N) - \frac{1}{3} \frac{C_{F}}{C_{A}^{2}} a_{s} \left(C_{A}^{2} + C_{A}n_{f} - 2C_{F}n_{f}\right) \frac{1}{\xi} \left(S - 1 + 2\xi\right) \\ &+ \frac{1}{36} \frac{C_{F}}{C_{A}^{4}} a_{s} \bar{N} \left\{ \left(11C_{A}^{4} + 13C_{A}^{2}n_{f}(C_{A} - 2C_{F}) + 2C_{A}^{2}n_{f}^{2} - 8\left(C_{A} - C_{F}\right)C_{F}n_{f}^{2}\right) \left(1 - S^{-1}\right) \\ &- \left(48C_{A}^{4} - 45C_{A}^{3}C_{F} - 72\zeta_{2}C_{A}^{3}(C_{A} - C_{F}) - 33C_{A}^{3}n_{f} + 2C_{A}^{2}n_{f}^{2} + 48C_{A}^{2}C_{F}n_{f} \right) \\ &- 8C_{F}^{2}n_{f}^{2}\right) \frac{1}{\xi} \left(S - 1 + 2\xi\right) + \left(-54C_{A}^{4} + 45C_{A}^{3}C_{F} + 72\zeta_{2}C_{A}^{3}(C_{A} - C_{F}) + 23C_{A}^{3}n_{f} \right) \\ &- 28C_{A}^{2}n_{f}C_{F} - 8\left(C_{A} - 2C_{F}\right)C_{F}n_{f}^{2}\right) \frac{1}{\xi} \left(S - 1\right)L \right\} \end{split}$$

$$(3.5)$$

IPSA/LPTHE 14/35

A B A B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A

NNLL+NLO* anomalous dimension

Average multiplicity rate in QCD jets (for $\omega = 0$):

$$\gamma_{++}^{\text{NNLL+NLO}^*} = P_{++}^{(0)}(\omega) + P_{++}^{(1)}(\omega) + P_{++}^{(2)}(\omega)$$

NNLL+NLO*:

$$P_{++}^{(2)} = \frac{\alpha_s^2}{104\pi^2} (\omega s)^{-1} \left[4a_1^2(1-s^{-2}) + 8a_1\beta_0(1-s^{-3}) + \beta_0^2(1-s^{-2}) \right] \\ \times (3+5s^{-2}) - 64N_c \frac{\beta_1}{\beta_0} \ln(Y+\lambda) + \frac{N_c \alpha_s}{2\pi} a_2(\omega s) \left[\left(1+s^{-1} \right)^2 + a_3(s-1) - a_4 \left(1-s^{-1} \right) - a_6 \right] = \mathcal{O} \left(\alpha_s^{3/2} \right)$$

with

$$s = \sqrt{1 + rac{4\gamma_0^2}{\omega^2}}, ext{ where } \gamma_0^2 = rac{4N_clpha_s}{2\pi}$$

Speaker (Redamy Perez Ramos)

#QCD jets, #FFs, $\#\alpha_s$, #fits

Part II

Phenomenology: ansatz for FF

Speaker (Redamy Perez Ramos)

#QCD jets, #FFs, $\#\alpha_s$, #fits

IPSA/LPTHE 15/35

Single inclusive distribution: Distorted Gaussian

•
$$D^+(\xi, Y, \lambda) = \frac{N}{\sigma\sqrt{2\pi}} \exp\left[\frac{1}{8}k - \frac{1}{2}s\delta - \frac{1}{4}(2+k)\delta^2 + \frac{1}{6}s\delta^3 + \frac{1}{24}k\delta^4\right]$$

- $\delta = \frac{(\xi \bar{\xi})}{\sigma}$
- Mean multiplicity: $\mathcal{N} = \mathcal{D}^+(\omega = 0, Y, \lambda)$
- Mean peak position: $\bar{\xi}$
- Dispersion (width): σ
- Skewness: *s*, kurtosis: *k*

• Moments of the Distorted Gaussian (from anomalous dimension):

$$\mathcal{N} = \mathcal{K}_0, \quad \bar{\xi} = \mathcal{K}_1, \quad \sigma = \sqrt{\mathcal{K}_2}, \quad s = \frac{\mathcal{K}_3}{\sigma^3}, \quad k = \frac{\mathcal{K}_4}{\sigma^4}$$

$$K_{n\geq 0} = \int_0^Y dy \left(-\frac{\partial}{\partial \omega} \right)^n \gamma_{++}^{\text{NNLL}+\text{NLO}^*} (\alpha_s(y+\lambda)) \Big|_{\omega=0}, \ Y = \ln \frac{E\theta}{Q_0}$$

• Skewness and kurtosis (new ingredient) affect tails \neq Gaussian shape!

