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1. Introduction

The search for new physics at the LHC accelerator requires a

threshold resummation of the cross sections. (see, for example, the
revent papers (Beneke, Broggio, Hasner, Urban, Vollmann:2019),
(Beneke, Broggio, Jaskiewicz, Vernazza: 2020)).
It would also be good to consider extracting from the deep-inelastic
scattering (DIS) data (for the structure function (SF) Fy(z, Q?)),
taking into account resumming at large values of x (= threshold
resumming), where x is Bjorken's variable.

Usually the function Fh(z, Q%) is represented as a sum of the
leading twist FgQCD(x, Q%) and the twist four terms

Fy(z, Q%) = F§9P (2, @?)

While analysing experimental data various corrections should be
taken into account: nuclear effects, target mass corrections, heavy
quark threshold corrections and higher twist terms are considered.



As is known there are at least two ways to perform QCD analysis
over DIS data:
the first one deals with Dokshitzer-Gribov-Lipatov-Altarelli-Parisi
(DGLAP) integro-differential equations and let the data be exam-
ined directly, whereas the second one involves the SF moments and
permits performing an analysis in analytic form as opposed to the
former option.

We take on the way in-between these two latter, i.e. analysis is
carried out over the moments of SF ¥ (z, Q?) defined as follows

MPQCD twist2/ .. a2y _ 1L gn=2 F%OQCD/twisﬂ/---(x’ Q%) dx

and then reconstruct SF for each Q? by using Jacobi polyno-

mial expansion method. (Parisi, Sourlas:1979), (Barnet et al.:
1081,1983,1984), (Krivokhizhin et al.: 1987,1990)



2. A brief theoretical input

The twist-two DIS SF can be represented as a sum of two terms:
FRWst2(, QF) = F3Y5 (2, Q%) + F¥ (2, Q7).
the nonsinglet (NS) and singlet (S) parts.
Let's introduce PDFs, the gluon distribution function fr(z, Q%)
and the singlet and nonsinglet quark distribution functions f¢(z, Q?)
and fy g(z, Q?) (hereafter, unlike the standard case, here PDFs are
multiplied by x):

f(r. Q%) = £6,(2.Q%) = V(2.Q%) + 5(2. Q7).
st(x, QQ) — uv(x, QQ) - dv(ilj, Q2> )

where f is the number of quark flavors (up, down, strange,...),
Viz, Q%) = uylz, Q%) + dy(z, Q?) is the distribution of valence
quarks and S(z, Q%) is a sum of sea parton distributions set equal
to each other.



At large r values, no gluons and we can confine our-
selves to considering only the NS contribution.

There is a direct relation between SF moments M,,(Q?) and those

of PDFs
fys(n, Q%) = [ dea"*fyg(z, Q7).
For example, in the nonsinglet case it looks:
My °(Q%) = Ryg(f) x CRE(n, as(Q%) x fyg(n, @),
with
2
Q
CLS(QQ> = SiQ )
T

and C{5%2(n, as(Q?)) are the Wilson coefficient functions. The

constant Ry g(f) depends on the weak and electromagnetic charges
and is fixed to be one sixth for f = 4.




2.1 Strong coupling constant

The strong coupling constant is determined from the correspond-
ing solution of the renormalization group equation.

At NLO level:
L1 a1(Q?) (14 bia(M3)) _ 4ol ’
a(@Q%)  a(MZ) T |a(MZ) (1 + b (@) | U (M3

where hereafter

a1(Q%) = aO(QY), a1(Q?) = Y NLOQ?).
At NNLO level:

Lo as(Q?) |1+ braa(Mz) + byas(M3)
a2(Q%)  as(MZ) N ag(MP)y 1+ brag(Q?) + bran2(Q?)
b2 ?
+ =g (@)~ 1(M3) = Aoln 55




The expression for I looks:

% by + 2boan(Q?)

—== arctan
](QQ) _ \/Z \/Z

1 b 2b
N 2a5(Q?) —

e v-A
V=B by + 20205(Q?) + V=R

where A = 4by — b7 and b; = gé are read off from the QCD
B-function:

for f =3,4,5:A >0,

for f =6, A <O,

Blas) = — Boaz — Bras — Poag +

These equations allow us to eliminate QCD parameter Agcp from
the analysis.



