Energy range for the RGE test and PDF sensitivity in α_s evaluations from jet cross section ratios at the LHC

Bogdan MALAESCU

LPNHE, CNRS

https://indico.cern.ch/event/555452/contributions/2495852/attachments/1436555/2222319/ScalesJetObservables_Malaescu.pdf

arXiv:2111.02319 T. Gehrmann and BM

alpha_S Workshop 03/02/2022

Content of the talk

- \rightarrow Examples of R_{3/2}, R_{$\Delta\Phi$}, TEEC measurements
- \rightarrow Scales for α_S evaluation & RGE test using jet cross-section ratio (and event-shape) observables
- → PDF sensitivity

$R_{3/2}$ and $N_{3/2}$ – measurements & theory prediction

 \rightarrow p_T > 40 GeV; |y| < 2.8; p_T lead > 60 GeV (trigger ε & stability NLO pQCD)

$$R_{3/2}(p_{\mathrm{T}}^{\mathrm{lead}}) = \frac{d\sigma_{N_{\mathrm{jet}} \ge 3}/dp_{\mathrm{T}}^{\mathrm{lead}}}{d\sigma_{N_{\mathrm{jet}} \ge 2}/dp_{\mathrm{T}}^{\mathrm{lead}}}$$
1 entry / event

$$N_{3/2}(p_{\mathrm{T}}^{(\text{all jets})}) = \frac{\sum_{i}^{N_{\text{jet}}} \left(d\sigma_{N_{\text{jet}} \ge 3} / dp_{\mathrm{T},i} \right)}{\sum_{i}^{N_{\text{jet}}} \left(d\sigma_{N_{\text{jet}} \ge 2} / dp_{\mathrm{T},i} \right)}$$
1 entry / jet

 \rightarrow Unfolded Xsec ratios sensitive to $\alpha_{\rm S}$

ATLAS-CONF-2013-041

$R_{3/2}$ and $N_{3/2}$ – The scale sensitivity (1)

- → Performed detailed study of the scale dependence of NLO pQCD
- \rightarrow Scale choice $\mu_R = \mu_F = p_T^{\text{lead}} (p_T^{\text{(all jets)}})$ consistent for numerator and denominator of $R_{3/2}$ ($N_{3/2}$)
- → Question of evaluation of scale (MHO) uncertainties for ratio observables relevant here

$R_{3/2}$ and $N_{3/2}$ – The scale sensitivity (2)

ATLAS-CONF-2013-041

- → $N_{3/2}$ less sensitive to choice of scales & similar/better sensitivity to α_S : Used to extract α_S , for $p_T^{(all jets)} > 210$ GeV
- → Predictions obtained with R=0.4 much more sensitive to scale choice: not used here

$N_{3/2}$ – the results for α_S

$$\rightarrow \chi^2$$
 fit in the range 210 GeV <
 $p_T^{(all jets)} < 800$ GeV used to extract α_S
 $\chi^2 \sim 7.1 / 5$ dof (test of RGE)

- → Takes into account experimental uncertainties and correlations
- \rightarrow Theoretical uncertainties propagated through $\pm 1\sigma$ shifts
- dominated by scale uncertainty

PDF	$\alpha_s(M_Z)$
MSTW08	0.111 ± 0.006
CT10	0.109 ± 0.006
HERAPDF 1.5	0.114 ± 0.005
ABM11	0.116 ± 0.005
NNPDF 2.3	0.112 ± 0.005

 \rightarrow PDF variations ~ Experimental uncertainty

$R_{\Lambda \Phi}$

arXiv:1805.04691

$$R_{\Delta\phi}(H_{\rm T}, y^*, \Delta\phi_{\rm max}) = \frac{\frac{d^2\sigma_{\rm dijet}(\Delta\phi_{\rm dijet} < \Delta\phi_{\rm max})}{dH_{\rm T} dy^*}}{\frac{d^2\sigma_{\rm dijet}({\rm inclusive})}{dH_{\rm T} dy^*}}$$

Variable	Value
p_{Tmin}	$100\mathrm{GeV}$
$y_{ m boost}^{ m max}$	0.5
y_{\max}^*	2.0
$p_{\mathrm{T1}}/H_{\mathrm{T}}$	> 1/3

- \rightarrow R_{$\Delta\Phi$} measured in H_T, y* and $\Delta\Phi_{max}$ bins
- \rightarrow The observable is non-trivial (and hence sensitive to α_s) due to events that are not back-to-back dijets (i.e. with 3rd jet etc.)