Example: Distorted Gaussian fits to e^+e^- FFs

Evolution of the NNLL+NLO * moments of the DG FFs

Final expressions as a function of $Y = \ln(E\theta/Q_{o})$ and $\lambda = \ln(Q_{o}/\Lambda_{orb})$: (N,=5) initial iet energy shower energy cutoff $\mathcal{N}(Y) = \mathcal{K}^{ch} \exp \left[2.50217 \left(\sqrt{Y + \lambda} - \sqrt{\lambda} \right) - 0.491546 \ln \frac{Y + \lambda}{\lambda} \right]$ Multiplicity: + $(0.0153206 + 0.41151 \ln(Y + \lambda)) \frac{1}{\sqrt{X + \lambda}} - (0.0153206 + 0.41151 \ln \lambda) \frac{1}{\sqrt{X}}$. (71) Average: $\bar{\xi}(Y) = 0.5Y + 0.592722 \left(\sqrt{Y+\lambda} - \sqrt{\lambda}\right) + 0.0763404 \ln \frac{Y+\lambda}{\lambda}.$ (73) $\xi_{\max}(Y) = 0.5Y + 0.592722 \left(\sqrt{Y+\lambda} - \sqrt{\lambda}\right) + 0.0763404 \ln \frac{Y+\lambda}{\lambda} - 0.355325.$ (74)Peak position: $\sigma(Y,\lambda) = \left(\frac{\beta_0}{144N_c}\right)^{1/4} \sqrt{(Y+\lambda)^{3/2} - \lambda^{3/2}} \left\{ 1 - \frac{\beta_0}{64} f_1(Y,\lambda) \sqrt{\frac{16N_c}{\beta_0(Y+\lambda)}} \right\}$ Width: + $\left[\frac{3}{16}(3a_2 + a_3 + 2a_4)f_2(Y,\lambda) - \frac{3}{64}\left(\frac{3a_1^2}{16N^2}f_2(Y,\lambda) + \frac{a_1\beta_0}{8N^2}f_2(Y,\lambda)\right)\right]$ $-\frac{\beta_0^2}{64N^2}f_2(Y,\lambda) + \frac{3\beta_0^2}{128N^2}f_1^2(Y,\lambda) + \frac{\beta_1}{64\beta_1}(\ln 2(Y+\lambda)-2)f_3(Y,\lambda) \Big] \frac{16N_c}{\beta_2(Y+\lambda)} \Big\}, (75)$ $\sigma(Y) = 0.36499\sqrt{(Y+\lambda)^{3/2} - \lambda^{3/2}} \left\{ 1 - 0.299739f_1(Y,\lambda) \frac{1}{\sqrt{Y+\lambda}} - [1.61321f_2(Y,\lambda) + 1.61321f_2(Y,\lambda) + 1.6$ Skewness: + $0.0449219f_1^2(Y,\lambda)$ + $(0.32239 - 0.246692\ln(Y+\lambda))f_3(Y,\lambda)]\frac{1}{V+\lambda}$ (76) $s(Y) = -\frac{1.94704}{\sqrt{(V+\lambda)^{3/2}-\lambda^{3/2}}} \left[1 - 0.299739 f_1(Y,\lambda) \frac{1}{\sqrt{V+\lambda}}\right].$ (78)Kurtosis: $k(Y) = -\frac{2.15812}{\sqrt{Y+\lambda}} \frac{1 - \left(\frac{\lambda}{Y+\lambda}\right)^{5/2}}{\left[1 - \left(\frac{\lambda}{Y+\lambda}\right)^{3/2}\right]^2} \left\{ 1 + \left[1.19896f_1(Y,\lambda) - 1.99826f_4(Y,\lambda)\right] \frac{1}{\sqrt{Y+\lambda}} \right\}$ + $[1.07813f_1^2(Y, \lambda) + 6.45283f_2(Y, \lambda) + 1.28956f_3(Y, \lambda) - 2.39583f_1(Y, \lambda)f_4(Y, \lambda)]$ $-7.13372f_5(Y,\lambda) + 0.0217751f_6(Y,\lambda)$ $- (0.986767f_3(Y, \lambda) - 0.822306f_6(Y, \lambda)) \ln(Y + \lambda)] \frac{1}{V + \lambda} \bigg\}.$ (80)

