The ATLASpdf21 fit

Francesco Giuli (on behalf of the ATLAS Collaboration)

'alphaS-2022' workshop ECT* (Trento, Italy)

01/02/2022

The ATLASpdf21 fit

- > ATLASpdf21 is a PDF fit to multiple ATLAS data sets
- > Attempt to simultaneously fit as many useful ATLAS data sets as possible
- DIS HERA data are the backbone of ATLAS PDF fits we add ATLAS measurements on top of them
- > HERA data provide constraints over a very wide range of x and Q^2
- > LHC data provide additional constraints at medium and high-x and Q²

Data set	\sqrt{s} [TeV]	Luminosity [fb ⁻¹]	Decay channel	Observables entering the fit
Inclusive $W, Z/\gamma^*$ [9]	7	4.6	e, μ combined	η_l (W), y_Z (Z)
Inclusive Z/γ^* [13]	8	20.2	e, μ combined	$\cos \theta$ in bins of $y_{\ell\ell}, M_{\ell\ell}$
Inclusive W [12]	8	20.2	μ	$\eta_{m \mu}$
W^{\pm} + jets [23]	8	20.2	е	p_{T}^{W}
Z + jets [24]	8	20.2	е	$p_{\rm T}^{\rm jets}$ in bins of $ y_{\rm jets} $
$t\bar{t}$ [25, 26]	8	20.2	lepton + jets, dilepton	$m_{t\bar{t}}, p_{\mathrm{T}}^{t}, y_{t\bar{t}}$
<i>tī</i> [15]	13	36	lepton + jets	$m_{t\bar{t}}, p_{\mathrm{T}}^{t}, y_{t}, y_{t\bar{t}}$
Inclusive isolated γ [14]	8,13	20.2, 3.2	-	$E_{\rm T}^{\gamma}$ in bins of η^{γ}
Inclusive jets [16–18]	7, 8, 13	4.5, 20.2, 3.2	-	$p_{\rm T}$ in bins of $ y_{\rm jets} $

2112.11266 (submitted to EPJC)

Advances wrt previous ATLAS PDF fits

- First ATLAS PDF fit which aim to include many ATLAS data sets (in contrast to previous papers where HERA + 1 or 2 other ATLAS data sets were fitted)
- First ATLAS PDF fit which includes 13 TeV data (only <u>NNPDF4.0</u> include 13 TeV data, other global fitters do not)
- Inclusion of scale uncertainties as additional correlated systematic uncertainties (where relevant e.g. W,Z data at 7 and 8 TeV)
- Detailed study of the correlation between the various ATLAS data sets (this is something only experimentalists can do) - gain experience on ATLAS systematic uncertainty treatment to make proposal for use in global fits
- Extended PDF parametrisation 21 free parameters (previous ATLAS PDF fits with 15 or 16 free parameters)
- > First ATLAS PDF fit with **enhanced tolerance** (determined following the MSHT dynamic tolerance procedure) $\mathbf{T} = \sqrt{\Delta \chi^2} = \mathbf{3}$

Theory framework

- All the fits performed using <u>xFitter</u>
- Results checked with an independent fitting code
- LHC cross sections from fastNLO and APPLgrid

Data set	NLO QCD code	LO EW code	NNLO QCD code	NLO EW code
Inclusive $W, Z/\gamma^*$ [9]	MCFM	MCFM	DYNNLO 1.5, FEWZ 3.1.b2	DYNNLO 1.5, FEWZ 3.1.b2
Inclusive Z/γ^* [13]	MCFM	MCFM	NNLOJET	NNLOJET
Inclusive W [12]	MG5_AMC@NLO2.6.4	MG5_AMC@NLO2.6.4	DYNNLO 1.5	DYNNLO 1.5
$W^{\pm} + jets [24]$	N _{jetti}	N _{jetti}	N _{jetti}	Sherpa
Z + jets [25]	Ref. [51]	Ref. [51]	Ref. [51]	Sherpa
$t\bar{t}$ (lepton + jets) [26]	-	Ref. [52]	Ref. [52]	Ref. [55]
$t\bar{t}$ (dilepton) [27]	MCFM	MCFM	Ref. [28]	Ref. [55]
<i>tī</i> [15]	-	Ref. [52]	Ref. [52]	Ref. [55]
Inclusive isolated γ [14]	MCFM	MCFM	Ref. [57]	Ref. [58]
Inclusive jets [16–18]	NLOJET++	NLOJET++	NNLOJET	Ref. [63]

- For 7,8 TeV W,Z data scale uncertainties are applied as additional correlated systematic uncertainties (comparable with experimental systematics)
- We evaluated the impact of scale uncertainties for the other data sets and it is found to be negligible

