

FACULTÉ DES SCIENCES Département d'astronomie FONDS NATIONAL SUISSE Schweizerischer Nationalfonds FONDO NAZIONALE SVIZZERO **SWISS NATIONAL SCIENCE FOUNDATION**

Variability of blazars: delays from long-term multi-wavelength observations

Vitalii Sliusar

University of Geneva, Department of Astronomy

CTA Swiss day 2022

Classification of AGNs

- Active Galactic Nuclei:
 - Radio quiet:
 - Seyfert 2 and Seyfert 1
 - Radio loud:
 - Radio galaxy:
 - Narrow-line radio galaxy
 - Broad-line radio galaxy
 - Blazars: BL Lac and FSRQ (<5% of AGNs)
- Blazars (Abdo et al. 2010, Fan et al. 2016):
 - LBL: *v*_p < 10¹⁴ (39%)
 - IBL $10^{14} < v_p < 10^{15} (43\%)$
 - HBL $v_{\rm p} > 10^{15} (18\%)$

Bazars: outlook

Acceleration of particles •

- Diffusive shock acceleration \bullet
- **Relativistic reconnections**
- Stochastic acceleration
- Magnetoluminescence

Supermassive Black Hole 10⁶−10⁹ M_☉

Non-thermal Radio - TeV emission

Extended plasma jet (~kpc - ~Mpc scales)

Radiative processes •

- Leptonic: ultrarelativistic electrons, synchrotron and IC radiation
- Handronic: proton-synchrotron, pion photoproduction:
- Lepto-hadronic: mixture of leptonic and hadronic

Artistic view. Image credit: DESY, Science Communication Lab

SED inter-model degeneracy

- Mrk 421:
 - Leptonic scenario: electrons $E > 10^{13} eV$
 - Hadronic scenario: protons $E > 10^{18} eV$
- Mrk 501:
 - two zone SSC: quiescent region and a second variable emission region

Ahnen et al. 2017, A&A 603, A31

Multi-band variability is a key to distinguish between the models

Mrk 421 and Mrk 501: blazar laboratories?

- Bright blazars ullet
 - Easy to detect with IACTs, Fermi, in X-rays, optical and radio
 - Regular observations in TeV (MAGIC, FACT, Veritas, HAWC), optical and radio
 - Relatively easy to characterize the entire SED during single "observation"
 - Evolution of SED over time during individual flares
- No strong BLR effects •
 - Less additional uncertainties than for FSRQs
- Nearby blazars ($z \sim 0.03$, ~ 140 Mpc) ullet
 - Weak effect from EBL (unknown systematics for any blazar)
 - Imaging with VLBI (MOJAVE, VLBA) down to scales of 0.01 pc $(100 - 1000 R_s)$

Spectral variability

- Mrk 421:
 - Synchrotron peak shifts from typical HBL to IBL
 - One-zone SSC reasonably describes SED of Mrk 421
 - Flaring activity can also be described by two-zone SSC: one zone producing quiescent emission and another smaller zone producing intraday variability
 - Highest variability in X-rays and TeVs, lowest in radio and GeVs
 - Sub-hour variability on the top of flux variations occurring on multi-hour timescales (Acciari et al, 2020)
- Mrk 501:
 - Synchrotron peak shifts from HBL to eHBL
 - One-zone SSC reasonably describes SED of Mrk 501, but introduction of a second small region may be necessary to describe a feature at 3 TeV
 - Highest in X-rays and VHE, substantial variability in optical though not correlated with X-rays and VHE
 - Since about 2016 (MJD 57500) the source is in low state
 - Shortest variability of minutes-scale (Albert et al., 2007)

 10^{-9} 10^{-10} L^{2} 10^{-10} L^{2} 10^{-12} 10^{-13}

Mrk 421 long-term MWL campaign

- Mrk 421 MW campaign results: •
 - F_{var} has a typical two peak structure:
 - lowest variability in radio and GeV
 - highest variability in X-rays and TeVs
 - X-rays are strongly correlated with TeVs with sub-day lag (<0.6 days)
 - Radio, optical and GeV are not correlated with X-rays or TeV
 - Radio, optical are widely correlated with GeV with later leading by 30-100 days.
 - Observed variability is compatible with one-zone SSC scenario
 - 22 individual TeV flares were identified:
 - distribution of time separation between those is peaking between 7.5 and 30 days
 - such time separation compatible with expected duration due to Lense–Thirring accretion disc precession