#QCD jets, #FFs, $\#\alpha_s$, #fits

ヘロト 人間ト 人団ト 人団ト

Evolution of the NNLL+NLO^{*} moments of the (DG) FFs

Expressions evolved down to $\Lambda_{\rm QCD}$: $Q_0 \sim \Lambda_{\rm QCD}$:

*Multiplicity:
$$\mathcal{N}(Y) = \mathcal{K}^{ch} \exp\left[2.50217\sqrt{Y} - 0.491546 \ln Y - (0.06889 - 0.41151 \ln Y) \frac{1}{\sqrt{Y}} + (0.00068 - 0.161658 \ln Y) \frac{1}{Y}\right]$$

*Peak position : $\xi_{\max}(Y) = 0.5Y + 0.592722\sqrt{Y} - 0.351319 + 0.002$

*Width:
$$\sigma(Y) = 0.36499Y^{3/4} \left[1 - 0.299739 \frac{1}{\sqrt{Y}} - (1.4921 - 0.246692 \ln Y) \frac{1}{Y} + \frac{1.98667}{Y^{3/2}} \right]$$

*Skewness:
$$s(Y) = -\frac{1.89445}{\gamma^{3/4}} \left[1 - 0.312499 \frac{1}{\sqrt{Y}} - \frac{1.64009}{Y} \right]$$

*Kurtosis:
$$k(Y) = -\frac{2.15812}{\sqrt{Y}} \left[1 - 0.799305 \frac{1}{\sqrt{Y}} + (0.730466 - 0.164461 \ln Y) \frac{1}{Y} - \frac{8.05771}{Y^{3/2}} \right]$$
 (1)

* Evolution of all moments depend on 1 single free parameter Λ_{QCD} , which can be extracted from fits of exp. e^+e^- and $e^-p \rightarrow \text{jets}(\text{hadrons})$ data

Speaker (Redamy Perez Ramos)

#QCD jets, #FFs, $\#\alpha_s$, #fits

Hadron mass effects

Including hadron mass m_h effects (mixture of pions (65%), kaons (35%) and protons (5%)):

$$\frac{1}{\tau_{\rm tot}} \frac{d\sigma^{\rm h}}{d\xi_{\rm p}} \propto \frac{p_h}{E_h} D^+(\xi, Y) \qquad \xi = \ln(1/x) = \ln\left(\frac{\sqrt{s}/2}{\sqrt{(s/4)e^{-2\xi_{\rm p}} + m_{\rm eff}^2}}\right)$$

$$m_h \sim \mathcal{O}(\Lambda_{_{
m QCD}}), ~~ E_h = \sqrt{p_h^2 + m_{
m eff}^2}, ~~ p_h = (\sqrt{s}/2) \exp(-\xi_p)$$

Hadron mass effects

• Best agreement reached for $m_h = 0.14$ GeV: consistent with a dominant pion composition of the inclusive charged hadron spectra.

Image: A math a math

Part III

Extraction of $\alpha_s(M_{Z_0}^2)$ from fits

Speaker (Redamy Perez Ramos)

#QCD jets, #FFs, $\#\alpha_s$, #fits

IPSA/LPTHE 22/35

→ ∢ ∃

Fitting procedure

 Experimental distribution will be fitted to the DG parametrization as a function of ξ in the energy range [0, Y]

$$rac{1}{\sigma_{
m tot}}rac{d\sigma^{
m h}}{d\xi} = \mathcal{K}^{
m ch}rac{2C_{F}}{N_{c}}D^{+}(\xi,Y), \quad Y = \ln\left(rac{\sqrt{s}}{2\Lambda_{
m _QCD}}
ight)$$

• Each fit of the DG has five free parameters: maximum peak position, total multiplicity, width, skewness and kurtosis

