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Laser Interferometry vs. Atom Interferometry
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Atom-Light Interactions w CAMBRIDGE AION

e Atom optics implemented through stimulated absorption/emisison
e Raman scattering or Bragg scattering modes
e Two photon and single photon transitions
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Simulated Interference Pattern

Simulated atom cloud interference pattern pixelated images. Images, going from the top to
the bottom, are of the xz projection where z runs horizontally, yz projection with z running
horizontally, and xy projection from top down view.
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Atom Interferometry Phase = CAMBRIDGE AION
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Matter-wave Atomic Gradiometer Interferometric Sensor (MAGIS-100)

o= UNIVERSITY OF AION
Atom Interferometer Observatory and Network (AION) CAMBRIDGE

MAGIS-100 uses 100 m baseline with
three atom sources

e Multi-stage program with
AION-10 — AION-100 —

Science Goals Atom Source —» AION-km
¢ Dark matter detection o Will begin with 2 strontium
o Gravitational wave detector atom sources

tot
prototype e Looking for ultra light dark

matter signals

e AION-10 could provide early
network data in conjunction
with MAGIS prototype tower
and MAGIS-100

e Extreme macroscopic quantum
mechanics

Atom Source —»

“ e

[Badurina, et al. 2020. arXiv:1911.11755v3]

Neutrino Beam Line for MINERVA and MINOS Experiments

[Abe, Mahiro, et al. QST (2021).

Atom Source —»

arXiv:2104.02835v1]
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Atom Interferometry Advancements
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Large Momentum Transfer (LMT) w CAMBRIDGE AION

e Multiple laser pulses to accelerate one of
the atom interferometer arms

e Coherently enhance differential phase
measurement scales with n the number of
LMT pulses n

A¢p ~ 2nwa(L)
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Atom Clock Mode == CAMBRIDGE AION

e Clocks are started simultaneously ticking
with frequency wp

e Fluctuation of laser alters clock
measurement of time T — T + AT

Initial Stat Lo+ 2o
nitial States — — e
V28T

1 1 .

Lower Source g} + —=|e) e fwaT
et Rl
1 1 .

Upper Source _|g) + —— |e) e~ iwa(T+AT)

P 25l +—sle)

Jeremiah Mitchell (Cambridge) 26 October 2021 9/23



Gradiometer n:n UNIVERSITY OF
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e Simultaneous interferometer interference
measurement z

e Common laser allows common mode noise
suppression
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Detector Subsystems and Systematics w CAMBRIDGE AION

Main subsystems to consider for Systematics
systematics and noise sources e Temperature fluctuations and gradients
e Laser system e Magnetic field fluctuations
e Atom Sources e Seismic fluctuations and vibrations
e Detector environment e Gravity Gradient Noise
e Detection and readout e EM noise
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Understanding Systematics and Noise w CAMBRIDGE AION

Crucial for maximizing detector sensitivity

Plays important R&D role for long baseline atom interferometers

Goal is to understand leading order systematics and devise methods for mitigating them

Interesting leading order effects sourced by environment: seismic vibration, rotations and
gravity gradients, gravity gradient noise (GGN), magnetic fields, blackbody radiation
shifts, background gas index of refraction

Full list can be found in [Abe, Mahiro, et al. QST (2021). arXiv:2104.02835v1]
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Ambient Seismic Noise = CAMBRIDGE AION
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Vibrational Noise Estimates w CAMBRIDGE AION

e Vibration couples to lasers and initial atom ensemble kinematics

Suibration ~ (10_ rad/‘ﬁ) (100) (10ﬁn‘:/s> ( T> (M(;;/\ﬁ>

dPRGGY ~ (2 x 10~ 6rad/\/7) (100) (M) (TTS)

Can be mitigated by vibrational isolation on laser tables, large stable pedestal mounts for the
laser transport system
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Gravity Gradient Noise (GGN) w CAMBRIDGE AION

e Gravity gradient noise is second order effect where seismic surface waves (Rayleigh waves)
couple to gravitational potential field

e Perturbations in gravitational potential field lead to perturbations in test mass
acceleration

e Atom trajectories are perturbed under free fall and pickup a phase shift leading to a
spurious strain of

TGy po
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GGN Suppression and Mitigation w CAMBRIDGE AION

e String-of-pearls characterization

e Residual linear strain noise interferes with GW and
DM measurements

e Suppression factor defined by ratio of linear fitting
and simulated gradiometer phase difference along
the baseline

e Correlated seismometer array at the surface and in
situ calibration data
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GGN Modeling s UNIVERSITY OF A|ON

CAMBRIDGE

Short wavelength approximation:
e Modeled gravity gradient noise (GGN) G
® Test mass acceleration perturbation heen = % (&)
caused by density perturbations of ™
ground and atmosphere
® |mportant systematic that limits
MAGIS-100 maximum sensitivity Gpo

Long wavelength approximation:
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Inferred GGN == CAMBRIDGE AION

Using simple model convert between measured seismic displacement amplitude spectra into
inferred GGN strain
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Figure 1: Inferred GGN strain spectrum (a) from surface measurements, (b) from underground measurements.
Black dashed line is strain sensitivity after advancements.
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Temperature Systematics w CAMBRIDGE AION

Estimates for blackbody radiation shifts and background gas index of refraction fluctuations
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Magnetic Field Fluctuations w CAMBRIDGE AION

Sr clock energy levels shift under magnetic fields

Time-varying fields cause frequency shifts mimicking GW or ULDM signals

Employing magnetic shielding and co-magnetometer linear suppression using gradiometer
measurement with opposite magnetic field response

Estimate of residual background for bias field By

60mag ~ (11073 fad/“_)< )(méi/_)(T)
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Engineering Systematics = CAMBRIDGE AION

e Vibration effects on truss and support systems
e Temperature effects on vacuum pipe expansion

e Requires mitigation such as enclosures and shielding
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e Leading systematics are being studied and analyzed for MAGIS-100

e AION and MAGIS-100 design depend on understanding site specific temperature and
vibration environment

e Mitigation strategies ensure crucial precision of when operation begins and are applicable
to future long baseline atom interferometers
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