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• Introduction to indirect detection


• Most promising targets


• Current constraints on dark matter


• Prospects with CTA in the framework of dark matter


• Conclusions
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INDIRECT SEARCHESINDIRECT SEARCHES
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Dark Matter (DM) 
annihilation

Standard Model particles 
(bosons, quarks, leptons)

Final state products 
such as  γ rays
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Spectral lines

INDIRECT SEARCHESINDIRECT SEARCHES
Continuum spectrum

• Up to the dark matter particle mass 
• Non trivial to distinguish from other standard 

broadband astrophysical emissions 

• Prominent and narrow spectral line = “Smoking gun” 
signature 

• Loop processes producing γX with X = γ, h, Z, or non 
Standard Model neutral particle 

• No background as standard astrophysical processes do 
not produce monochromatic emission.  

•

Dark matter Signatures

Eγ = mDM(1 − m2
X /4m2

DM)
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INDIRECT SEARCHESINDIRECT SEARCHES

dΦ (⟨σv⟩, J)
dE

=
1

4π
⟨σv⟩
2m2

χ ∑
f

BRf
dNf

dE
× ∫ΔΩ ∫los

ρ2
DMdsdΩ

Astrophysical 
J factor

Particle Physics 
factor <σv> = annihilation cross-section 

mχ = DM particle mass 
BRf = branching ratio 
dNf/dE = differential spectrum 
ρDM = DM density

where

Expected γ-ray flux from DM annihilation



WHERE TO SEARCH?
Rich-DM environments

More annihilations

Satellite galaxies 
• Medium statistics due to the distance 
• Astrophysical background and foreground

Dwarf galaxies 
• Satellites orbiting the Milky Way  
• Lower statistics due to the distance and lower content 

of DM (compared to GC) 
• Absence of active astrophysical objets nearby

Galactic center (GC) 
• Densest DM region 
• Large astrophysical background 
• Only visible in the South hemisphere
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DIFFERENTIAL FLUX SENSITIVITY
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DIFFERENTIAL FLUX SENSITIVITY
Ref: https://pos.sissa.it/395/005/pdf 
 • Better angular resolution will help with the 

regions crowded by astrophysical sources 

(typically GC)

• Better energy resolution will help catch 

spectral feature (line search for instance)

• Larger FoV will help with the background 

estimation and large region investigation 

(Galactic center halo) 
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SO FAR …
No signal from DM annihilation  

has been detected by any of the 
current instruments

Derivation of upper limits 
on the DM annihilation cross 
section <σv> as a function of 

the DM particle mass Statistical analysis  
based on a log-likelihood technique
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Ref: https://pos.sissa.it/395/511/pdf Ref: https://pos.sissa.it/395/520/pdf 

UPPER LIMITS - OVERVIEW
Current observatories

γγ channel
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Ref: https://arxiv.org/pdf/1709.07997.pdf 

* LMC will be observed anyway for astrophysical reason

CTA - DARK MATTER PROGRAMCTA - DARK MATTER PROGRAM



CTA - DARK MATTER PROGRAM
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CTA - DARK MATTER PROGRAM

Ref: https://arxiv.org/pdf/1709.07997.pdf 

Continuum channel Line search γγ channel Continuum channels with dSph 

• Galactic halo = best target for CTA but large uncertainty on the density profile 

• Best case scenario: full exclusion of E < 100 TeV mass range (if no detection)
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Ref: https://pos.sissa.it/395/047/pdf 

• SWGO shows very similar upper limits as CTA

• Combination of both can be performed to 
increase the sensitivity 

CTA - DARK MATTER PROGRAMCTA - DARK MATTER PROGRAM
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• Combined upper limits between Fermi-LAT, 
HAWC, H.E.S.S., MAGIC, and VERITAS  

Ref: PoS ICRC2021 (2021) 528, arXiv: 2108.13646

CONSTRAINTS ON DARK MATTERCONSTRAINTS ON DARK MATTER

• Starting point for combinations between 
different types of targets ? 
(So far dwarf spheroidal galaxies only) 

•  2-3 times more constraining

• Pave the way for CTA (North and South) 

• But also for future combination between 
observatories (Fermi-LAT, CTA, SWGO, LHAASO…) 



CONCLUSIONS
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CONCLUSIONS

• CTA can also set constraints on Axion-like particles (Gamma-ray propagation) and 
Primordial Black hole that can be linked to the dark matter topic  

• So far no detection of dark matter signals towards any of the observed targets

• Through statistical analyses, constraints are derived on the annihilation cross-section

• CTA gives a new chance of dark matter discovery thanks to its better energy and angular 
resolution and the size of its FoV

• Possible combination of the CTA results with those of the current and future observatories
The combined technique is currently being developed on the dwarf spheroidal galaxies
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THANKS FOR YOUR ATTENTION!