• Each parameter or component of the DG is derived from the fit for each data set

Distorted Gaussian fits to e^+e^- FFs

- $34 e^+e^-$ data-sets at $\sqrt{s} = 2.2 206$ GeV ~ 1200 data points
- For increasing energy: peak shifts to right, width increases, moderate non-Gaussian tails
- Excellent fit at all energies, with 5 free DG parameters: N_{ch} , ξ_{max} , σ , s and k

Distorted Gaussian fits to ep (DIS) FFs

- Brick wall frame: incoming quarks scatters off photons & returns along the same axis
- 15 ZEUS data-sets at $\sqrt{s} = 3.8 - 173 \text{ GeV}$ $\sim 250 \text{ data points}$ (other measured H1, ZEUS moments added to global fit)
- Excellent fits to DG but larger uncertainties than e⁺e⁻ measurements

< □ > < □ > < □ > < □ >

Fit of energy evolution of 1st & 2nd FF moments with single free parameter $\Lambda_{\rm QCD}$

- Theoretical N_{ch} absolutely normalized to match data (LHPD). QCD coupling drives evolution: care about shape, NOT absolute Nch
- Very good agreement between e^+e^- , DIS and theory for the energy evolution of the FF Nch and peak position
- DIS multiplicity lower than e^+e^- but with larger uncertainties

Fit of energy evolution of 3rd & 4th FF moments with single free parameter $\Lambda_{\rm QCD}$

- Good data-theory agreement for the energy evolution of the FF width (skewness has large exp. uncertainties)
- Consistent $e^+e^-\&$ e-p moments (but larger DIS uncertainties)

Speaker (Redamy Perez Ramos)

#QCD jets, #FFs, $\#\alpha_s$, #fits

Combined fit of all FF moments energy evolution with single free parameter $\Lambda_{\rm QCD}$

• χ^2 averaging: increased uncertainty for few points fits to reach $\chi^2/{\rm ndf}\sim 1$

• Final α_s uncertainty of $\sim 1.2\%$ includes m_{eff} , exp. fits and corr.

Speaker (Redamy Perez Ramos)

#QCD jets, #FFs, $\#\alpha_s$, #fits

IPSA/LPTHE 28/35

α_s at NNLL+NLO^{*}: scale uncertainty

Extra uncertainty α_s(Q₀ = Λ_{QCD}) - α_s(Q₀ = 1GeV) = 2% due to scale variation (stopping the evolution at Q=1 GeV rather than going down to Λ_{QCD}

Speaker (Redamy Perez Ramos)

IPSA/LPTHE 29/35

$\alpha_s(M_{Z_0}^2)$ at NNLL+NLO^{*} from low-z FFs evolution

Figure 4: Summary of α_s determinations using different methods. The top points show N^{2.3}LO extractions currently included in the PDG [1], the bottom ones shown those obtained with other approaches at lower degree of accuracy today [13], including the result of our work. The dashed line and shaded (orange) band indicate the current PDG world-average and its uncertainty.

Conclusion

Novel precision measurement of α_s at NNLL+NLO* accuracy

Speaker (Redamy Perez Ramos)

#QCD jets, #FFs, $\#\alpha_s$, #fits

Part IV

Outlook

Speaker (Redamy Perez Ramos)

#QCD jets, #FFs, $\#\alpha_s$, #fits

■▶ < ≣ ▶ ≣ → つへで IPSA/LPTHE 31/35

$\mathrm{N}^4\mathrm{LL} + \mathrm{NLO}$ anomalous dimension

Average multiplicity rate in QCD jets (for $\omega = 0$):

$$\gamma_{++}^{\overline{\mathrm{MS}}} = P_{++}^{(0)}(\omega) + P_{++}^{(1)}(\omega) + P_{++}^{(2)}(\omega) + P_{++}^{(3)}(\omega) + P_{++}^{(4)}(\omega)$$

1 LL+LO:
$$P_{++}^{(0)}$$
 is available ($\overline{\mathrm{MS}} \equiv \mathsf{DLA}$)

NLL+LO: P⁽¹⁾₊₊ & NNLL+NLO: P⁽²⁾₊₊ can be obtained from MS (i.e. Vogt's resummation: JHEP 10 (2011) 025) and exact diagonalisation by Kotikov & Teryaev (Phys. Rev. D 103 (2021) 034002)