01/02/22

Fit model

PDF parametrisation:

 $xf(x) = Ax^{B}(1-x)^{C}P(x) = Ax^{B}(1-x)^{C}(1+Dx+Ex^{2}+Fx^{3})$ (with an extra negative term for the gluon $-A'_{g}x^{B'g}(1-x)^{C'_{g}}$)

- Constraints for the central fit from sum rules
- > At $Q_0^2 = 1.9$ GeV², we parametrise $xu_V, xd_V, x\overline{u}, x\overline{d}, xs$ and xg
- > Central fits with **21 parameters** with $\alpha_s(m_z) = 0.118$ (previous ATLAS fits with 15 or 16 free parameters)

>
$$P_g(x) = 1 + D_g(x)$$
, $P_{u_V} = 1 + D_{u_V}x + E_{u_V}x^2$ and $P_{d_V} = 1 + D_{d_V}x$

▶ No constraints on the A and B parameters of the sea quarks, so no constraints on $x\bar{d} - x\bar{u}$ or on $x\bar{s}/(x\bar{d} + x\bar{u})$ as $x \to 0$ (either shape or normalisation)

> Model assumptions and uncertainties:

- \blacktriangleright heavy quark masses m_c= 1.41 GeV and m_b = 4.2 GeV
- $\geq Q_{min}^2$ (10 GeV²) cut off for inclusion of data in the fit
- > Starting scale Q_0^2
- ➤ m_{top} (173.3 GeV)

Result	S
--------	---

Total χ^2 /NDF	2010/1620
HERA χ^2 /NDP	1112/1016
HERA correlated term	50
ATLAS W, Z 7 TeV χ^2 /NDP	68/55
ATLAS Z/γ^* 8 TeV χ^2/NDP	208/184
ATLAS W 8 TeV χ^2 /NDP	31/22
ATLAS W and Z/γ^* 7 and 8 TeV	
correlated term	71 = (38 + 33)
ATLAS direct γ 13/8 TeV χ^2 /NDP	27/47
ATLAS direct γ 13/8 TeV	
correlated term	6
ATLAS V+ jets 8 TeV χ^2 /NDP	105/93
ATLAS $t\bar{t}$ 8 TeV χ^2 /NDP	13/20
ATLAS $t\bar{t}$ 13 TeV χ^2 /NDP	25/29
ATLAS inclusive jets 8 TeV χ^2 /NDF	207/171
ATLAS V+ jets 8 TeV and	
$t\bar{t}$ + jets 8,13 TeV and	
R = 0.6 inclusive jets 8 TeV correlated term	87 = (16 + 9 + 21 + 41)

> This is a **better fit than that achieved by global fits to these data**

Correlation between various data sets

Possible correlation between the ATLAS data sets carefully investigated

Systematic uncertainty	8 TeV W + jets	8 TeV Z + jets	8 TeV $t\bar{t}$ lepton + jets	13 TeV $t\bar{t}$ lepton + jets	8 TeV inclusive jets
Jet flavour response	JetScaleFlav2	Flavor Response	flavres-jes	JET29NP JET Flavour Response	syst JES Flavour Response*
Jet flavour composition	JetScaleFlav1Known	Flavor Comp	flavcomp-jes	JET29NP JET Flavour Composition	syst JES Flavour Comp
Jet punchthrough	JetScalepunchT	Punch Through	punch-jes	-	syst JES PunchThrough MC15
	JetScalePileup2	PU OffsetMu	pileoffmu-jes	-	syst JES Pileup MuOffset
lat scala	-	PU Rho	pileoffrho-jes	JET29NP JET Pileup RhoTopology	syst JES Pileup Rho topology*
Jet seale	JetScalePileup1	PU OffsetNPV	pileoffnpv-jes	JET29NP JET Pileup OffsetNPV	syst JES Pileup NPVOffset
	-	PU PtTerm	pileoffpt-jes	JET29NP JET Pileup PtTerm	syst JES Pileup Pt term
Jet JVF selection	JetJVFcut	JVF	jetvxfrac	-	syst JES Zjets JVF
B-tagged jet scale	-	btag-jes	JET29NP JET BJES Response	-	-
Jet resolution	-	jeten-res	JET JER SINGLE NP	-	-
Muon scale	-	-	mup-scale	MUON SCALE	-
Muon resolution	-	-	muonms-res	MUON MS	-
Muon identification	-	-	muid-res	MUON ID	-
Diboson cross section	-	-	dibos-xsec	Diboson xsec	-
Z + jets cross section	-	-	zjet-xsec	Zjets xsec	-
Single-t cross section	-	-	singletop-xsec	st xsec	-