Fact Collaboration+VS+MB+RW, A&A 647, 2021

Inter-flare period for TeV flares

Mrk 501 long-term MWL campaign

- Mrk 501 observations from December 2012 to April 2018 lacksquare
 - Data from radio to VHE (FACT, 630 nights / 1783 hours), 8 instruments in total, unbiased observations •
 - Mrk 501 was found in all states: typical, high and low state (after MJD 57600)

Fact Collaboration+VS+MB+RW, A&A 655, 2021

Mrk 501 long-term MWL campaign

- Mrk 501 MW campaign results:
 - F_{var} has a typical two peak structure:
 - lowest variability in radio and GeVs
 - highest variability in TeVs and X-rays
 - X-rays strongly correlated with TeVs with a sub-day lag (<0.4) days)
 - Radio, optical and GeV are not correlated with X-rays or TeV.
 - Radio, optical are widely correlated with GeV lagging by ~200 days.
 - Observed variability is compatible with one-zone SSC scenario
 - 37 individual TeV flares were identified:
 - distribution of time separation between them is peaking between ~15-20 days
 - such time separation compatible with expected duration due to Lense–Thirring accretion disc precession

10

Radio-y-ray connection

- Long-term MWL campaigns:
 - The radio emission can be reproduced accurately convolving the GeV variations by a delayed asymmetric response (a fast rise and a slower decay after a delay of ~43 days and ~217 days for Mrk 421 and Mrk 501 respectively)
 - Fast radio flare (MJD 56897) cannot be reproduced (different response?)
- Modelling:
 - Simplified conical jet model can be used (Türler et al. 1999, Esposito et. 2015)
 - Adiabatic blob expansion model proposed and implemented in <u>JetSeT</u> (Tramacere 2020):
 - self-consistent numerical and phenomenological framework to explain radio and γ -ray responses and delays
 - expansion rate constrained to < 0.3c yields conical jet profile at scale above \approx 1-10 pc
 - gamma-rays-radio correlation and delay cast doubt on lepto-hadronic mechanism

 $\Delta_{r=t_{exp}}\beta c\Gamma$ (obs rest frame)

Blazars science with CTA

- CTA AGN observation strategy:
 - Sky surveys
 - MW campaigns using ToO and MoUs •
 - Long-term monitoring
 - AGN flares follow-ups
 - High-quality spectra (LIV, EBL, IGMF studies) •
- With CTA sensitivity and angular resolution it will be possible to:
- Resolve the EBL density by observing blazars on different redshifts
- Study rapid sub-minute timescales variability (also in low source state)
- Construction of SEDs with better sampling in energy
- SED evolution on ten-minutes scales for bright sources (Mrk 421, Mrk 501)
- Intergalactic magnetic fields characterisation

scaling fact

EBL

0.2

Conclusions

- Blazars are still poorly understood: lacksquare
 - Simultaneous and dense MWL monitoring involving CTA is a key to disentangle and constrain models
- Long-term MWL campaigns:
 - Mrk 421:
 - X-rays and TeVs are tightly correlated with <0.6 days lag
 - 93% of the TeV flares are coincident with X-ray ones
 - Radio emission lags behind GeV by ~40 days and can be reproduced using adiabatic expansion
 - Mrk 501: \bullet
 - X-rays and TeVs are correlated with <0.38 days lag
 - "Only" ~50% of detected TeV flares are coincident with X-ray ones
 - Radio emission lags behind GeV by ~200 days and can be reproduced using adiabatic expansion
 - Common for Mrk 421 and Mrk 501: \bullet
 - The strongest variability is in the X-ray and TeV bands
 - X-rays and TeV cooling times and prediction from adiabatic blob expansion.

Thank you for your attention!

vitalii.sliusar@unige.ch

Long term variability is compatible with SSC model. Lepto-hadronic and hadronic models are disfavoured by the