Solution Repeat the steps of 2nd item to cast $P_{++}^{(3)}(\omega) \& P_{++}^{(4)}(\omega)$

$\rm N^4LL + \rm NLO$ anomalous dimension

Average multiplicity rate in QCD jets (for $\omega = 0$):

$$\gamma_{++}^{\overline{\mathrm{MS}}} = P_{++}^{(0)}(\omega) + P_{++}^{(1)}(\omega) + P_{++}^{(2)}(\omega) + P_{++}^{(3)}(\omega) + P_{++}^{(4)}(\omega)$$

1 LL+LO:
$$P_{++}^{(0)}$$
 is available ($\overline{\mathrm{MS}} \equiv \mathsf{DLA}$)

$$\gamma_{++}^{\text{MLLA}} - \left[\gamma_{++}^{\overline{\text{MS}}} + \beta(Q^2) \frac{d}{d\alpha_s} \ln \frac{\mathcal{R}^T(\alpha_s(Q^2))}{\mathcal{R}^T(\alpha_s(\Lambda^2))} \right] = -\frac{11}{12} (1 + \ldots)$$

Ref: Duff Neill, JHEP 03 (2021) 081

③ Repeat the steps of 2nd item to cast $P^{(3)}_{++}(\omega) \& P^{(4)}_{++}(\omega)$

Order	LL (DLA)	NLL	NNLL	N ³ LL	$\rm N^4LL$
LO <i>P</i> ⁽⁰⁾ _{<i>ac</i>}	$\mathcal{O}(\sqrt{\alpha_s})$	$\mathcal{O}(\alpha_s)$	$\mathcal{O}(\alpha_s^{3/2})$	$\mathcal{O}(\alpha_s^2)$	$\mathcal{O}(\alpha_s^{5/2})$
NLO P ⁽¹⁾ _{ac}			$\mathcal{O}(\alpha_s^{3/2})$	$\mathcal{O}(\alpha_s^2)$	$\mathcal{O}(\alpha_s^{5/2})$
NNLO P _{ac} ⁽²⁾					$\mathcal{O}(\alpha_s^{5/2})$

NLL+LO: $\gamma_{++}^{\overline{\mathrm{MS}}} = \sqrt{\alpha_s} + \alpha_s$

Speaker (Redamy Perez Ramos)

IPSA/LPTHE 32/3

3

イロン イ理 とく ヨン イ ヨン

Order	LL (DLA)	NLL	NNLL	N ³ LL	$\rm N^4LL$
LO $P_{ac}^{(0)}$	$\mathcal{O}(\sqrt{\alpha_s})$	$\mathcal{O}(\alpha_s)$	$\mathcal{O}(\alpha_s^{3/2})$	$\mathcal{O}(\alpha_s^2)$	$\mathcal{O}(\alpha_s^{5/2})$
NLO P ⁽¹⁾ _{ac}			$\mathcal{O}(\alpha_s^{3/2})$	$\mathcal{O}(\alpha_s^2)$	$\mathcal{O}(\alpha_s^{5/2})$
NNLO P _{ac} ⁽²⁾					$\mathcal{O}(\alpha_s^{5/2})$

NNLL+NLO:
$$\gamma_{++}^{\overline{\text{MS}}} = \sqrt{\alpha_s} + \alpha_s + \alpha_s^{3/2}$$

탄▶ ◀ 필 ▶ - 필 - ∽) 역 (IPSA/LPTHE 32/3)

イロト イヨト イヨト イヨト

Order	LL (DLA)	NLL	NNLL	N ³ LL	$\rm N^4LL$
LO <i>P</i> ⁽⁰⁾ _{<i>ac</i>}	$\mathcal{O}(\sqrt{\alpha_s})$	$\mathcal{O}(\alpha_s)$	$\mathcal{O}(\alpha_s^{3/2})$	$\mathcal{O}(\alpha_s^2)$	$\mathcal{O}(\alpha_s^{5/2})$
NLO P ⁽¹⁾ _{ac}			$\mathcal{O}(\alpha_s^{3/2})$	$\mathcal{O}(\alpha_s^2)$	$\mathcal{O}(\alpha_s^{5/2})$
NNLO P _{ac} ⁽²⁾					$\mathcal{O}(\alpha_s^{5/2})$