$R_{\Delta \Phi}$

\overline{Q}	$\alpha_{\rm S}(Q)$	Total	Stat.	Exp.	Non-perturb.	MMHT2014	PDF	$\mu_{ m R,F}$ (*)
[GeV]		uncert.		correlated	corrections	uncertainty	set	variation
262.5	0.1029	$^{+6.0}_{-2.8}$	± 1.6	$^{+1.6}_{-1.7}$	$^{+0.4}_{-0.4}$	$^{+0.4}_{-0.4}$	$+1.4 \\ -0.9$	$+5.3 \\ -0.2$
337.5	0.0970	$^{+8.0}_{-2.6}$	± 1.8	$^{+1.5}_{-1.5}$	$^{+0.4}_{-0.4}$	$^{+0.3}_{-0.3}$	$^{+3.0}_{-0.5}$	$^{+7.0}_{-0.7}$
412.5	0.0936	$^{+4.0}_{-2.2}$	± 0.9	$^{+1.3}_{-1.3}$	$^{+0.3}_{-0.3}$	$^{+0.3}_{-0.3}$	$^{+2.6}_{-1.4}$	$^{+2.5}_{-0.2}$
500.0	0.0901	$^{+3.7}_{-1.5}$	± 0.6	$^{+1.2}_{-1.2}$	$^{+0.2}_{-0.2}$	$^{+0.3}_{-0.3}$	$^{+1.9}_{-0.3}$	$^{+2.9}_{-0.6}$
625.0	0.0890	$^{+3.9}_{-1.8}$	± 0.5	$^{+1.1}_{-1.1}$	$^{+0.1}_{-0.1}$	$^{+0.3}_{-0.4}$	$^{+1.7}_{-0.3}$	$+3.3 \\ -1.3$
800.0	0.0850	$^{+5.9}_{-2.2}$	± 0.6	$^{+1.0}_{-1.1}$	$^{+0.1}_{-0.1}$	$^{+0.4}_{-0.4}$	$^{+4.6}_{-0.2}$	$^{+3.5}_{-1.8}$
1000	0.0856	$^{+4.0}_{-2.7}$	± 1.2	$^{+1.1}_{-1.1}$	$^{+0.1}_{-0.1}$	$^{+0.4}_{-0.4}$	$^{+1.4}_{-0.4}$	$^{+3.4}_{-2.0}$
1225	0.0790	$^{+4.6}_{-3.5}$	± 2.5	$^{+1.2}_{-1.2}$	$^{+0.1}_{-0.1}$	$^{+0.5}_{-0.5}$	$^{+1.6}_{-0.4}$	$+3.2 \\ -1.9$
1675	0.0723	$^{+7.0}_{-8.6}$	± 6.1	$^{+1.3}_{-1.2}$	$< \pm 0.1$	$^{+0.5}_{-0.5}$	$^{+1.7}_{-5.1}$	$+2.8 \\ -1.6$

^(*) All uncertainties have been multiplied by a factor of 10³

$\alpha_{ m S}(m_Z)$	Total	Statistical	Experimental	Non-perturb.	MMHT2014	PDF set	$\mu_{ m R,F}$ (*)
	uncert.		correlated	corrections	uncertainty		variation
0.1127	$^{+6.3}_{-2.7}$	± 0.5	$^{+1.8}_{-1.7}$	$^{+0.3}_{-0.1}$	$^{+0.6}_{-0.6}$	$^{+2.9}_{-0.0}$	$+5.2 \\ -1.9$