Fornax - credits: ESO/Digitized Sky Survey 2
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BACKUP
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DWARF SPHEROIDAL GALAXIES (dSphs)

~150 - 2500 bright stars 
(tracers)

• Located between ~20 kpc and 200 kpc 
• No rotation 
• Little or no gas 
• Old stellar population 
• Dark matter dominated

• Higher J factor 
• ~ tens of bright stars 
• Large uncertainties on their 

dark matter distribution

UltrafaintsClassicals

A few properties … Sculptor - Classical dSph

Reticulum II - Ultrafaint dSph



FIVE EXPERIMENTS
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All complementary 
Cover a wide energy range

MAGIC 
2 imaging air Cherenkov telescopes (IACT) 

30 GeV to 100 TeV

H.E.S.S. 
5 imaging air Cherenkov telescopes (IACT) 

30 GeV to 100 TeV

HAWC 
300 water Cherenkov detectors 

300 GeV to 100 TeV

VERITAS 
4 imaging air Cherenkov telescopes (IACT) 

85 GeV to 30 TeV

Fermi-LAT 
Space telescope 

20 MeV to 1 TeV

FIVE EXPERIMENTS

TeVGeVMeV



ℒJ =
1

ln(10) 2πσJJ
exp (−

(log10 J − log10 J̄)2

2σ2
J )
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Likelihood of individual instruments 
and individual dSphs J factor nuisance

ℒ(⟨σv; ν |𝒟dSphs) = ∏
k=1

∏
l=1

ℒdSph,l,k (⟨σv⟩; Jl,k, νl,k |𝒟dSphs) 𝒥k(Jk | J̄, σlog10 J)

LIKELIHOOD FUNCTION

STATISTICAL ANALYSISSTATISTICAL ANALYSIS

ℒdSph,l,k = ∏
e=1

ℒPe
(⟨σv⟩, J |𝒟datae

)

Log-normal likelihood to model the 
uncertainties of the J factorProduct of likelihoods of all energy bins

dSph Experiment



TS = − 2 ln
ℒ (⟨σv⟩; ̂ ̂ν |𝒟dSphs)
ℒ ( ̂⟨σv⟩ ; ̂ν |𝒟dSphs)

LOG-LIKELIHOOD RATIO TEST STATISTICS Constrained 
minimization

Global 
minimization

Parameter of interest

Nuisance parameters 2.71 for 1-sided 95% Confidence Level 
and 1 degree of freedom

Data of the dSphs⟨σv⟩

ν

𝒟dSph

TS

λ (⟨σv⟩ |𝒟dSphs) = − 2 ln
ℒ (⟨σv⟩; ̂ ̂ν |𝒟dSphs)
ℒ ( ̂⟨σv⟩ ; ̂ν |𝒟dSphs)
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STATISTICAL ANALYSISSTATISTICAL ANALYSIS

Ref: Cowan et al. (2011), European 
Physical Journal C, vol. 71 p1554



λ (⟨σv⟩ |𝒟dSphs) = − 2 ln
ℒ (⟨σv⟩; ̂ ̂ν |𝒟dSphs)
ℒ ( ̂⟨σv⟩ ; ̂ν |𝒟dSphs)

22

LOG-LIKELIHOOD RATIO TEST STATISTICS

2.71 (95% C.L.)

T
S

<σv>  (cm3.s-1)

STATISTICAL ANALYSISSTATISTICAL ANALYSIS

Upper limit at 95% C.L.  
for a given channel / DM mass /

dwarf / experiment 

Constrained minimum

Global minimum

NEW Upper limit at 95% C.L. 
for a given channel / DM mass / dwarf 


