MiniBoone, MicroBoone and New Physics

Vedran Brdar

Northwestern University

MiniBoone, MicroBoone and New Physics

LSND and MiniBooNE

Process	Neutrino Mode	Antineutrino Mode
ν_{μ} & $\bar{\nu}_{\mu}$ CCQE	107.6 ± 28.2	12.9 ± 4.3
NC π^0	732.3 ± 95.5	112.3 ± 11.5
NC $\Delta \rightarrow N\gamma$	251.9 ± 35.2	34.7 ± 5.4
External Events	109.8 ± 15.9	15.3 ± 2.8
Other ν_{μ} & $\bar{\nu}_{\mu}$	130.8 ± 33.4	22.3 ± 3.5
ν_e & $\bar{\nu}_e$ from μ^{\pm} Decay	621.1 ± 146.3	91.4 ± 27.6
ν_c & $\bar{\nu}_c$ from K^{\pm} Decay	280.7 ± 61.2	51.2 ± 11.0
$\nu_e \& \bar{\nu}_e \text{ from } K_L^0 \text{ Decay}$	79.6 ± 29.9	51.4 ± 18.0
Other ν_e & $\bar{\nu}_e$	8.8 ± 4.7	6.7 ± 6.0
Unconstrained Bkgd.	2322.6 ± 258.3	398.2 ± 49.7
Constrained Bkgd.	2309.4 ± 119.6	400.6 ± 28.5
Total Data	2870	478
Excess	560.6 ± 119.6	77.4 ± 28.5

- ► LSND: $\bar{\nu}_e$ in $\bar{\nu}_\mu$ beam from stopped pion source (> 3σ) at $L/E \sim 1$ km GeV⁻¹ (arXiv:hep-ex/0104049)
- MiniBooNE: reports electron-like event excess (4.8σ); in combination with LSND at 6.1σ (arXiv:0812.2243, 1805.12028, 2006.16883)

eV-scale ν_s for LSND and MiniBooNE anomalies?

- Oscillation maxima for standard oscillations expected at
 - $L/E \sim 500 \text{ km/GeV} (\text{from } \Delta m_{31}^2 \sim 2.4 \times 10^{-3} \text{eV}^2)$
 - $L/E \sim 15000 \text{ km/GeV} (\text{from } \Delta m_{21}^2 \sim 7.5 \times 10^{-5} \text{eV}^2)$
- the minimal solution for LSND and MiniBooNE requires an additional mass squared difference Δm²₄₁ ~ 1 eV²; this calls for an introduction of eV-scale sterile neutrino (3+1 scheme)

While ν_e appearance data supports eV-scale ν_s explanation of LSND and MiniBooNE, ν_μ disappearance data puts such solution in strong tension and practically excludes this possibility ⇒ necessity for alternative models
MiniBoone. MiroBoone and New Physics 3/21

Altarelli Cocktail?

An Altarelli Cocktail for the MiniBooNE Anomaly?

Vedran Brdar^{1, 2, a} and Joachim Kopp^{3, 4, b}

¹Fermi National Accelerator Laboratory, Batavia, IL 60510, USA
 ²Northwestern University, Dept. of Physics & Astronomy, Evanston, IL 60208, USA
 ³Theoretical Physics Department, CERN, 1211 Geneva 23, Switzerland
 ⁴Johannes Gutenberg University Mainz, 55099 Mainz, Germany

We critically examine a number of theoretical uncertainties affecting the MiniBooNE shortbaseline neutrino oscillation experiment in an attempt to better understand the observed excess of electron-like events. We re-examine the impact of fake charged current quasi-elastic (CCQE) events, the background due to neutral current π^0 production, and the single-photon background. For all processes, we compare the predictions of different event generators (GE-NIE, GIBUU, NUANCE and NuWro) and, for GENIE, of different tunes. Where MiniBooNE uses data-driven background predictions, we discuss the uncertainties affecting the relation between the signal sample and the control sample. In the case of the single-photon background, we emphasize the large uncertainties in the radiative branching ratios of heavy hadronic resonances. We find that not even a combination of uncertainties in different channels adding up unfavorably (an "Altarelli cocktail") appears to be sufficient to resolve the MiniBooNE anomaly. Varying the radiative branching ratios of the $\Delta(1232)$ and N(1440)resonances by $\pm 2\sigma$, however, reduces its significance from 4σ to less than 3σ . We finally investigate how modified background predictions affect the fit of a 3 + 1 sterile neutrino scenario. We carefully account for full four-flavor oscillations not only in the signal, but also in the background and control samples. We emphasize that because of the strong correlation between MiniBooNE's ν_e and ν_{μ} samples, a sterile neutrino mixing only with ν_{μ} is sufficient to explain the anomaly, even though the well-known tension with external constraints on ν_{μ} disappearance persists.