→ Variation of PDF choice ~ Experimental uncertainty

arXiv:1805.04691

TEEC and ATEEC – Data / theory comparison @ 8 TeV

$$\rightarrow \text{anti-k}_{t} \text{ R=0.4; } p_{T} > 100 \text{ GeV; } |\eta| < 2.5; \text{ N}_{jets} \geq 2; \text{ p}_{T1} + \text{p}_{T2} > 800 \text{ GeV}$$

arXiv:1707.02562

$$\frac{1}{\sigma} \frac{\mathrm{d}\Sigma}{\mathrm{d}(\cos\phi)} = \frac{1}{\sigma} \sum_{ij} \int \frac{\mathrm{d}\sigma}{\mathrm{d}x_{\mathrm{T}i} \mathrm{d}x_{\mathrm{T}j} \mathrm{d}(\cos\phi)} x_{\mathrm{T}i} x_{\mathrm{T}j} \mathrm{d}x_{\mathrm{T}i} \mathrm{d}x_{\mathrm{T}j}$$

$$\frac{1}{\sigma} \frac{\mathrm{d}\Sigma^{\mathrm{asym}}}{\mathrm{d}(\cos\phi)} \equiv \left. \frac{1}{\sigma} \frac{\mathrm{d}\Sigma}{\mathrm{d}(\cos\phi)} \right|_{\phi} - \left. \frac{1}{\sigma} \frac{\mathrm{d}\Sigma}{\mathrm{d}(\cos\phi)} \right|_{\pi-\phi}$$

$$\rightarrow$$
 Energy-weighted angular distributions: $w_{ij} = x_{Ti}x_{Tj} = \frac{E_{Ti}E_{Tj}}{(\sum_k E_{Tk})^2}$; in H_{T2} and $\cos \Phi$ bins

→ Theory prediction: NLOJet++ & NP corrections (PYTHIA8 & HERWIG++)

$$\frac{1}{\sigma} \frac{d\Sigma}{d\phi} = \frac{\sum_{a_i,b_i} f_{a_1/p}(x_1) f_{a_2/p}(x_2) \otimes \hat{\Sigma}^{a_1 a_2 \to b_1 b_2 b_3}}{\sum_{a_i,b_i} f_{a_1/p}(x_1) f_{a_2/p}(x_2) \otimes \hat{\sigma}^{a_1 a_2 \to b_1 b_2}}$$

$$\mu_{\rm R} = \frac{p_{\rm T1} + p_{\rm T2}}{2}; \quad \mu_{\rm F} = \frac{p_{\rm T1} + p_{\rm T2}}{4}$$

TEEC and ATEEC – Determination of α_s

$$\chi^{2}(\alpha_{s}, \vec{\lambda}) = \sum_{i} \frac{(x_{i} - F_{i}(\alpha_{s}, \vec{\lambda}))^{2}}{\Delta x_{i}^{2} + \Delta \tau_{i}^{2}} + \sum_{k} \lambda_{k}^{2}, \qquad F_{i}(\alpha_{s}, \vec{\lambda}) = \psi_{i}(\alpha_{s}) \left(1 + \sum_{k} \lambda_{k} \sigma_{k}^{(i)}\right)$$

- \rightarrow α_S evaluated through χ^2 fit taking into account experimental uncertainties and correlations: good fit quality test RGE
- \rightarrow Theory uncertainties (scales, PDFs, NP corrections) propagated through $\pm 1\sigma$ shifts