2.2 ()*>-dependence of SF moments

The coefficient functions CRYE5(n, as(Q?)) is further expressed
through the functions BNS( ) which are known exactly

CRE2(n, a5(Q?)) = 1+ as(Q?) Bi(n) + a2(Q?) Ba(n) + O(a3(Q?))
where
Bl( ) BNLO(n)a BQ( ) BNNLO( )

The Q%-evolution of the PDF moments can be calculated within
the framework of perturbative QCD:

fusm QD) [as(@)] %

= |—— ghNs 2 12
fys(n,Qf)  |as(QF) % (n, @7, Qp) .

where

Yi(n) = W), Zi(n) = Z¥EC(m), Zo(n) = ZNYLOm)



The function HNS(n, Q?,Q3) up to NNLO may be represented
as

NS, 2 o PO, Q%)
H (naQ 7@0) _ hNS(n, Q%)’
VS (n, Q%) = 1+ as(Q) Z1(n) + aX(QD) Za(n) + O (a3(Q?)) |

where

Zi(m) = 5 b ln) = 0(m) b
Zo(m) = ;- baln) = (m)br + 300 = ba)] +  ZE(m).

Here 7;.(n) are anomalous dimensions of Wilson operators.



2.3 Factorization pp and renormalization up scales

It is good to consider the dependence of results on the factoriza-

tion pp and renormalization pp scales, caused by the truncation
of a perturbative series while doing the calculus.

A modification is achieved by replacing as with the expressions
in which the scales were accounted in the following way: p7 =

kpQ?, g = kppg = kpkpQ?.

Then,
My 2(Q%) = Rys(f) x O (n, as(kp@?)) x fxs(n, kpQ?),
and
fys(n, kpQ?) _ % as(kpkrQ%)
fys(n, krpQp) as(kpkpQsg)

2 00200 s gNS (0 gk p QP kpkpQR) .



The functions éNS» HNS are

05(Q?) — ay(kpQ?), Biln) = By(n) + o(n) Ik

1 1
By(n) = By(n) + om(n) Inkp + (2’70 + 50) BiInkp

1
+ +2% (20 + 250) In*kp,

and

as(Q?) — as<kaR§22>, as(Q3) — as(kpkpQ?),
Z1(n) = Z1(n) + () Inkp

1 1
Zo(n) —= Zo(n) + on(n)Inkg + oy(n) 21 Inkp



Below we put kp =1 and use n-dependent £p.

At large n values, Zj(n) ~ Inn and B;(n) ~ In*" n
So, Bj(n) rise strongly at large n values (i.e. at large x values.

We would like to resum the large terms and to study
a dependence of the resummation on the ag(My).

To study it, it is possible to use the scheme-invariant (SI) per-
turbation theory (SIPT) (Grunberg:1981,1982), DIS scheme (a for-
mer A,,-scheme (Bace:1978), (Bardeen et al.:1978), (Buras:1980)).
and W 2-evolution: TW? = Qzl_Tx + Mg.



2.4 SIPT= Grunber effective charge (GEC) method
The GEC method:

An observable

m(Q%) = as(Q7)[1 + &1a5(Q°) + E2a3(Q%) + E3a2(Q%) + .. ]

can be considered as a new coupling constant, containing the new
scale Q2 — ¢ C/PQ? and new coefficients f3; (i > 2) of S-

~

function: 8; — (B; and (3, depend on ¢;

In our case,

MYS(Q2) ~ (as(@2) ™1+ ...]

and we can use my(Q?) = (Mn(QQ))l/d(m, where d(n) = ’Yl(\I()S)/(QﬁO)



Consider

thzstZ( n, s (Q2>)

NS
Mn (Q ) thzstZ( 7@9(@%)) n

where the function
CWE(n, as(Q%) = ad™(Q?) [1 + Cras(Q?) + Coa(Q?) + ...

contain all Q*-dependence and

i) =B, Cifn) = Bulm) + Zu(o),
Co(n) = Ba(n) + Z1(n)Bi(n) + Za(n).

The normalization M.V°(Q3) relates with the one fy g(n, QF):
My >(QF) = Rs(f) x CRE™(n, a5(Q5)) x fys(n, Q7).