Employed MC Generators

Generate	or Tune	Ref.	Comments
NUANCE	-	[40]	the generator used by MiniBooNE
GiBUU	_	[42]	theory-driven generator
NuWro	_	[41]	
GENIE	G18_01a_02_11a	[39, 44]	GENIE baseline tune; see [44] for naming conventions
	$G18_01b_02_11a$		different FSI implementation compared to G18_01a_02_11a
	$G18_02a_02_11a$		updated res./coh. scattering models compared to G18_01a_02_11a
	$G18_02b_02_11a$,	updated res./coh. scattering models and different FSI
	G18_10a_02_11a		theory-driven configuration; similar to G18_02a
	$G18_10b_02_11a$		theory-driven configuration; similar to $G18_02b$

- 1. From a Monte Carlo simulation using the NUANCE generator, we predict the event sample under consideration.
- 2. The predicted event spectrum from (1) is then compared with the corresponding prediction obtained by the MiniBooNE collaboration; the differences are compensated by bin-by-bin tuning.
- We then predict the same event sample using GiBUU, NuWro, as well as six different GENIE tunes, using the same cuts and efficiency factors as for NUANCE. We then apply the tuning factors determined in (2) as the ratio between our NUANCE prediction and MiniBooNE's.

Charged Current Events

$$\nu_{e,\mu} + n \to e^{-}/\mu^{-} + p \qquad E_{\nu} = \frac{2m'_{n}E_{\ell} - (m'_{n}^{2} + m_{\ell}^{2} - m_{p}^{2})}{2[m'_{n} - E_{\ell} + \sqrt{E_{\ell}^{2} - m_{\ell}^{2}\cos\theta_{\ell}}]}$$

Neutral Current π^0 Production

MiniBoone, MicroBoone and New Physics

Neutral Current Single γ Production

MiniBoone, MicroBoone and New Physics

3+1 model with eV-scale sterile neutrino

Monte Carlo-only background predictions

Generator	Tune	Δm_{41}^2 [eV ²]	$sin^2 2\theta_{\mu e}$	$ U_{\mu 4} ^2$	χ^2/dof	$\Delta \chi^2_{no,onc}$	Significance
MB official		0.25	0.01	0.062	12.0	19.1	4.0σ
GiBUU	default	0.25	0.01	0.076	12.0	24.6	4.6σ
	$BR(\Delta \rightarrow \gamma) - 2\sigma$	0.32	0.0063	0.076	12.2	28.5	5.0σ
	$BR(\Delta \rightarrow \gamma) + 2\sigma$	0.25	0.01	0.062	11.9	18.4	3.9σ
NUANCE		0.32	0.0079	0.051	12.3	19.3	4.0σ
NuWro	-	3.2	0.0020	0.040	13.7	15.6	3.5σ
GENIE	G18 01a 02 11a	0.13	0.079	0.16	12.2	21.6	4.3σ
	G18 01b 02 11a	0.79	0.0001	0.12	12.2	16.1	3.6σ
	G18 02a 02 11a	0.13	0.050	0.16	12.0	15.1	3.5σ
	G18 02b 02 11a	0.13	0.050	0.18	12.1	15.0	3.5σ
	G18 10a 02 11a	0.25	0.016	0.051	12.1	11.2	2.9σ
	G18 10b 02 11a	0.40	0.013	0.016	12.1	17.9	3.8σ

data-driven	backgrounds
-------------	-------------

Generator	Tune	Δm_{41}^2	$sin^2 2\theta_{\mu e}$	$ U_{n4} ^2$	χ^2/dof	$\Delta \chi^2_{pollow}$	Significance
MB official		0.25	0.01	0.062	12.0	19.1	4.0σ
NUANCE	-	0.32	0.0079	0.051	12.3	19.3	4.0σ
NuWro	-	3.2	0.0016	0.040	13.3	12.7	3.1σ
GENIE	G18 01a 02 11a	0.79	0.00020	0.14	12.2	23.3	4.4σ
	G18 01b 02 11a	0.79	0.0001	0.12	12.2	15.5	3.5σ
	G18 02a 02 11a	0.13	0.063	0.18	12.2	19.2	4.0σ
	G18 02b 02 11a	0.13	0.050	0.20	12.3	16.9	3.7σ
	G18 10a 02 11a	0.25	0.016	0.062	12.3	15.1	3.5σ
	$G18_{10b}_{02}_{11a}$	0.40	0.013	0.016	12.1	19.5	4.0σ

