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Introducing inclusive J/¢¥ & Y
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Introduction: inclusive J/4(Y) photoproduction

C.-H. Chang, NPB172, 425 (1980); R. Baier & R. Riickl Z. Phys. C 19, 251(1983);

Let’s us first discuss inclusive J/ (Y) photoproduction:

@ as areminder, J/¢ (Y) is a ¢t (bb) bound state with
J=1, L=0, S=1; vector particle

@ inclusive photoproduction:
Y@ =0)+p— J/Pp+X;

@ We will discuss the photoproduction at NLO;
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Let’s us first discuss inclusive J/ (Y) photoproduction:

@ as areminder, J/¢ (Y) is a ¢t (bb) bound state with
J=1, L=0, S=1; vector particle

@ inclusive photoproduction:

Y@ =0)+p— J/Pp+X;

@ We will discuss the photoproduction at NLO;
@ 3 common models (differences in the treatment of the
hadronisation):

» Colour Singlet Model;
» NRQCD and Colour Octet Mechanism;
» Colour Evaporation Model;
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Introduction: inclusive J/4(Y) photoproduction

C.-H. Chang, NPB172, 425 (1980); R. Baier & R. Riickl Z. Phys. C 19, 251(1983);

Let’s us first discuss inclusive J/ (Y) photoproduction:
@ as areminder, J/¢ (Y) is a ¢t (bb) bound state with
J=1, L=0, S=1; vector particle
@ inclusive photoproduction:

Y@ =0)+p— J/Pp+X;

@ We will discuss the photoproduction at NLO;
@ 3 common models (differences in the treatment of the
hadronisation):

» Colour Singlet Model;

» NRQCD and Colour Octet Mechanism;

» Colour Evaporation Model;
@ We do not discuss large z and exclusive reactions

— see the exclusive sessions
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Resolved-photon contributions

J.P. Lansberg, Phys.Rept. 889 (2020)

@ At high energies, the hadronic content of the photon can be
resolved’ during the collisions

@ Are very similar to those for hadroproduction
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Resolved-photon contributions

J.P. Lansberg, Phys.Rept. 889 (2020)

@ At high energies, the hadronic content of the photon can be
‘resolved’ during the collisions

@ Are very similar to those for hadroproduction

@ At low z they can appear as important where only a small fraction
of the photon energy is involved in the quarkonium production
(limited impact at HERA)

@ At lower energies, like at the EIC, their impact should be further
reduced

@ Can be avoided by a simple kinematical cut on low elasticity
values, z
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Resolved-photon contributions

J.P. Lansberg, Phys.Rept. 889 (2020)

@ At high energies, the hadronic content of the photon can be
‘resolved’ during the collisions
@ Are very similar to those for hadroproduction

@ At low z they can appear as important where only a small fraction
of the photon energy is involved in the quarkonium production
(limited impact at HERA)

@ At lower energies, like at the EIC, their impact should be further
reduced

@ Can be avoided by a simple kinematical cut on low elasticity
values, z

@ It will be needed to re-evaluate its impact— as M. Rinaldi will discuss
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General structure of NLO corrections

Singularities at NLO [and how they are removed]:
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General structure of NLO corrections
Singularities at NLO [and how they are removed]:

@ Real emission

» Infrared divergences: Soft [cancelled by
loop IR contr. after phase-space
integration (the KLN theorem)]

» Infrared divergences: Collinear

[The quark and antiquark attached to the ellipsis are taken as on-shell and their relative velocity v is set to zero.]
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General structure of NLO corrections
Singularities at NLO [and how they are removed]:

@ Real emission

» Infrared divergences: Soft [cancelled by
loop IR contr. after phase-space
integration (the KLN theorem)]

» Infrared divergences: Collinear

* initial emission [subtracted by
Altarelli-Parisi counter-terms (AP-CT) in
the factorised PDFs]

* final emission [cancelled by loop Infrared
contribution after phase-space
integration (the KLN theorem)]

[The quark and antiquark attached to the ellipsis are taken as on-shell and their relative velocity v is set to zero.]
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General structure of NLO corrections
Singularities at NLO [and how they are removed]:

@ Real emission

» Infrared divergences: Soft [cancelled by
loop IR contr. after phase-space
integration (the KLN theorem)]