$\overline{\text{TEEC}} - \alpha_{s}$ scale dependence / choice

$\langle Q \rangle \text{ (GeV)}$	TEEC $\alpha_{\rm s}(Q^2)$ value (NNPDF 3.0)
412	$0.0966 \pm 0.0014 \text{ (exp.)} ^{+0.0054}_{-0.0015} \text{ (scale)} \pm 0.0009 \text{ (PDF)} \pm 0.0001 \text{ (NP)}$
437	$0.0964 \pm 0.0012 \text{ (exp.)} ^{+0.0048}_{-0.0011} \text{ (scale)} \pm 0.0009 \text{ (PDF)} \pm 0.0002 \text{ (NP)}$
472	$0.0955 \pm 0.0011 \text{ (exp.)} ^{+0.0051}_{-0.0015} \text{ (scale)} \pm 0.0009 \text{ (PDF)} \pm 0.0001 \text{ (NP)}$
522	$0.0936 \pm 0.0011 \text{ (exp.)} ^{+0.0043}_{-0.0010} \text{ (scale)} \pm 0.0010 \text{ (PDF)} \pm 0.0001 \text{ (NP)}$
604	$0.0933 \pm 0.0011 \text{ (exp.) } ^{+0.0050}_{-0.0014} \text{ (scale)} \pm 0.0011 \text{ (PDF)} \pm 0.0003 \text{ (NP)}$
810	$0.0907 \pm 0.0013 \text{ (exp.)} ^{+0.0049}_{-0.0020} \text{ (scale)} \pm 0.0011 \text{ (PDF)} \pm 0.0002 \text{ (NP)}$
$-{\langle p_{\mathrm{T3}} \rangle \text{ (GeV)}}$	
$\frac{\langle p_{\rm T3} \rangle \; ({\rm GeV})}{169}$	$\alpha_{\rm s}(\langle p_{\rm T3} \rangle)$ value (TEEC, NNPDF 3.0) 0.1072 \pm 0.0017 (exp.) $^{+0.0067}_{-0.0019}$ (scale) \pm 0.0011 (PDF) \pm 0.0001 (NP)
	$\alpha_{\rm s}(\langle p_{\rm T3} \rangle)$ value (TEEC, NNPDF 3.0) $0.1072 \pm 0.0017 \; ({\rm exp.}) \; ^{+0.0067}_{-0.0019} \; ({\rm scale}) \pm 0.0011 \; ({\rm PDF}) \pm 0.0001 \; ({\rm NP})$ $0.1074 \pm 0.0014 \; ({\rm exp.}) \; ^{+0.0060}_{-0.0014} \; ({\rm scale}) \pm 0.0012 \; ({\rm PDF}) \pm 0.0002 \; ({\rm NP})$
169	$\alpha_{\rm s}(\langle p_{\rm T3} \rangle) \text{ value (TEEC, NNPDF 3.0)}$ $0.1072 \pm 0.0017 \text{ (exp.)} ^{+0.0067}_{-0.0019} \text{ (scale)} \pm 0.0011 \text{ (PDF)} \pm 0.0001 \text{ (NP)}$ $0.1074 \pm 0.0014 \text{ (exp.)} ^{+0.0060}_{-0.0014} \text{ (scale)} \pm 0.0012 \text{ (PDF)} \pm 0.0002 \text{ (NP)}$ $0.1068 \pm 0.0014 \text{ (exp.)} ^{+0.0064}_{-0.0019} \text{ (scale)} \pm 0.0012 \text{ (PDF)} \pm 0.0001 \text{ (NP)}$
169 174	$\alpha_{\rm s}(\langle p_{\rm T3} \rangle) \text{ value (TEEC, NNPDF 3.0)}$ $0.1072 \pm 0.0017 \text{ (exp.)} ^{+0.0067}_{-0.0019} \text{ (scale)} \pm 0.0011 \text{ (PDF)} \pm 0.0001 \text{ (NP)}$ $0.1074 \pm 0.0014 \text{ (exp.)} ^{+0.0060}_{-0.0014} \text{ (scale)} \pm 0.0012 \text{ (PDF)} \pm 0.0002 \text{ (NP)}$ $0.1068 \pm 0.0014 \text{ (exp.)} ^{+0.0064}_{-0.0019} \text{ (scale)} \pm 0.0012 \text{ (PDF)} \pm 0.0001 \text{ (NP)}$ $0.1052 \pm 0.0014 \text{ (exp.)} ^{+0.0054}_{-0.0013} \text{ (scale)} \pm 0.0013 \text{ (PDF)} \pm 0.0001 \text{ (NP)}$
169 174 179	$\alpha_{\rm s}(\langle p_{\rm T3} \rangle) \text{ value (TEEC, NNPDF 3.0)}$ $0.1072 \pm 0.0017 \text{ (exp.)} ^{+0.0067}_{-0.0019} \text{ (scale)} \pm 0.0011 \text{ (PDF)} \pm 0.0001 \text{ (NP)}$ $0.1074 \pm 0.0014 \text{ (exp.)} ^{+0.0060}_{-0.0014} \text{ (scale)} \pm 0.0012 \text{ (PDF)} \pm 0.0002 \text{ (NP)}$ $0.1068 \pm 0.0014 \text{ (exp.)} ^{+0.0064}_{-0.0019} \text{ (scale)} \pm 0.0012 \text{ (PDF)} \pm 0.0001 \text{ (NP)}$ $0.1052 \pm 0.0014 \text{ (exp.)} ^{+0.0054}_{-0.0054} \text{ (scale)} \pm 0.0012 \text{ (PDF)} \pm 0.0001 \text{ (NP)}$

 $[\]rightarrow$ For observables like $R_{3/2}$, $N_{3/2}$, $R_{A\Phi}$ and (A)TEEC, sensitivity to α_S originates from probability of emission of extra radiation (3rd jet etc.)