2.4.1 NLO

In the case
a1(Q?) — a1<k81<n>(@2>> = an(Q°), .
—2C1(n —ri(n
kep(n) = exp = exp :
s1() Yo(n) Bo
where
2C1(n)By  Ci(n)
ri(n) = =
1(n) Y0 d(n)
With the above choice of the scale, we have
CPl(n) =0,
l.e.

CRs(n) = adM(@Q*) 1+ 0(d?))].



We would like to note that the NLO coupland a;,(Q?) obey the
following equation (here NLO as(Q?) = a1(Q?))

1 1 an(Q%) (1+ bra(M3))

on(@) " (M O B) (L bran(Q?)
ksi(n)Q? :
= foln |07 g | = By~ ) (1)




2.4.2 NNLO

In the case

a2(Q%) = az(kgi(n)Q7)) = an(Q?),
where the NNLO coupland a,,(Q?) obeys the following equation

L1 (@) 1+ biap(M3) + bad(M)
an(Q?)  ax(M%) T ag(M2)| 1+ bran(Q2) + baan(Q2)

- bt - b% Q2 |
- 52—2) I1(Q7) — 52—2) I(M%) = Gyln M —ri(n), (2)
were

[ =1(by — by), 522627 By = Bo —r1(n) By + (ra(n) — r1(n)) By,




With the above choice of the scale kgj(n)Q?, we have
C1(n) = CPl(n) =0, Co(n) = C5l(n) =0,
l.e.
CRs(n) = ap™ (@) [L+O(ap)).

The NLO and NNLO SI analyses were performed
long ago (Kotikov,Parente,Sanchez Guillen: 1992),
(Parente, Kotikov,Krivokhizhin: 1994)

The main results are: as(M7%) is stable during re-
summation and HT's are strongly decreased in SIPT.
We will confirm it (see below).



2.5 (Generalized) 1W? evolution

Here consider the renormalization scale will be equal to Q?, i.e.
kr = 1, and the nonzero (n-dependent) factorization scale, which
Is used to resumm the large = logarithms.

It is conveninet to transfor above transformations (from nonzero
kg values) in x-space:

05(@%) = askpQ?), Bue) = Bi(x) + yole) nkp(a),

;[fyo(x) ® Bi(x)| + ;fyl(x) + By B1(x) | Inkp(x)

+ [ghola) ®20()] + ;r0()o| b k()

BQ(ZI:'> — BQ(ZC> +

where

Bi(n) = fj dza" " Bi(x), yi—1(n) = f dza" y_i(x), (i = 1,2)
and the simbol ® marks the usual I\/IeIIin convolution as

fi1(x) ® fol)] = f1 foly) -




Now we consider the following form of kp(x) :

1 _
kp(x) = e ( :1:)’ a generalized T2 scale

xm

and, respectively,

mkp(x)=In(l—2)—mlnx+9.



The result of application of this kp(x):

;%(@ nkp(x) = Big(n) +mByy(n) + 6Byo(n)

1

H10(2) @ Bi(@)] nkp(x) = Baia(n) +mByyy(n) +0B21(n),

?1(3?) Inkp(x) — Bogy(n) + mBagy(n) + dBog.(n),
Z[’YO(@ @ Yo(z)] In? kp(x) — Bazaa(n) + 2mBasgy(n) + m? Bagy(n)
ir25 (Ba3ae(n) +mBaspe(n)) 4+ 6*Basee(n)
170(3?) In”kp(2) — Bayga(n) + 2mBaygy(n) + m? Boyy(n)
‘1|_25(B24ac(n) T mB%bc(n)) + 5232400(71) ;

(@) Inkp(z) — Bosg(n) + mBasp(n) + 0 Base(n)

2

)



and, respectively,
Bi(n) = Bi(n) + [Big(n) + mByy(n) + 0 Bic(n)],
Bsy(n) — Ba(n) + [Ba1a(n) + mBayy(n) + fBQ1C(n>]
+B0[B22a(n) +mBagy(n) + 0 Baze(n)]+{ Bazaa(n)
n) + 26(Ba3gc(n) + mBogp(n)) + 6°Bagee(n)}

(
>
+2mBosap(n) +m” Baogpy(

Bo
+§{324aa(n) +2m Bayap(n) + m? Boyy(n)

(
+25(324ac(n> + m324bc(n)> + 5232400(”)}
+[Bsq(n) + mBasy(n) + 0 Bose(n)]

where

(11C 4 — 2f).