MiniBoone, MicroBoone and New Physics

MicroBooNE (2110.14054)

two-body ν_e CCQE scattering (1e1p) pionless ν_e scattering (1eNp0 π , 1e0p0 π) inclusive ν_e scattering (1eX)

11/21

MicroBooNE (2110.00409)

 $\frac{1\gamma 1p}{1\gamma 0p}$

$1\gamma 1p$	$1\gamma 0p$
27.0 ± 8.1	165.4 ± 31.7
20.5 ± 3.6	145.1 ± 13.8
4.88	6.55
15.5	20.1
16	153
	$\frac{1\gamma 1p}{27.0 \pm 8.1} \\ 20.5 \pm 3.6 \\ 4.88 \\ 15.5 \\ 16$

Process	$1\gamma 1p$	$1\gamma 0p$
NC $1\pi^0$ Non-Coherent	24.0	68.1
NC $1\pi^0$ Coherent	0.0	7.6
$CC \nu_{\mu} 1\pi^{0}$	0.5	14.0
CC ν_e and $\bar{\nu}_e$	0.4	11.1
BNB Other	2.1	18.1
Dirt (outside TPC)	0.0	36.4
Cosmic Ray Data	0.0	10.0
Total Background (Unconstr.)	27.0	165.4
NC $\Delta \rightarrow N\gamma$	4.88	6.55

New Physics?

From interactions of protons on target to 1 shower events

The source of events are 8 GeV protons from Booster that hit the Beryllium target producing secondary particles. The 818 ton liquid scintillation detector observes the single shower events

 $p + A [target] \rightarrow [X] \rightarrow 1sh \ events \ [detector]$

- The "black box", X, is assumed to be represented by a particle (or a system of particles) that are produced in the source (X_s) and evolve to detector where they interact or decay (X_d) producing 1 shower events
 X_s can be produced
 - on target in pA collisions immediately
 - ▶ in decays (interactions) of known particles produced in the pA-collisions, such as π , K, heavy mesons. But those particles need to be charged!
 - \blacktriangleright from neutrinos ν_{μ} in detector or/and surrounding matter along the baseline
- ► X_d
 - ▶ $N \rightarrow \nu + \gamma$, $N \rightarrow \nu + e^+ + e^-$ (decay into particle(s) ξ that give shower)
 - $\blacktriangleright N \to \nu + B, \quad B \to e^+ + e^- \text{ or } B \to \gamma + \gamma$
 - ▶ $N \rightarrow ...\nu_{e...}$ followed by ν_{e} scattering in the detector

VB, Fischer, Smirnov, 2007.14411:

1) $M_N D_{\xi}$, Mixing - Decay scenario: the heavy neutrino N produced in the K and π -decay via mixing in ν_{μ} and decays as $N \rightarrow N' + \xi$

$$N_{\xi-s} = \epsilon A |U_{\mu4}|^2 \int dE_N \frac{d\phi_N^0(E_N)}{dE_N} f_{\xi-s}(E_N) P_{dec}$$

 $P_{dec} \approx rac{d}{\lambda_N} e^{-I/\lambda_N}$

• event excess peaks in the 8 ns window associated with beam bunch time, as expected from neutrino events in the detector $\implies m_N < 10 \text{ MeV}$ for $M_N D_{\xi}$ scenario

PITT PACC, Light Dark World International Forum 2021

2) $U_N D_{\xi}$, Upscattering - decay scenario: N is produced in the ν_{μ} interactions with particles of medium between the source and the detector and in the detector. Then N decays in the detector, producing ξ state

$$\frac{d\phi_{N}^{\sigma}(E_{N})}{dE_{N}} \equiv \int dE_{\nu} \frac{d\phi_{\nu}(E_{\nu})}{dE_{\nu}} \frac{d\sigma(E_{\nu}, E_{N})}{dE_{N}}$$
$$N_{\xi-s}^{in} = \epsilon V_{d} n_{d} \int dE_{N} f_{\xi-s}(E_{N}) \frac{d\phi_{N}^{\sigma}(E_{\nu})}{dE_{N}} \left[1 - \frac{\lambda_{N}}{d} (1 - e^{-d/\lambda_{N}}) \right]$$

 we also considered upscattering in the dirt as well as various detector subcomponents