» Infrared divergences: Collinear

* initial emission [subtracted by
Altarelli-Parisi counter-terms (AP-CT) in
the factorised PDFs]

* final emission [cancelled by loop Infrared
contribution after phase-space
integration (the KLN theorem)]

@ Virtual (loop) contribution

» Ultraviolet divergences: [removed by
renormalisation]

» Infrared divergences: [cancelled by real
Infrared contribution]

[The quark and antiquark attached to the ellipsis are taken as on-shell and their relative velocity v is set to zero.]
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Photoproduction at mid and high Pr at
HERA
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Different contributions in the CSM up to NLO

C.Flore, JP Lansberg, H.S. Shao, YY, PLB 811 (2020) 135926
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Different contributions in the CSM up to NLO

C.Flore, JP Lansberg, H.S. Shao, YY, PLB 811 (2020) 135926

10! . .
Prompt CS QCD LO £33

i

' ’y+g—>1/z—|—g@(xoc§

10°

100

102
MF = JR = M7
m, = 1.5GeV

do(ep—J/p X)/dP¢ [nb/GeVz]

1073 £ 20% FD ('~ J/y) CT14NLO
<Ojy> =145 GeV? NN
10* N X
N S
Vs =319 GeV o
10° F @ <25Gev? SN 1
Pr>1 GV AN 9
- 03<z<09 g
10 60 GeV < WAYP <240 Ge\/I &§§ 1z
1 10 100
P} [GeV?]
Notes:
All the computations were done with HELAC-ONIA. The scale and mass uncertainties are shown by the hatched and
solid bands. H.S. Shao, CPC198 (2016) 238; See also https://nloaccess.in2p3.fr

[The quark and antiquark attached to the ellipsis are taken as on-shell and their relative velocity v is set to zero.]
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Different contributions in the CSM up to NLO

C.Flore, JP Lansberg, H.S. Shao, YY, PLB 811 (2020) 135926
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Notes:
All the computations were done with HELAC-ONIA. The scale and mass uncertainties are shown by the hatched and
solid bands. H.S. Shao, CPC198 (2016) 238; See also https://nloaccess.in2p3.fr

[The quark and antiquark attached to the ellipsis are taken as on-shell and their relative velocity v is set to zero.]
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Different contributions in the CSM up to NLO

C.Flore, JP Lansberg, H.S. Shao, YY, PLB 811 (2020) 135926

do(ep—J/p X)/dP¢ [nb/GeVz]

<09
10 | 60GV <Wop <240 Gev

F 20% FD (y'~ J/)
<o, ,¢> =145GeV?

Vs=319GeV S
FQ<25GeV?
Pp>1GeV

03<z

Prompt CS QCD LO £
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)1 LG+ gOa® [NEW ]

MF = JR = M7
m, = 1.5GeV

[asTNTO Y :
? ;

y4c—p+c@aaw. 4 Flavour Scheme
Y+g—p+c+e@aadw. 3 Flavour Scheme
VENS [also NEW []

L
HELAC-Onia 2.5.0

1

Notes:

10
P} [GeV?]

All the computations were done with HELAC-ONIA. The scale and mass uncertainties are shown by the hatched and
solid bands.

H.S. Shao, CPC198 (2016) 238; See also https://nloaccess.in2p3.fr

[The quark and antiquark attached to the ellipsis are taken as on-shell and their relative velocity v is set to zero.]
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Different contributions in the CSM up to NLO

C.Flore, JP Lansberg, H.S. Shao, YY, PLB 811 (2020) 135926

10! .
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Prompt CS QCD LO £
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VENS [also NEW []
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10% F Q2 <25 Gev? e
Pr>1GeV pS7e
03<2z<09 x
1076 L 60 GeV < W.;, <240 GeV
1 10
P} [GeV?]

Notes:

A {’y—i—g—np-&-g-&-g Qand

100 T+g—9P+g+q@and

+y+9—=9¥+dl

All the computations were done with HELAC-ONIA. The scale and mass uncertainties are shown by the hatched and

solid bands.