QL[ —

By =



Let us to consider the four cases:

pp(r) = Q2(1 —x) = pi(2);

L pp(e

2. i) = Q1 — )/ = e

3. M%’( ) = (1—x)/x*655,u§($);

4. %(x) 2 = Q2(1 —x)/x + ml% = ,u?l(:c) where my, is the
proton mass.

After trasformation to Mellin space, the y?(z) scales will trans-

form to pf(n) = k;(n)Q~.



2.5.1 NLO

Here the NLO coefficient faction and the LO anomalous dimen-
sion have the following form

3 1 9
By =2 2(n) — °_ Y
1 = 2Cp[ST(n) — Sa(n) + > " n(n 1) 1(n) >
T +1] In*
on n+1 n23 nn,l
’}/0:80}7 31(71)——— ]wlnn.

4 2n(n+1)



The case 1.

as(Q%) = as(ky(n)Q), ki(n) = exp (QBla(m

Yo(n)

)

and
Bi(n) = Bia(n) = Bi(n) + Bia(n),
where
Bia(n) = —2Cp[St(n) + Sa(n) —
1 y
~ ]
(n + 1)2] n
11 3 2

- 3
BT(R) = 21017[_252(”) +5 S1(n) — d ot

+ﬁ (R +1)?
For the coupling constant as(k;(n)Q?) we can use also Eq. (1),
with the replace 71(n) — —Bj,(n)/d(n).

1
n(n+1)

S1(n) —Z

_|_

| ~Inn, So, the terms ~ In?n are cancelled.



The case 2.
as(Q?) = as(ko(n)Q?), ko(n) = ki(n)exp

and

2B1p(n)
Yo(n)

)

Bi(n) — Byy(n) = Big(n) + By(n),

where

_ 5 1 1
Buyln) =2Cp [25n) = | = -y + -
Byy(n) = 3C F()—8+1+ !

WV = 2 P T s T T 3 1)

~ Inn.

For the coupling constant as(ko(n)Q?) we can use also Eq. (1),
Ewith the replace r1(n) — —(Bi4(n) + Byy(n))/d(n).



The case 3.
as(Q°%) — as(k3(n)Q?), ks(n) = ka(n) e’

and
- - o
Bi(n) = Bie(n) = Byy(n) + 5 v0(n).
Whnen we put 0 = —3/4, then
i Crl9 5 23]
B = |— — ~ | .
) = Lt T 2} nr

For the coupling constant as(k3(n)Q?) we can use also Eq. (1)
with the replace r1(n) = d — (Bj4(n) + By(n))/d(n).



The case 4.
The case is equal to the case 2 but

as(Q%) — as(ka(n)Q* +m3),

In a sence, here the coupling constant with the proton mass my,
In its argument can be considered as a “frozen” coupling constant.



2.5.2 NNLO. A large n analysis

Consider the large n asymptotics as
S1(n) =Inn+vyg+... = S+..., Spun) =Cn+..., (m >2) (3)

For applications it is convenient to put S = Sj(n — 1). It leads to
zero values for all considered variables at n = 1.



Here the NLO and NNLO coefficient factions and the LO and

NLO anomalous dimensions have the following form:

9
?_AQFs_ﬂm4§zﬁ_mﬁ+ﬁ+3S—C—2ywﬂa
— = - — 2 TS A Q9
5 4CF{CA [( 9 CQ)S + 3C3 CQ 24 3 =95 +¢ 8
-%%%ﬁ®+&§—}}N&
1, aqs_ 2T ol
By = QCF{CF S+ 35 ( 1 + 2C2>S + (12<3 — 18¢o — Z)S
11 5 367 3155
— — — 2 2 — 02— ——
+Cy [ SO+ <:36 (2)5% — (20¢3 + CQ 108:> ]
29 247

+f{—53 (C2—-)]} 54



The NLO coefficients coming from 9generalized) W “-evolution
are

Y0 7
Blc — ?7 Blb — 4CF

4—32—@].

