

Fonds national suisse Schweizerischer Nationalfonds Fondo nazionale svizzero Swiss National Science Foundation

Results of a new reconstruction likelihood method

G. Emery (UniGE/DPNC) CTA Swiss day 2022

Imaging Atmospheric Cherenkov Telescopes Observations and classical reconstruction

- IACTs collect the Cherenkov light from extensive air shower
 - Indirect information on the primary over a large effective area
 - Large background over gamma-ray signal of interest
- Signal : photons reaching the camera pixels
 - Photo-multiplier tubes (in LST-1) \rightarrow convert a photon to a cascade of electrons
 - Electronics measure these electrons

LH fit Reconstruction pipeline

CTA Swiss day – January 12th 2022

Spatio-temporal likelihood reconstruction Cta

- Use the **full waveform** recorded by the CTA camera, combined with the knowledge of the instrument response and a space-time EAS image development model
- Fit the model by likelihood maximisation

$$\ln L = \sum_{i}^{pixels} \sum_{j}^{times} \ln \left(\sum_{k=0}^{+\infty} Poisson(k|\boldsymbol{\mu}_{i}) \times Gaussian(\boldsymbol{W}_{ij}|k, \boldsymbol{T}_{i}, \hat{t}_{i}) \right)$$

Spatio-temporal likelihood reconstruction Cta

- Approximations :
 - Finite sum over relevant Poisson terms at low signal
 - Gaussian approximation at high signal
 - Common pulse template for all pixels
 - No temporal widening of the pulse

ON-OFF analysis

Case of the reflected background region in wobble mode observations

IACT : Large background contamination

- Identify signal (gamma-rays) from background (hadrons, electrons) \rightarrow gammaness
 - imperfect \rightarrow contamination remains
- Estimate remaining contamination : ON/OFF
 - ON region
 - source position
 - signal and background
 - OFF regions
 - only background
 - Excess : (signal_{on} + background_{on}) estimated_background_{fromOFF}
- Wobble mode : pointing with offset from the source at alternating positions
- reflected background : OFF regions = rotation of the ON region around the pointing direction

CTA Swiss day – January 12th 2022

Gamma-like event count

ON-OFF analysis

Case of the reflected background region in wobble mode observations

IACT : Large background contamination

- Identify signal (gamma-rays) from background (hadrons, electrons) \rightarrow gammaness
 - imperfect \rightarrow contamination remains
- Estimate remaining contamination : ON/OFF
 - ON region
 - source position
 - signal and background
 - OFF regions
 - only background
 - Excess : (signal_{on} + background_{on}) estimated_background_{fromOFF}
- **Wobble** mode : pointing with offset from the source at alternating positions
- reflected background : OFF regions = rotation of the ON region around the pointing direction

CTA Swiss day – January 12th 2022

83.25

21.75

21.50

21.25

84 00

RA [dea]

84.25

84.50

ON-OFF analysis

Case of the reflected background region in wobble mode observations

IACT : Large background contamination

- Identify signal (gamma-rays) from background (hadrons, electrons) \rightarrow gammaness
 - imperfect \rightarrow contamination remains
- Estimate remaining contamination : ON/OFF
 - ON region
 - source position
 - signal and background
 - OFF regions
 - only background
 - Excess : (signal_{on} + background_{on}) estimated_background_{fromOFF}
- **Wobble** mode : pointing with offset from the source at alternating positions
- reflected background : OFF regions = rotation of the ON region around the pointing direction

CTA Swiss day – January 12th 2022

180

Performance assessment on simulated Crab-like source Source independent analysis in wobble mode

- Standard : Hillas-based reconstruction
- Sensitivity : CTA criteria
- Event selection :
 - Not too faint
 - Most signal in the camera
 - Energy dependent maximum direction deviation and minimum photon identifying variable value
- Improvements at low energy using the likelihood reconstruction

Data / MC simulation comparison Crab nebula 20th November 2020

- 3.5 hours of observation
- Bright, constant source with known spectrum
- Agreement for signal of fitted quantities (e.g. width, length, time_gradient) and primary quantities (here energy) distribution is good at all image intensities

0.0

- Some bias are seen at high intensity

Application to LST-1 observations Crab nebula 20th November 2020

- 3.5 hours of observation
- Bright, constant source with known spectrum

*E*_{*Reco} 0.2-25 TeV*</sub>

Cumulative sky map of gamma-like events (y-ness>0.7)

 \leftarrow θ² obtained applying energy dependent γ-ness cuts optimised on MC

E_{Reco} 0.05-25 TeV

Application to LST-1 observations Crab nebula 20th November 2020

 Spectral agreement is quite good (fit between 50 GeV and 10 TeV) but not perfect. 50 GeV used here since it is the threshold for the MAGIC spectrum.

BL Lacertae flare observation

BL Lacertae flare observation

- The likelihood reconstruction method using the full waveform development of the signal in the camera, shows improved performance compared to the standard Hillas reconstruction. Especially at low energy.
- Realistic results on Crab nebula data
 - Spectral agreement should improve with LH-fit independent developments to the subsequent analysis steps
- Interesting variability episode of **BL lacertae** analysed
- Implemented in the analysis pipeline for the LST prototype
- Work is ongoing to improve the code and model
 - Possible further performance improvements
 - Code acceleration
- Plans to extend the method to a stereoscopic reconstruction