H.S. Shao, CPC198 (2016) 238; See also https://nloaccess.in2p3.fr

[The quark and antiquark attached to the ellipsis are taken as on-shell and their relative velocity v is set to zero.]
NLO* only contains the real-emission contributions with an IR cut-off and is expected to account for the leading Pr

contributions at NLO (P{-e). It has been succesfully checked against full NLO computations for P > 3 GeV.
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Comparison to the latest HERA data by H1

C.Flore, JP Lansberg, H.S. Shao, YY, PLB 811 (2020) 135926

10! -
H1 data: HERA2 [EPIC 68, 401 (2010)] O
HI1 data: HERA2 [EPIC 68, 401 (2010)] (B — ]/ subtracted) 8-
R Prompt CSQCD LO 5%
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107 E
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m = 1.5GeV
CTI4NLO

102 45

103 | 20% FD (y'= 1/9)

<Oj>=145GeV?

10 00

do(ep =]/ X)/dP} [nb/GeV?]

Vs=a9Gev B L. i
10° | 2 < 25ce02 . :
Pr>1GeV
03<2<09
106 L 60Gev < W, <200 Gev

1 10 100
P? [GeV?)
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Comparison to the latest HERA data by H1

C.Flore, JP Lansberg, H.S. Shao, YY, PLB 811 (2020) 135926
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Comparison to the latest HERA data by H1
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Comparison to the latest HERA data by H1

C.Flore, JP Lansberg, H.S. Shao, YY, PLB 811 (2020) 135926

do(ep =]/ X)/dP} [nb/GeV?]

10! -
H1 data: HERA2 [EPIC 68, 401 (2010)] O
HI1 data: HERA2 [EPIC 68, 401 (2010)] (B — ]/ subtracted) 8-

10° NS

Prompt CS QCD NLO* w2

@ LOQCD : OK at low Pt
@ LO QED small but much harder
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@ J/p+charm: matter at high Pr



Comparison to the latest HERA data by H1

C.Flore, JP Lansberg, H.S. Shao, YY, PLB 811 (2020) 135926
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Comparison to the latest HERA data by H1

do(ep =]/ X)/dP} [nb/GeV?]
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10! -
HI data: HERA2 [EPIC 68, 401 (2010)) HO-
HI data: HERA2 [EPIC 68, 401 (2010)] (B — J /4 subtracted) +#-
Prompt CS QCD LO X%
100 Prompt CS QED LO 525
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<

-
<
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-
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20% FD ('~ J/)
<Ojy> =145GeV?
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107 F @ <25Gev? g
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J/y+cLO VENS
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Prompt CS (QUDNLO® + J/§-+¢ O VFXS + QEL

BE=pR=my
m = 15GeV
CTINLO
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@ LOQCD : OK at low Pt
@ LO QED small but much harder
@ J/p+charm: matter at high Pr

@ NLO™ close the data, the overall
sum nearly agrees with them

@ Agreement with the last bin when
the expected B — J/ feed
down (in gray) is subtracted
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Comparison to the latest HERA data by H1

C.Flore, JP Lansberg, H.S. Shao, YY, PLB 811 (2020) 135926

10!

HI data: HERA2 [EPIC 65, 401 (2010)) Ho-4
H1 data: HERA2 [EPIC 68, 401 (2010)] (B  J/p subtracted) -#-

@ LOQCD : OK at low Pr

2
2

g 1 @ LO QED small but much harder
o
£ i monew | @ J/p4charm: matter at high Py
& 10 E
5 @ NLO™ close the data, the overall
2103 £ 20% FD (/= J/9) .
S IS sum nearly agrees with them
é 104 R @ Agreement with the last bin when
3 s lmmey e _ the expected B — J/ feed

P> 16 down (in gray) is subtracted

10—6 60 GeV < W.p, <240 GeV L2 M
1 10 100

Pf [Gev?]

The CSM up to aa? reproduces photoproduction at HERA

— the EIC predictions can rely on CSM only
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Fe ed d OW n J.P. Lansberg, Phys.Rept. 889 (2020); C.Flore, JP Lansberg, H.S. Shao,
YY, PLB 811 (2020) 135926
3

T — 10 . 1
L H1 [EPJC 68 (2010) 401] 1 > e Data(yp) El
0.8[ ] 3 B> J/y X (PYTHIA tuneto
F ® Data(yp) B < B data: x 2) E
. r i med 1 2 10E o Diffractive y(28) (DiftVM)
g‘ 0.6~ toBdata(x2) | o  0<W<20GeV  03<z<09
g [ 1 . -
g‘ L 60 < W <240 GeV i s o ° E
23204 = = o -
S 15 .
i 1 = : E
02 % 1% o
L ] . H1 [EPIC68 (2010) 401] L 3
L ] G E

0 ! . . ! ; T 102

04 z 0

0.1 02 03 g ,
PT‘V [GeV?]