 $[\]rightarrow$ Effect acknowledged by evolving α_S to $\langle p_{T3} \rangle$ (significantly lower than $\langle H_{T2} \rangle$)

ATEEC – $\alpha_{\rm S}$ scale dependence / choice

$\langle Q \rangle \; ({\rm GeV})$	ATEEC $\alpha_{\rm s}(Q^2)$ value (NNPDF 3.0)
412	$0.0992 \pm 0.0024 \text{ (exp.)} ^{+0.0056}_{-0.0020} \text{ (scale)} \pm 0.0009 \text{ (PDF)} \pm 0.0002 \text{ (NP)}$
437	$0.0986 \pm 0.0017 \text{ (exp.)} ^{+0.0041}_{-0.0009} \text{ (scale)} \pm 0.0010 \text{ (PDF)} \pm 0.0007 \text{ (NP)}$
472	$0.0973 \pm 0.0018 \text{ (exp.)} ^{+0.0038}_{-0.0008} \text{ (scale)} \pm 0.0010 \text{ (PDF)} \pm 0.0001 \text{ (NP)}$
522	$0.0957 \pm 0.0016 \text{ (exp.)} ^{+0.0034}_{-0.0006} \text{ (scale)} \pm 0.0011 \text{ (PDF)} \pm 0.0003 \text{ (NP)}$
604	$0.0930 \pm 0.0019 \text{ (exp.) } ^{+0.0035}_{-0.0005} \text{ (scale)} \pm 0.0012 \text{ (PDF)} \pm 0.0003 \text{ (NP)}$
810	$0.0899 \pm 0.0021 \text{ (exp.)} ^{+0.0031}_{-0.0005} \text{ (scale)} \pm 0.0013 \text{ (PDF)} \pm 0.0001 \text{ (NP)}$
	(1 / 0.0000 (
$-{\langle p_{\rm T3} \rangle \text{ (GeV)}}$	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
$\frac{\langle p_{\rm T3} \rangle \text{ (GeV)}}{169}$	$\alpha_{\rm s}(\langle p_{\rm T3} \rangle)$ value (ATEEC, NNPDF 3.0) 0.1104 \pm 0.0030 (exp.) $^{+0.0070}_{-0.0025}$ (scale) \pm 0.0011 (PDF) \pm 0.0003 (NP)
	$\alpha_{ m s}(\langle p_{ m T3} \rangle)$ value (ATEEC, NNPDF 3.0)
169	$\alpha_{\rm s}(\langle p_{\rm T3} \rangle) \text{ value (ATEEC, NNPDF 3.0)}$ $0.1104 \pm 0.0030 \text{ (exp.)} ^{+0.0070}_{-0.0025} \text{ (scale)} \pm 0.0011 \text{ (PDF)} \pm 0.0003 \text{ (NP)}$ $0.1101 \pm 0.0032 \text{ (exp.)} ^{+0.0052}_{-0.0052} \text{ (scale)} \pm 0.0012 \text{ (PDF)} \pm 0.0008 \text{ (NP)}$
169 174	$\alpha_{\rm s}(\langle p_{\rm T3} \rangle) \text{ value (ATEEC, NNPDF 3.0)}$ $0.1104 \pm 0.0030 \text{ (exp.)} ^{+0.0070}_{-0.0025} \text{ (scale)} \pm 0.0011 \text{ (PDF)} \pm 0.0003 \text{ (NP)}$ $0.1101 \pm 0.0022 \text{ (exp.)} ^{+0.0052}_{-0.0011} \text{ (scale)} \pm 0.0012 \text{ (PDF)} \pm 0.0008 \text{ (NP)}$ $0.1000 \pm 0.0023 \text{ (exp.)} ^{+0.0049}_{-0.0049} \text{ (scale)} \pm 0.0013 \text{ (PDF)} \pm 0.0002 \text{ (NP)}$
169 174 179	$\alpha_{\rm s}(\langle p_{\rm T3} \rangle) \text{ value (ATEEC, NNPDF 3.0)}$ $0.1104 \pm 0.0030 \text{ (exp.)} ^{+0.0070}_{-0.0025} \text{ (scale)} \pm 0.0011 \text{ (PDF)} \pm 0.0003 \text{ (NP)}$ $0.1101 \pm 0.0022 \text{ (exp.)} ^{+0.0052}_{-0.0011} \text{ (scale)} \pm 0.0012 \text{ (PDF)} \pm 0.0008 \text{ (NP)}$ $0.1090 \pm 0.0023 \text{ (exp.)} ^{+0.0049}_{-0.0011} \text{ (scale)} \pm 0.0013 \text{ (PDF)} \pm 0.0002 \text{ (NP)}$ $0.1070 \pm 0.0021 \text{ (exp.)} ^{+0.0044}_{-0.0044} \text{ (scale)} \pm 0.0014 \text{ (PDF)} \pm 0.0002 \text{ (NP)}$