For the NNLO coefficients, which are ~ 3, we have

H
CQ_EJ? B, =2CF

Y0 9
Bojee = o Bouype = By, Bosge = B1g, Bogpy = 8CF [Cg — 16}
4Cp 45
Boyap = 2CF {3 — §C2 — 2(3} , Boyga = {53 + 3¢S + 2(¢3 — ? ]

17
Boo. = B1, By, =2CF [4 + 32 — 4(3]
2 3 21
Byoy = Cp [—333 — 432 — 2025 —C3 + Cz + 4]



The other NNLO coefficients have the following form:

Bo3ee = 187 Bogpe = 0(5_1) ~0, Bogy, = —2B1),
Boyapy = 8CF { ¢y — —C3 — —CQ 89]

Btge = 16CF K—SS — 2025 — —C3 + C2 + 181]

BQ3aa = SCF[S — 5%+ 605" + (8C3 — 3(2) S + 3@1
——C3 — —Cz - 41]

Boge = 720 By, By, =0(S"") ~0,

Byt = 8CH[= 5" — 8%+ (¢ — 25> = (52 +663)S
PGt G @cz .



The case 1.

(@) > as{la Q). k() = cap D]
and
By(n) = Bag(n) = Ba(n) + Bag(n),
where

Bog(n) = Boyg(n) + By Baoa(n) + ; [ B23aa(n) + By Baiga(n)] + Base(n) .

Using above results, we have for large n

4
By, = 2C{Cr [—34 Y 2(5)S% — (8¢3 + 12@)5}
367

Y

3 203,292, 2 4
oS0 (g — 25T = 0S| + £ | SP+ 1052+ 0S|~ 8

C
oA 36

and

. 9 o1

zm—%%w%k¢+52«m—%@—4w
3155 4 247 3

—Ca G+ 56— S| S+ g6 - S| S)~ S,



i.e. the basic contribution ~ S% is cancelled.

The case 2. B
as(Q%) — as(ka(n)Q%), ka(n) = ki(n) exp 2Buln)
Yo(n)
and

Bs(n) — Boy(n) = Byg(n) + Byy(n),
where
- 1
Boy(n) = Bayp(n) + By Bagp(n) + 5 2Bo3qp(n) + Bagpp(n)

+50 (2B94qb(n) + Bagpp(n))] + Basp(n)
Using above results, we have Boy(n) = O(S") ~ 0 and, thus,

~ ~ 9 ol

Boyy ~ Boy = 2Cp{Cp |-5° + —32 + (4¢3 — 30¢2 — 4)S]
3155 247

—C'4 203 + —Cz —] f{ (2 — ] S}~ 5%,

108



The case 3.
as(Q%) — as(k3(n)Q?), ks(n) = ko(n)e’

and

~

Bs(n) — Bac(n) = Boy(n) + 6 Bac(n),
where

Boe(n) = Byye(n) + Bazge(n) + Bagpe(n) +
B0 [B22c(n) + Bosge(n) + Baogpe(n)]

0 _
+Baspe(n) + - [Bseeln) + Bo Bateeln)] = B (n) +

Using above results, we have for large n

B |
BY — 40p{20p .5+ 252 506 + 2)5}

67

[aag—a@w—ﬂS}

B = 4cp{4Cy [SQ _ S] [131 Cy— ?) f] S




For the case 6 = —3/4, we have

. 9 3
By =2Cp{CF {SQ + (4¢3 — 15¢ + 4>5]
16553 709 9

i.e. the second basic contribution ~ S3 is cancelled, too.

The case 4. (same as in NLO)



2.6 DIS scheme
as(Q%) = as(kpis(n)Q°) = a;>(Q7),

_ —2B1(n)| _ —rPP(n)
kpis(n) = exp o) ) PTG, ,
where
DIS 2B1(n)py  Bi(n)
T )
and

L fo ) 2 71(n)
> o)) ) 70(n) Pt
We would like to that the larger terms ~ 11’14(n) are cancelled in
BPB ().
Moreover, the coupland a2'5(Q?) obeys at NLO and NNLO level
to Eq. (1) and (2) with

ri(n) = rP°(n), Bo— .