@ b FD (5% on the Pr-integrated yields and can go up to ~ 50% at P+ = 10
GeV): we do not include it as it can be experimentally removed.
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Fe ed d OW n J.P. Lansberg, Phys.Rept. 889 (2020); C.Flore, JP Lansberg, H.S. Shao,
YY, PLB 811 (2020) 135926

W

AN B —————— 1 — 10% . 1
L H1 [EPJC 68 (2010) 401] 1 > E e Data(yp) El
081 18 1wk B> JlyX (PYTHIA tuneto
= o Data(yp) + < E B data: x 2) 3
. r iHAwed ] B 10E e T Diffractive y(25) (DiffvM) ]
g‘ 0.6~ toBdata(x2) | E ® o 60<W<20GEV  03<z<09 3
E" L 60 < W < 240 GeV ] s 1e ® e ° =
g504F- - L&D . B
R2 4 1ot .
I n ~ E ]
r 7 &102 b E
021 % 1€ e,
L 4 107 E <. HI1 [EPJC 68 (2010) 401] ® |
L ] E G E

0 ‘ ; ‘ o ‘4 B 1 10 10°

0.1 0.2 0.3 2 2
PT‘V [GeV?]

@ b FD (5% on the Pr-integrated yields and can go up to ~ 50% at P+ = 10
GeV): we do not include it as it can be experimentally removed.

@ ¢ FD: no theory or experimental indication that it could be relevant
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Fe ed d OW n J.P. Lansberg, Phys.Rept. 889 (2020); C.Flore, JP Lansberg, H.S. Shao,
YY, PLB 811 (2020) 135926

W

AN B —————— 1 — 10% : .
L H1 [EPJC 68 (2010) 401] 1 > E e Data(yp) El
081 18 1wk B> JlyX (PYTHIA tuneto
L o Daa(yp) 4 3 E B Flata: x 2) ) 3
- L PYTHIA tuned ] =] 10 o 7 Diffractive y(2S) (DiffVM) <
g‘ 0.6 toBdaa(x2) | E ® o 0<W<20GeV  03<z<09 T
E' [ 60 < W <240 GeV ] N 1 E. ® e . E
2204 - W qaf ° 3
N 1 F W0 .
N n ~ E |
L ] & 02k ° E
021 % 1 €7 . ]
[ q 107 E " HI1 (Epices o140, @ 3
L ] E G E
0= ‘ ‘ ol 2 1 10 10?

0.1 02 03 g ,
PT‘V [GeV?]

@ b FD (5% on the Pr-integrated yields and can go up to ~ 50% at P+ = 10
GeV): we do not include it as it can be experimentally removed.

@ ¢ FD: no theory or experimental indication that it could be relevant

@ 20% ¢’ FD: follows from the ratio of the wave functions at the origin
and from the ¢’ — J/¢ branching:
FDy g7y = |Ry (0)[2/1Ry/y(0) 2 Br(y' — J/9)
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Photoproduction at mid and high Pt at
the Electron-lon Collider
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The Electron lon Collider at BNL

Abhay Deshpande EIC @ BNL, HiX at Kolympari

107 : @ Hadrons up to 275 GeV
(;l) F JLAB/CEBAF ep Facilities & Experiments:
£ ool 8% B st coniers @ Electrons up to 5-10(20) GeV
g E |:| Gollider Goncepts . _
g s B o o o @ CoM /s: 20-100 (140) GeV
g E [ Ongoing Fixed Target o ngh |Umin03ity
ook ] 0 P Lgp 103334 cm—2sec™!
F (100-1000 times HERA)
10¥ RPT
: eCHELHG @ World’s first:
FCC-he . . . .
0t EIC LHoOMLAH > collider with polarized (min
F 70%) lepton &
F 33“:1*}23! LHaGiCDR proton/light-ion beams
102l scoms » electron-Nucleus collider
1031; HEH’MESM} I
E HERA (ZEUS/H1)
10 102 10° /s (GeV)
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Predictions for the EIC : J/9 + X (/Sep = 45 GeV)