 $[\]rightarrow$ For observables like $R_{3/2}$, $N_{3/2}$, $R_{\Delta\Phi}$ and (A)TEEC, sensitivity to α_S originates from probability of emission of extra radiation (3rd jet etc.)

 $[\]rightarrow$ Effect acknowledged by evolving α_S to $\langle p_{T3} \rangle$ (significantly lower than $\langle H_{T2} \rangle$)

Thoughts on RGE tests through jet measurements

- \rightarrow Can one really claim tests of RGE at scales from event-level observables ???
- e.g. $p_T^{\text{lead. jet}}(R_{3/2})$, $p_T^{\text{(all jets)}}(N_{3/2})$, $(p_{T,1} + p_{T,2})/2$, $H_T/2$, $M_{J1,J2,J3}/2$ (large even for low $p_{T,1-3}$)
- → "Traditional criteria" of minimizing uncertainties/k-factors is not relevant here
- \rightarrow Relevant scale for RGE test using $R_{3/2}$, $N_{3/2}$, $R_{\Delta\Phi}$ and (A)TEEC related to $p_{T,3}$ (low)

Need consistency between scale for theory calculation and RGE test claim; MiNLO procedure may provide a way forward.

TEEC and ATEEC – $\alpha_{\rm S}$ results @ 8 TeV

arXiv:1707.02562 - ATLAS

PDF	$\alpha_{ m s}(m_Z)$ value	TEEC	$\chi^2/N_{ m dof}$
MMHT 2014	$0.1151 \pm 0.0008 \text{ (exp.)} ^{+0.0064}_{-0.0047} \text{ (scale)} \pm 0.0008$	$0012 \text{ (PDF)} \pm 0.0002 \text{ (NP)}$	173 / 131
CT14	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	$0016 \text{ (PDF)} \pm 0.0003 \text{ (NP)}$	161 / 131
NNPDF 3.0	$0.1162 \pm 0.0011 \text{ (exp.)} ^{+0.0076}_{-0.0061} \text{ (scale)} \pm 0.0012 \pm 0.$	$0018 \text{ (PDF)} \pm 0.0003 \text{ (NP)}$	174 / 131
HERAPDF 2.0	$0.1177 \pm 0.0008 \text{ (exp.)} ^{+0.0064}_{-0.0040} \text{ (scale)} \pm 0.$	$0005 \text{ (PDF)} \pm 0.0002 \text{ (NP)} ^{+0.0008}_{-0.0007} \text{ (mod)}$	169 / 131
PDF	$\alpha_{ m s}(m_Z)$ value	ATEEC	$\chi^2/N_{ m dof}$
PDF MMHT 2014	` ′	ATEEC 0010 (PDF) ± 0.0004 (NP)	$\frac{\chi^2/N_{\text{dof}}}{57.0 / 65}$
	$0.1185 \pm 0.0012 \text{ (exp.) } ^{+0.0047}_{-0.0010} \text{ (scale)} \pm 0.0012 \text{ (scale)}$		<u>, </u>
MMHT 2014	$0.1185 \pm 0.0012 \text{ (exp.)} $ $^{+0.0047}_{-0.0010} \text{ (scale)} \pm 0.0010 $ $0.1203 \pm 0.0013 \text{ (exp.)} $ $^{+0.0053}_{-0.0014} \text{ (scale)} \pm 0.0010 $	$0010 \text{ (PDF)} \pm 0.0004 \text{ (NP)}$	57.0 / 65

→ PDF variations similar to / larger than the most conservative PDF uncertainty (NNPDF replicas)

→ Scale and PDF uncertainties > Experimental uncertainty (similar conclusions for (A)TEEC @ 7TeV - see backup)

Similar PDF sensitivity for α_s results @ CMS

$$\rightarrow$$
 R3/2 @ 7 TeV arXiv:1304.7498

MSTW2008: $\alpha_S(M_Z) = 0.1141 \pm 0.0022$ (exp.)