N³LL+NLO:
$$\gamma_{++}^{\overline{\text{MS}}} = \sqrt{\alpha_s} + \alpha_s + \alpha_s^{3/2} + \alpha_s^2$$

イロト イヨト イヨト イヨト

Order	LL (DLA)	NLL	NNLL	N ³ LL	$\rm N^4LL$
LO $P_{ac}^{(0)}$	$\mathcal{O}(\sqrt{\alpha_s})$	$\mathcal{O}(\alpha_s)$	$\mathcal{O}(\alpha_s^{3/2})$	$\mathcal{O}(\alpha_s^2)$	$\mathcal{O}(\alpha_s^{5/2})$
NLO P ⁽¹⁾ _{ac}			$\mathcal{O}(\alpha_s^{3/2})$	$\mathcal{O}(\alpha_s^2)$	$\mathcal{O}(\alpha_s^{5/2})$
NNLO P _{ac} ⁽²⁾					$\mathcal{O}(\alpha_s^{5/2})$

 $\mathsf{N^4LL} + \mathsf{NNLO:} \ \gamma_{++}^{\overline{\mathrm{MS}}} = \sqrt{\alpha_s} + \alpha_s + \alpha_s^{3/2} + \alpha_s^2 + \alpha_s^{5/2}$

イロト イヨト イヨト イヨト

$N^{3}LL = \mathcal{O}(\alpha_{s}^{2})$

Extension using $\overline{\rm MS}$ NLO+resummed (small-x) splittings functions (based on C.-H. Kom, A. Vogt, K. Yeats JHEP 1210 (2012) 033)

$$\begin{split} P_{\rm qg,N^3LL}^T(N) &= \frac{C_A}{C_F} P_{\rm qq,N^3LL}^T(N) + \frac{1}{54} \frac{n_f}{C_A^3} a_{\rm s}^2 \Big\{ 2([81 - 144\zeta_2]C_A^4 - 90C_A^3C_F + 144\zeta_2C_A^3C_F \\ &-79C_A^3n_f + 106C_A^2C_Fn_f + 6C_A^2n_f^2 - 24C_AC_Fn_f^2 + 24C_F^2n_f^2) \frac{1}{\xi^2}(S - 1 + 2\xi + 2\xi^2) \\ &-2([483 - 576\zeta_2]C_A^4 - [360 - 576\zeta_2]C_A^3C_F - 139C_A^3n_f + 102C_A^2C_Fn_f + 56C_AC_Fn_f^2 \\ &-6C_A^2n_f^2 - 88C_F^2n_f^2) \frac{1}{\xi}(S - 1 + 2\xi) + ([429 - 576\zeta_2]C_A^3 - [360 - 576\zeta_2]C_A^3C_F - 213C_A^3n_f \\ &+ 250C_A^2C_Fn_f - 2C_A^2n_f^2 + 40C_AC_Fn_f^2 - 72C_F^2n_f^2) \frac{1}{\xi^2}(S - 1 + 2\xi)\mathcal{L} + 8([137 - 144\zeta_2]C_A^4 \\ &- [90 - 144\zeta_2]C_A^3C_F - 17C_A^3n_f - 6C_A^2C_Fn_f - 6C_A^2n_f^2 + 36C_AC_Fn_f^2 - 48C_F^2n_f^2)(1 + \frac{1}{\xi}\mathcal{L}) \\ &+ (11C_A^4 + 13C_A^3n_f - 26C_A^2C_Fn_f + 2C_A^2n_f^2 - 8C_AC_Fn_f^2 + 8C_F^2n_f^2) \frac{1}{\xi^2}(S^{-1} - 1 - 2\xi)\mathcal{L} \\ &+ 4([59 - 72\zeta_2]C_A^4 - [45 - 72\zeta_2]C_A^3C_F - 20C_A^3n_f + 20C_A^2C_Fn_f - 2C_A^2n_f^2 + 14C_AC_Fn_f^2 \\ &- 20C_F^2n_f^2) \frac{1}{\xi^2}(S - 1)\mathcal{L}^2 \Big\} \,. \end{split}$$