C.Flore, JP Lansberg, H.S. Shao, YY, PLB 811 (2020) 135926

ME=pR=

CT14NLO

1ev2GeV/1 b

mr

m, = 1.5GeV

Prompt CS (QCD NLO* +/+c LO VENS + QED LO)

Prompt CSQCD LO 5%

Prompt C5 QCD NLO* 2w

Vs =45 GeV

Q< 1GeV?
0.05<z<09
Pr>1GeV

10 GeV < W, <40 GeV

10 . o on

do (ep — J/¢ X)/dP1 [nb/GeV]

107 by caont

108 | 50, §FD (4= 1/9)
<o,‘ 14scev“

Y. Yedelkina (lJCLab)

1 ; ,
208 TmSReRL
o2 07 T8I
;89 0'6 < I/lf*‘:u)\;‘FNS o
B 02 -
ey
g 02
¢ 01 i
0 . = o :
2 4 6 8 10 12 14
Pr [GeV]

@ At /Sep = 45 GeV, one gets into

valence region
Yield steeply falling with Py

Yield can be measured up to
Pr ~ 11 GeV with £ = 100 fb~

[using both ee and ju decay channels and ey/yp ™~ 80%]
QED contribution leading at the
largest reachable Py

photon-quark fusion contributes
more than 30 % for P+ > 8 GeV
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Predictions for the EIC : J/9 + X ( /Sep = 140 GeV)

C.Flore, JP Lansberg, H.S. Shao, YY, PLB 811 (2020) 135926

@ At ,/sgp = 140 GeV, larger Pr
range up to approx. 18 GeV

IF= PR = mp " Pror mplCSQCDLO =g
me =15GeV Prompt CS QED LO #52

J/p+c LO VEN:
CTI4NLO Prompt CS QCD NLO

107 TS CS (@DNLO* +<IOVAS + D L0 @ QED contribution also leading at
102 Bolmcy ] the largest reachable Pr

005<2<09

Pr>1Ge 1 @ photon-gluon fusion contributions

20GeV < Wop <80 GeV

dominant up to approx. 15 GeV

@ J/¢ + 2 hard partons
lie. J/v + {gg. qg, cc}] dominant for

20% D (4= /)
<Oply>=145GeV?

Tev/2 GVl b

do(ep — J/ X)/dPy [nb/GeV]

-6 4
Ll S— T — Pr ~ 8 —15GeV
-7
) S— @ It could lead to the observation of
108 ‘ J/ + 2 jets with moderate P
1 mpnswsasamanasss e
g 09 ;??Ng” | @ with a specq‘lc topolqu where
108 87 i ; the leading jet; recoils on the
By +¢ LO VFNS 22 . .
i J/ ¢+ jety pair
a A" .
g2 @ We expect the do to vanish when
0 2 4 6 8 10 12 14 16 18 2 E.‘ét/ ¥ restfr. —0
Pr[GeV] Jet
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Part IV

J/y+charm associated production at
the EIC

o = = = = DAl
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J/p-+charm associated production at the EIC

C.Flore, JP Lansberg, H.S. Shao, YY, PLB 811 (2020) 135926

1ev./2 GeV/100 b

VFNS:SFS“[l-(l-eCF)]+‘(4FS-CT)’£C' VENS (o IC) & ° Same LO VFNS computation
107 RSy €c=0.1 ‘/si:4SGe\é . .
g go;gzzgvglg previously shown in green except
2104 10 GV W,y <20 Gov for the charm-detection efficiency
§ N\ €c: VNS =
élors Flev/2Geva0 ! B NN USFS X (1 — (1 — 6)2) + (0’4FS — U’CT) X €
; S\ - B e
Soe @ At /Sep = 45 GeV, yield limited to

low Pr even with £ = 100 fb~"
w07 e ‘ R @ But itis clearly observable if
1 2 3 4 s 6 ec = 0.1 with O(500, 50, 5) events
for £ = (100,10, 1) fo~"
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J/p-+charm associated production at the EIC