CT10:
$$\alpha_S(M_Z) = 0.1135 \pm 0.0019$$
 (exp.)

$$\rightarrow$$
 R3/2 @ 8 TeV

CMS-PAS-SMP-16-0

0	8	

$$\frac{\text{NNPDF2}}{\alpha_s(M_Z)}$$

=
$$0.1150 \pm 0.0010$$
 (exp) ± 0.0013 (PDF) ± 0.0015 (NP) $^{+0.0050}_{-0.0000}$ (scale)

$$\chi^2/n_{\rm dof}$$

47.2/45

48.5/45

52.8/45

53.9/45

 $\alpha_S(M_Z)$

0.1171

0.1165

0.1155

0.1183

 \pm (exp)

 ± 0.0013

+0.0011

-0.0010

+0.0014

-0.0013

+0.0011

-0.0016

 R_{32}

 $\pm \Delta \alpha_s (M_Z)^{(*)} \chi^2 / n_{\text{dof}}$

NNPDF 2.1: $\alpha_S(M_Z) = 0.1148 \pm 0.0014$ (exp.) ± 0.0018 (PDF) ± 0.0050 (theory)

 $\pm (PDF)$

 ± 0.0024

+0.0022

-0.0023

+0.0014

-0.0015

+0.0012

-0.0023

+0.0020

-0.0035

+0.0020

-0.0019

 \pm (NP)

 ± 0.0008

+0.0006

-0.0008

+0.0008

-0.0009

+0.0011

-0.0019

+0.0003

-0.0008

+0.0010

-0.0009

$$\rightarrow$$
 3-jet mass @ 7 TeV arXiv:1412.1633

MSTW2008-NLO

MSTW2008-NNLO

HERAPDF1.5-NNLO
$$49.9/45$$
 0.1143 ± 0.0007 NNPDF2.1-NNLO $51.1/45$ 0.1164 ± 0.0010

 \pm (scale)

+0.0069

-0.0040

+0.0066

-0.0034

+0.0105

-0.0029

+0.0052

-0.0050

+0.0035

-0.0027

+0.0058

-0.0025

Thoughts on PDF sensitivity in α_s evaluations from jet Xsec ratios

- → *PDF uncertainties non-negligible* (typically between total experimental and NLO scale uncertainty) *for cross-section ratio measurements* & *(A)TEEC:*
- probability of extra radiation (which makes these observables non-trivial) sensitive to the type of partons in the initial state
- both α_S & PDF sensitivities of the observables are reduced when taking ratios and they are both relevant for the α_S evaluation

TEEC and ATEEC – Data / theory comparison @ 7 TeV

$$\rightarrow \text{anti-k}_{t} \text{ R=0.4; } p_{T} > 50 \text{ GeV; } |\eta| < 2.5; \ N_{jets} \geq 2; \ p_{T1} + p_{T2} > 500 \text{ GeV}$$

$$\frac{1}{\sigma} \frac{d\Sigma}{d(\cos \phi)} = \frac{1}{\sigma} \sum_{ij} \int \frac{d\sigma}{dx_{Ti} dx_{Tj} d(\cos \phi)} x_{Ti} x_{Tj} dx_{Ti} dx_{Tj}$$

$$\frac{1}{\sigma} \frac{d\Sigma^{asym}}{d(\cos \phi)} \equiv \frac{1}{\sigma} \frac{d\Sigma}{d(\cos \phi)} \Big|_{\phi} - \frac{1}{\sigma} \frac{d\Sigma}{d(\cos \phi)} \Big|_{\pi - \phi}$$

$$\frac{1}{\sigma} \frac{d\Sigma^{asym}}{d(\cos \phi)} = \frac{1}{\sigma} \frac{d\Sigma}{d(\cos \phi)} \Big|_{\phi} - \frac{1}{\sigma} \frac{d\Sigma}{d(\cos \phi)} \Big|_{\pi-}$$

$$\rightarrow$$
 Energy-weighted angular distributions: $w_{ij} = x_{Ti}x_{Tj} = \frac{E_{Ti}E_{Tj}}{(\sum_k E_{Tk})^2}$