< □ > < □ > < □ > < □ >

$N^4LL = \mathcal{O}(\alpha_s^{5/2})$

Extension using $\overline{\rm MS}$ NLO+resummed (small-x) splittings functions (based on C.-H. Kom, A. Vogt, K. Yeats JHEP 1210 (2012) 033)

$$\begin{split} P^T_{\rm gg}(N)|_{\rm N^4LL}^{C_F=0} &= \frac{1}{13271040} \frac{1}{C_A^2} a_s^2 \tilde{N} \left\{ 16([15688235 - 19918080\xi_2 + 7983360\xi_3 \\ &+ 5059584\xi_2^2] C_A^4 + [914360 + 875520\xi_2 - 2142720\xi_3] C_A^3 n_f - [134200 + 46080\xi_2] C_A^2 n_f^2 \\ &+ 5600 n_f^3 C_A - 80 n_f^4)(S-1) - 32([7822505 - 2826000\xi_2 + 1330560\xi_3 - 134784\xi_2^2] C_A^4 \\ &+ [514490 + 83520\xi_2 - 276480\xi_3] C_A^3 n_f + [16880 + 20160\xi_2] C_A^2 n_f^2 - 2840 n_f^3 C_A + 80 n_f^4) \\ &\cdot \frac{1}{\xi} (S-1+2\xi) + 2([12686895 + 12997440\xi_2 - 2471040\xi_3 - 10907136\xi_2^2] C_A^4 \\ &- [3309880 + 564480\xi_2 - 1624320\xi_3] C_A^3 n_f + [37960 - 172800\xi_2] C_A^2 n_f^2 + 21280 n_f^3 C_A \\ &- [1040 n_f^4) \frac{1}{\xi^2} (S-1+2\xi) + 2\xi^2) - 4([3135445 + 6822720\xi_2 + 190080\xi_3 - 5868288\xi_2^2] C_A^4 \\ &- [1973120 + 587520\xi_2 - 1071360\xi_3] C_A^3 n_f + [106520 - 149760\xi_2] C_A^2 n_f^2 + 14080 n_f^3 C_A \\ &- 1200 n_f^4) \frac{1}{\xi^2} (S^{-1} - 1 - 2\xi - 6\xi^2) - ([2095591 + 158976\xi_2 - 1140480\xi_3 + 331776\xi_2^2] C_A^4 \\ &+ [61560 + 396288\xi_2 - 207360\xi_3] C_A^3 n_f - [83352 - 64512\xi_2] C_A^2 n_f^2 + 224 n_f^3 C_A + 880 n_f^4) \\ &\cdot 5 \frac{1}{\xi^2} (S^{-3} - 1 - 6\xi - 30\xi^2) - 10([198803 - 209088\xi_2] C_A^4 + [69872 - 76032\xi_2] C_A^3 n_f \\ &- [600 + 6912\xi_2] C_A^2 n_f^2 - 2368 n_f^3 C_A - 208 n_f^4) \frac{1}{\xi^2} (S^{-5} - 1 - 10\xi - 70\xi^2) \\ &- 25(11C_A + 2n_f)^4 \frac{1}{\xi^2} (S^{-7} - 1 - 14\xi - 126\xi^2) \right\} + C_A^2 a_s^2 \tilde{N} (S + S^{-1} - 2) B_{gg}^{S(3)}, \quad (B.11) \end{split}$$

Conclusions

- The anomalous dimension was obtained from from the mixed resummation of LO expanded splitting functions and NLO corrections to the splitting functions.
- The moments, multiplicity, maximum peak position, dispersion, skewness and kurtosis of the DG were obtained at the same level of precision as a function of the only free parameter $\Lambda_{\rm QCD}$.
- The theoretical mean multiplicity was absolutely normalized to match the data (LPTHE): care about shape, NOT absolute normalization.
- Very good agreement between e^+e^- , DIS and theory for peak position and dispersion.
- Novel high precision of α_s at NNLL+NLO*: $\alpha_s = 0.1205 \pm 0.0010^{+0.0022}_{-0.0000}$.
- Outlook: matching the NMLLA resummation with the $\overline{\rm MS}$ anomalous dimension from Vogt's resummation and exact diagonalisation at NNLO!

Speaker (Redamy Perez Ramos)

#QCD jets, #FFs, $\#\alpha_s$, #fits

IPSA/LPTHE 35/35