C.Flore, JP Lansberg, H.S. Shao, YY, PLB 811 (2020) 135926

VENS = 3FS*[1-(1-¢¢)?)] + (4FS - CT)*, VENS (o IC) &5

@ Same LO VFNS computation

=

ey mersw previously shown in green except
, DY ) o
h 05 <2<09  <Of>=145Ga" for the charm-detection efficiency

20 GeV < Woyp < 100 GeV €c. 0 VFNS _

o3FS « (1—(1- 6)2) + (04FS _ UCT) NS

@ At ,/Sep = 45 GeV, yield limited to
low Pr even with £ = 100 fb~

5 @ Butitis clearly observable if

oo o e = 0.1 with O(500, 50, 5) events
for £ = (100,10, 1) fo~"

@ At /Sgp = 140 GeV, Pr range up to
10 GeV with up to thousands of
events with £ = 100 fb~"

@ Could be observed via charm jet

g

Lev/2GeV 10!

do(ep — ]/ c)/dPy [nb/GeV]
5

4

1ev./2.Gev/100 !

g
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J/p-+charm associated production at the EIC

C.Flore, JP Lansberg, H.S. Shao, YY, PLB 811 (2020) 135926

VENS = 3FS*[1-(1-¢¢)?)] + (4FS - CT)*,

=

Vs =140 GeV
Q2 < 1GeV2
0.05<2<09
Pr>1GeV

3

VENS (no IC) 555

me=15GeV
M = PR = mp
<Ojy> =145GeV?

20 GeV < Wy, <100 GeV

g

Lev/2GeV 10!

do(ep — ]/ c)/dPy [nb/GeV]
5

4

1ev./2.Gev/100 !

g

@ Same LO VFNS computation

previously shown in green except
for the charm-detection efficiency
€c: VNS =

o3FS « (1—(1- 6)2) + (04FS _ UCT) NS
At /Sep = 45 GeV, yield limited to
low Pt even with £ = 100 fb~'
But it is clearly observable if

ec = 0.1 with O(500, 50, 5) events
for £ = (100,10, 1) fo~"

At \/Sep = 140 GeV, Pr range up to
10 GeV with up to thousands of
events with £ = 100 fo~'

Could be observed via charm jet

@ 4FS yc — J/yc depend on ¢(x) and could be enhanced by intrinsic charm

Y. Yedelkina (lJCLab)
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J/p-+charm associated production at the EIC

C.Flore, JP Lansberg, H.S. Shao, YY, PLB 811 (2020) 135926

=01

S

3

3

Lev/2Gev/1 !

VENS = 3FS*[1-(1-¢0)2)] + (4FS - CT)*e, VENS (noIC) &5

'VFNS (SEA-like IC) 3

Vs = 140 GeV m, = 1.5GeV

Q< 1GeV2 W= pR = my
005<2<09 <Ojy> =145 GeV?
Pp>1GeV

20 GeV < W, < 100 GeV/

3

Lew/2Gev/10 !

do(ep — ]/ c)/dPr [nb/GeV]

1.ev./2 Gev/100 fy!

ratio w.r.t. VENS (no IC)

@ Same LO VFNS computation

previously shown in green except
for the charm-detection efficiency
€c: VNS =

o3FS « (1—(1- 6)2) + (04FS _ UCT) NS
At /Sep = 45 GeV, yield limited to
low Pt even with £ = 100 fb~'
But it is clearly observable if

ec = 0.1 with O(500, 50, 5) events
for £ = (100,10, 1) fo~"

At \/Sep = 140 GeV, Pr range up to
10 GeV with up to thousands of
events with £ = 100 fo~'

Could be observed via charm jet

@ 4FS yc — J/yc depend on ¢(x) and could be enhanced by intrinsic charm
@ Small effect at /Sgp = 140 GeV

Y. Yedelkina (lJCLab)

[We used IC c(x) encoded in CT14NNLO]
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J/p-+charm associated production at the EIC

C.Flore, JP Lansberg, H.S. Shao, YY, PLB 811 (2020) 135926

VENS = 3FS*[1-(1-¢.)%)] + (4FS - CT)*e, VENS (no IC) £

ce=01 VENS (SEA-like IC) 7 | @ Same LO VFNS computation

VENS (BHPS IC) 17

i foigy  mecisow previously shown in green except

! e\ F = JR = My | . .