- > Entries in the same raw taken 100%-correlated for V+jets and $t\bar{t}$ +jets (R=0.4)
- > Different degrees of correlation are considered of the inclusive jet data (R=0.6), because of the differing choice of the jet radius wrt V+jets and $t\bar{t}$ +jets
- Exact degree of correlation to the inclusive jet data does not change the resulting PDFs

Correlation between various data sets

Correlation between various data sets

Impact of the various data sets on PDFs

- > We first removed all the **inclusive W,Z data**
- > Ratio of strange to light sea quarks very poorly determined (left plot)
- > We retain the precise W,Z 7 TeV data and remove the W,Z 8 TeV data
- We see that whereas the W,Z 7 TeV serve to fix the low-x sea quarks, the 8 TeV data still has something to add (right plot)

Frances

Impact of the vario

> We first removed all the inclusive W,Z

01/02/22

The fit without W,Z data can constrain these data results in substantial decre

Francesco Giuli - francesco.gi 👸 0.5 Impact of the various data

- We removed all the 8 TeV V+jets data
- As for the <u>ATLASepWZVjets20</u> fit we see that the effect red) is to harden the high-x \overline{d} and soften the high-x \overline{s}
- Without them we cannot really determine the ratio (at high-x

13

Impact of the various data sets on PDFs

- > We removed all the $t\bar{t}$ data from the fit
- These data marginally soften the high x gluon (blue to red) and reduce its uncertainties at high-x - 8 TeV has the bigger effect (backup)
- Milder impact wrt what was found for the <u>ATLASepWZtop18</u> fit (but here we have many other data sets added)

Impact of the various data sets on PDFs

- > We removed all the 13/8 TeV photon ratio data
- This results in a marginal softening of the high-x gluon (blue to red) but no decrease in uncertainty
- We removed the 8 TeV inclusive jet data
- This results in a marginal shape change of the gluon PDF (blue to red) and very substantial decrease in its high-x uncertainty

xg(x,Q²)/xg(x,Q²), ...

0.95

 10^{-3}

 10^{-2}

Model uncertaintie

- We vary the input settings for the fit
- Impact on the gluon PDF in ratio bel & 1.05
- The variation of the starting scale Q₀² most significant
- We chose R = 0.6 since this is theoret preferred – difference wrt R = 0.4 <u>AD</u> as an additional uncertainty

ATLAS

— m_b up

 $Q^2 = 1.9 \, \text{GeV}^2$

✓ ATLASpdf21, T=1

m_b down

m_c symmetric

10⁻¹

Х

10⁻³

 10^{-2}

10⁻¹

х

 10^{-3}

 10^{-2}

10⁻¹

х

Combining uncertainties

Model and parametrisation added in quadrature and combined to the experimental uncertainties

- > ATLAS R_s has come DOWN from ~1.0 to 0.8
- MSHT, CT and NNPDF R_s have come UP from ~0.5 to 0.8 when including W,Z 7 TeV ATLAS data
- Shift from epWZVjet20 to ATLASpdf21 due to a combination of adding W,Z 8 TeV data and our freer low-x parametrisation

Comparison to global PDF sets

The addition of ATLAS data has resulted in the d_V PDF moving away from the HERAPDF towards the global fits

Lower χ² for these data than the global fitters

PDF (free pars)	χ^2/NDP
ATLASpdf21 (21)	2010/1641
CT18 (29)	2135/1641
CT18A (29)	2133/1641
MSHT20 (52)	2218/1641
HERAPDF2.0 (14)	2262/1641
NNPDF3.1	2109/1641

Х

х

Comparison to global PDF sets

- Nice agreement between all the various PDF sets for *ū*
- The d̄ also moves towards the global fits, being much harder than that of the HERAPDF at high-x

PDF (free pars)	χ^2/NDP
ATLASpdf21 (21)	2010/1641
CT18 (29)	2135/1641
CT18A (29)	2133/1641
MSHT20 (52)	2218/1641
HERAPDF2.0 (14)	2262/1641
NNPDF3.1	2109/1641

х

х

Comparison to global PDF sets

- xg is more similar to HERAPDF and NNPDF
- Note that ABMP uses a \succ different value of $\alpha_s(m_z)$
- xs agrees with MSHT20 and CT18A nicely

PDF (free pars)	χ^2/NDP
ATLASpdf21 (21)	2010/1641
CT18 (29)	2135/1641
CT18A (29)	2133/1641
MSHT20 (52)	2218/1641
HERAPDF2.0 (14)	2262/1641
NNPDF3.1	2109/1641