→ Theory prediction: NLOJet++ & NP corrections (PYTHIA6 & HERWIG++)

$$\frac{1}{\sigma} \frac{d\Sigma}{d(\cos \phi)} = \frac{\sum_{a_i, b_i} f_{a_1}(x_1) f_{a_2}(x_2) \otimes \hat{\Sigma}^{a_1 a_2 \to b_1 b_2 b_3}}{\sum_{a_i, b_i} f_{a_1}(x_1) f_{a_2}(x_2) \otimes \hat{\sigma}^{a_1 a_2 \to b_1 b_2}}; \quad \mu_{R} = \mu_{F} = \frac{p_{T1} + p_{T2}}{2}; (250\text{-}1300 \text{ GeV})$$

$$\mu_{\rm R} = \mu_{\rm F} = \frac{p_{\rm T1} + p_{\rm T2}}{2}$$
; (250-1300 GeV)

TEEC and ATEEC – α_S results @ 7 TeV

PDF	$\alpha_{ m s}(m_Z)$ value TEEC	$\chi^2/N_{ m dof}$
MSTW 2008	$0.1175 \pm 0.0010 \text{ (exp.)} + 0.0059 \text{ (scale)} \pm 0.0006 \text{ (PDF)} \pm 0.0002 \text{ (NPC)}$	29.0 / 21
CT10	$0.1173 \pm 0.0010 \text{ (exp.)} ^{+0.0063}_{-0.0020} \text{ (scale)} \pm 0.0017 \text{ (PDF)} \pm 0.0002 \text{ (NPC)}$	28.4 / 21
NNPDF 2.3	$0.1183 \pm 0.0010 \text{ (exp.)} ^{+0.0059}_{-0.0013} \text{ (scale)} \pm 0.0009 \text{ (PDF)} \pm 0.0002 \text{ (NPC)}$	29.3 / 21
HERAPDF 1.5	$0.1167 \pm 0.0007 \text{ (exp.)} \stackrel{+0.0040}{_{-0.0008}} \text{ (scale)} \stackrel{+0.0007}{_{-0.0024}} \text{ (PDF)} \pm 0.0001 \text{ (NPC)}$	28.7 / 21

PDF	$lpha_{ m s}(m_Z)$ value ATEEC	$\chi^2/N_{ m dof}$
MSTW 2008	$0.1195 \pm 0.0017 \text{ (exp.)} ^{+0.0055}_{-0.0015} \text{ (scale)} \pm 0.0006 \text{ (PDF)}$	12.7 / 10
CT10	$0.1195 \pm 0.0018 \text{ (exp.)} ^{+0.0060}_{-0.0015} \text{ (scale)} \pm 0.0016 \text{ (PDF)}$	12.6 / 10
NNPDF 2.3	$0.1206 \pm 0.0018 \text{ (exp.)} ^{+0.0057}_{-0.0013} \text{ (scale)} \pm 0.0009 \text{ (PDF)}$	12.2 / 10
HERAPDF 1.5	$0.1182 \pm 0.0013 \text{ (exp.)} \stackrel{+0.0041}{_{-0.0008}} \text{ (scale)} \stackrel{+0.0007}{_{-0.0025}} \text{ (PDF)}$	12.1 / 10

→ Nominal result (TEEC; CT10):

- good experimental precision
- PDF uncertainty (eigenvectors) covering PDF variations
- → Scale and PDF uncertainties > Experimental uncertainty

Thoughts on α_s results from jet measurements

- \rightarrow Can one really claim tests of RGE at scales from event-level observables ???
- e.g. $p_T^{\text{lead. jet}}(R_{3/2})$, $p_T^{\text{(all jets)}}(N_{3/2})$, $(p_{T,1}+p_{T,2})/2$, $H_T/2$, $M_{J1,J2,J3}/2$ (large even for low $p_{T,1-3}$)
- → "Traditional criteria" of minimizing uncertainties/k-factors is not relevant here
- ightarrow Relevant scale for RGE test using $R_{3/2}$, $N_{3/2}$ and (A)TEEC related to $p_{T,3}$ (low) Need consistency between scale for theory calculation and RGE test claim