3. A fitting procedure

With the QCD expressions for the Mellin moments M,,(Q?) an-
alytically calculated according to the formulas, given above the SF
Fy(x, QQ) Is reconstructed by using the Jacobi polynomial expan-
sion method:

Fye, @) = a1 — )} " 63(a)

(O‘ 3) ]+2(Q2)

II'M:

Ji O

where @%’b are the Jacobi polynomials, a,b are the parameters
fitted. A condition is the requirement of the error minimization
while reconstructing the structure functions.
Since a twist expansion starts to be applicable only above Q% ~ 1
GeV? the cut Q% > 1 GeV? on data is applied throughout.
MINUIT program is used to minimize the variable
FS™P _ pih
XSF_’ AFexp ‘ '




4. Results

We use free normalizations of the data for different experiments.
For a reference set, the most stable deuterium BCDMS data at the
value of the beam initial energy Ey = 200 GeV is used. With the
other data sets taken to be a reference one the variation in the
results is still negligible. In the case of the fixed normalization for
each and all data sets the fits tend to yield a little bit worse \?,
just as before.

The starting point of the evolution is taken to be Q% — 90 GeVZ.
These Q% values are close to the average values of Q% spanning
the corresponding data.

On grounds of previous knowledge the maximal value of the num-
ber of moments to be accounted for is Nyqr = 8 (Krivokhizhin
et al.: 1987,1990) and the cut 0.25 < x < 0.8 is imposed every-

where.



Table 1. Parameter values of the twist-four term in different cases obtained in the analysis
of deutron data (288 points) carried out within a fixed-flavor-number scheme (FFNS) with

nf =3
x Standard | Case 1 Case 2 Case 3 Case 4
Y2 =180 | x2 =191 | x* =190 | x? = 188 | y* = 180
0.275| -0.223 -0.164 -0.169 -0.146 -0.111
0.35 -0.181 -0.145 -0.141 -0.105 -0.031
0.45 -0.005 -0.100 -0.075 -0060 0.141
0.55 0.244 -0.027 0.029 -0.030 0.398
0.65 0.558 0.013 0.011 -0.105 0.658
0.75 0.747 -0.192 -0.064 -0.496 0.704

The NLO o,(M7) = 0.1180 £ 0.0021 in all cases except-

ing the case 3, where a4(M7%) = 0.1179 & 0.0021.




Table 2. Parameter values of the twist-four term in different cases obtained in the analysis
of data (314 points, the cut: Q? > 2 Gev?) carried out within a fixed-flavor-number scheme

(FFNS) with ny = 4.

NLO NLO NLO NNLO | NNLO | NNLO

x Standard | SIPT DIS Standard | SIPT DIS
Y2 =259 | x2 =245 | 2 =251 | %2 =254 | x? = 249 | % = 249

0275| -0.264 | -0.223 | -0.174 | -0.204 | -0.162 | -0.170
0.35 | -0.252 | -0.153 | -0.134 | -0.193 | -0.138 | -0.149
045 | -0.187 | -0.073 | -0.094 | -0.158 | -0.101 | -0.104
0.55 | 0.096 -0.121 | -0.088 | -0.137 | -0.093 | -0.084
0.65 | 0.118 -0.144 | -0.094 | -0.051 | -0.123 | -0.100
0.75 | 0477 -0.509 | -0.442 0.648 -0.383 | -0.314

The NLO o4(M7) = 0.1192 4 0.0021 in standard case,
as(M7) = 0.1179 +0.0021 in SIPT and DIS.

The NNLO a4(M7) = 0.1170£0.0021 in standard case,
as(M?7) = 0.1178 £ 0.0021 in SIPT and ag(M7%) = 0.1171 &
0.0021 DIS.



7. Summary

We did fits of experimental data for DIS SF Fy(x, Q%) by resum-
ming large logariths at large x values in the corresponding coeffi-
cient functions in the framework of SIPT, DIS scheme and taking
into account the (generalized) W?-scale. A close case (so-called
Aj,-scheme, which is equal to so-called DIS scheme, where the NLO

coefficient By(n) — 0) of such form has been used already long
time ago. (Bace:1978), (Bardeen et al.:1978), (Buras:1980).

We see that the resummation does not change values of strong
coupling constant &S(M%) but the values of HTs are decreased
and, sometimes, HT-values change sign at large = values.

These results for W *-evolution were obtained at NLO level. The
extension to the NNLO level (and to VFNS) will be done in nearest
future (I hope at February). We hope that the basic properties of
the NLO analyses will be recovered (primarily) at the NNLO level.