Conclusions & outlook

- This fit demonstrates that it is possible to fit, simultaneously, and with small uncertainties, a very wide portfolio or ATLAS data from different years, and across the whole spectrum of QCD processes
- Making proper use of the detailed correlated uncertainties as recommended by ATLAS is essential in order to beat down these uncertainties and achieve the precision demanded by the experimental uncertainties
- > This is very important for any fits for instance for α_s , since they can be very sensitive to small changes
- Use of NNLO theory is essential, as the ever shrinking experimental uncertainties continue to challenge those from the theoretical predictions
- We still have data available for analysis, and soon the start LHC Run 3 will allow us to push down the experimental uncertainties yet further, over even more of the LHC phase space
- > Stay tuned!

Backup Slides

Some ATLAS α_s studies

- > In this QCD analysis we do not attempt a simultaneous PDF and α_s fit, but ATLAS has produced α_s fits in the past
- Measurement of the transverse energy-energy correlations in multi-jet events -<u>Phys. Lett. B 750 (2015) 427</u>, <u>Eur. Phys. J. 77 (2017) 872</u>
- > Measurement of the rapidity and transverse momentum dependence of dijet azimuthal decorrelations using $R_{\Delta\phi}$ <u>Phys. Rev. D 98 (2018) 092004</u>

26

$$\begin{aligned} & \text{The } \chi^2 \text{ formula} \\ &= \sum_{ik} \left(D_i - T_i (1 - \sum_j \gamma_{ij} b_j) \right) C_{\text{stat}, ik}^{-1} (D_i, D_k) \left(D_k - T_k (1 - \sum_j \gamma_{kj} b_j) \right) & \text{partial} \\ &+ \sum_i \log \frac{\delta_{i,\text{uncor}}^2 T_i^2 + \delta_{i,\text{stat}}^2 D_i T_i}{\delta_{i,\text{uncor}}^2 D_i^2 + \delta_{i,\text{stat}}^2 D_i^2} & \text{log penalty term} \\ &+ \sum_j b_j^2 & \text{correlated term} \end{aligned}$$

- > D_i represents the measured data and T_i represents the corresponding data predictions
- > $\delta_{i,uncor}$ and $\delta_{i,stat}$ are the uncorrelated systematics and statistical uncertainties on D_i
- > Correlated systematics, described by γ_{ij} , are accounted for using the nuisance parameters b_j
- \succ C_{stat,ik} is the statistical (plus uncorrelated) covariance matrix
- > The log penalty term is a small bias correction term

ne PDF uncertainties are very small

shapes are not large, but they can be Fs

es are included but not correlated between hown – smaller effect

01/02/22

29

Correlation between various data sets

The major effect of the correlations come from the correlations between V+jets and tt+jets

- The exact degree of correlation to the inclusive data does not change the resulting PDFs significantly
- > The choice of correlating all the inclusive jet systematics is also not important

> This affects the χ^2 but has little effect on the PDFs

Combining uncertainties

Model and parametrisation added in quadrature and combined to the

Description of W,Z 7 TeV data

37

Description of W,Z 8 TeV data

Description of V+jets data

Description of top data

Description of photon data

- Other PDFs e.g. MSHT20 and NNPDF3.1 also have a less good description of the W-electron asymmetry (e.g. 34/12)
- > The ATLAS fit provides a fair description, $\chi^2/NDF = 126/92$, of Tevatron data, which mostly influence the high-x valence quarks

Description of W,Z 5.02 TeV data

- The data have not been included because there is no information on full correlated systematics
- They are well described, apart from a single data point

Data set	χ^2 /ndf
Z	22.11/5
W^+	11.18/11
W-	11.65/11

Description of A_{FB} 7 TeV data

> AFB data is sensitive to $\sin^2 \theta_W$ - a lot more data from the 8 TeV Z3D analysis

- These were not included in the fit both because of this sensitivity and because these asymmetry data cover kinematic regions which are not fully predicted at NNLO
- They are well described as far as one can tell within the current theoretical limitations

Data set	χ^2/ndf
ee CC	18.95/17
ee CF	21.10/17
$\mu\mu$	3.81/17

Description of Z3D asymmetry 8 TeV data

480

500

Bin number

kā∕xū

The asymmetry of antimatter in the proton

- Paper published on Nature
- It shows $\bar{d}(x)/\bar{u}(x)$ compared to various predictions
- \succ CT18 describes E906 for x >0.2 within its error band but older variants follow E866 more closely

- MHST20 closer to CTEQ6m
- ATLASpdf21 closer to SeaQuest

46

It seems that because we did not try to fit high-x data perfectly, our PDFs are free enough to accommodate SeaQuest