3) $U_N D_B D_{\xi}$, Upscattering - double decay scenario: N produced by ν_{μ} upscattering undergoes double decay: $N \rightarrow B \rightarrow \xi$. If B decays promptly, calculations match previous scenario

4) $U_N D_{\nu} U_e$, Upscattering-decay into ν_e scenario: N produced by the ν_{μ} upscattering decays with emission of ν_e , which then scatters in the detector via CCQE producing e shower

5) $M_N D_B D_{\xi}$, Mixing-double decay scenario: N produced via mixing decays invisibly into another new particle B, which in turn decays into (or with emission of) ξ

Upscattering-Decay into ν_e scenario, $U_N\!D_\nu U_e$

6) $M_N D_{\nu} U_e$, Mixing - Decay into ν_e scenario: N is produced via mixing and decays with emission of ν_e : $N \rightarrow \nu_e + B$. Then ν_e upscatters in the detector, producing e^{\pm} Mixing-Decay v_e scenario MD_vU_e

► for small N decay length $c\tau^0 \rightarrow 0$ $N_{1e}^i \approx \sigma_{CC}^i V_i n_i B_N \phi_{\pi}^0 (1 - \text{Exp}[-I_T/\lambda_{\pi}]) \approx \sigma_{CC}^i V_i n_i B_N \phi_{\nu_{\mu}}$

- the spectrum for this scenario looks similar to the one in the 3+1 scenario
- viable N masses O(keV)

Non-oscillatory Explanations of MiniBooNE Anomaly

1 shower MiniBooNE events can be produced by e, γ , collimated e^+e^- pair and collimated $\gamma\gamma$

- ► M_ND_ξ: Fischer et al. (arXiv:1909.09561)
- U_ND_ξ: Gninenko (arXiv:0902.3802) Ballett et al. (arXiv:1808.02915)

$\blacktriangleright U_N D_B D_{\xi}$:

Bertuzzo et al. (arXiv:1807.09877) Datta et al. (2005.08920) Dutta et al. (2006.01319) Abdallah et al. (2006.01948)

• $M_N D_\nu U_e$:

Dentler et al. (1911.01427) de Gouvea et al. (1911.01447)

MiniBoone, MicroBoone and New Physics

 $MD_{v_e}U_e$ MINERvA 3 σ

Mini SBN-Theory workshop

- I3 Dec 2021, 14:55 → 15 Dec 2021, 18:00 UTC
- ♥ online

Description Given the recent exciting developments in Fermilab's SBN Program, we are organizing the special SBN-Theory mini-workshop "Physics opportunities at the Short Baseline Neutrino Program" on December 13-15, 2021.

The goal of the workshop is to foster collaborations among theorists and experimentalists to discuss future searches in the SBN Program, particularly in the context of the MiniBooNE anomaly, though not limited to it.

As in other SBN-Theory events, this mini-workshop will be informal, focused on the physics, and in the intersection between theory and experiment.

We aim to get work done and to distribute tasks among participants by the end of the event.

Participants

🔎 Register

MiniBooNE anomaly has been a mystery for over a decade

- MiniBooNE anomaly has been a mystery for over a decade
- Recent background re-evaluations as well as MicroBooNE data did not unravel it

- MiniBooNE anomaly has been a mystery for over a decade
- Recent background re-evaluations as well as MicroBooNE data did not unravel it
- Light eV-scale sterile neutrino hypothesis is disfavored

- MiniBooNE anomaly has been a mystery for over a decade
- Recent background re-evaluations as well as MicroBooNE data did not unravel it
- Light eV-scale sterile neutrino hypothesis is disfavored
- Alternative models with heavier sub-GeV new physics?

- MiniBooNE anomaly has been a mystery for over a decade
- Recent background re-evaluations as well as MicroBooNE data did not unravel it
- Light eV-scale sterile neutrino hypothesis is disfavored
- Alternative models with heavier sub-GeV new physics?
- Short-Baseline Neutrino Program at Fermilab may be the key