1 005<2<09  <Of>=145GeV for the charm-detection efficiency
T e

20 GeV < Wy, <100 GeV J €c: gVFNS —
o3FS « (1—(1- 6)2) + (04FS _ UCT) NS

@ At ,/Sep = 45 GeV, yield limited to
low Pt even with £ = 100 fb~"

@ But it is clearly observable if
ec = 0.1 with O(500, 50, 5) events
for £ = (100,10, 1) fo~"

@ At /Sgp = 140 GeV, Pr range up to
10 GeV with up to thousands of
events with £ = 100 fo~'

@ Could be observed via charm jet

lev./2GeV/1fb!

Lev./2.GeV/10 !

do(e p — I/ ¢)/dPy [nb/GeV]

1ev:/2 GeV/100 b

HELAC-Onia 2.5.0

ratio w.r.t. VENS (no IC)

@ 4FS yc — J/yc depend on ¢(x) and could be enhanced by intrinsic charm
@ Small effect at /Sgp = 140 GeV [We used IC ¢(x) encoded in CT14NNLO]
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J/p-+charm associated production at the EIC

‘/q 45 GeV
Q*<1GeV?
005<z<09
Py>1GeV

10 GeV < W, < 20 GeV

VENS = 3FS*[1-(1-¢.)2)] + (4FS - CT)*, VENS (no IC) 555

Lev./2.GeV/10 fbr!

do(ep —J/¢ c)/dPy [nb/GeV]

1ev./2 GeV/100 b

m. 15GLV

HF “ MR =
107} <0;>= 145Gev‘

1 2 3

C.Flore, JP Lansberg, H.S. Shao, YY, PLB 811 (2020) 135926

@ Same LO VFNS computation
previously shown in green except
for the charm-detection efficiency
€c: VNS =
o3FS « (1—(1- 6)2) + (04FS _ UCT) NS

@ At ,/Sep = 45 GeV, yield limited to
low Pt even with £ = 100 fb~'

@ But it is clearly observable if
ec = 0.1 with O(500, 50, 5) events
for £ = (100,10, 1) fo~"

@ At /Sgp = 140 GeV, Pr range up to
10 GeV with up to thousands of
events with £ = 100 fo~'

@ Could be observed via charm jet

@ 4FS yc — J/yc depend on ¢(x) and could be enhanced by intrinsic charm

@ Small effect at /Sgp = 140 GeV
@ Measurable effect at /Sgp = 45 GeV

[We used IC c(x) encoded in CT14NNLO]
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do(ep —J/¢ c)/dPy [nb/GeV]

ratio w.r.t. VENS (no IC)

J/p-+charm associated production at the EIC

C.Flore, JP Lansberg, H.S. Shao, YY, PLB 811 (2020) 135926

005<z<09
Pr>1GeV
10 GeV < W, <20 GeV

VENS (no IC) &5

VENS (SEA-like IC) £77
2

1ev./2 Gev/10 fb!

e
SN\

1ev./2 GeV/100 fb!

PE = IR = m

o T
7 b <O))> = 145 GeV?

R
N

Py [GeV]

5

@ Same LO VFNS computation
previously shown in green except
for the charm-detection efficiency
€c: VNS =

o3FS « (1—(1- 6)2) + (04FS _ UCT) NS
At /Sep = 45 GeV, yield limited to
low Pt even with £ = 100 fb~'

@ But it is clearly observable if

ec = 0.1 with O(500, 50, 5) events
for £ = (100,10, 1) fo~"

@ At,/Sep = 140 GeV, Py range up to

10 GeV with up to thousands of
events with £ = 100 fo~'

@ Could be observed via charm jet

@ 4FS yc — J/yc depend on ¢(x) and could be enhanced by intrinsic charm
@ Small effect at /Sgp = 140 GeV

@ Measurable effect at /Sgp = 45 GeV

Y. Yedelkina (lJCLab)

[We used IC c(x) encoded in CT14NNLO]
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J/p-+charm associated production at the EIC

C.Flore, JP Lansberg, H.S. Shao, YY, PLB 811 (2020) 135926

VENS = 3FS*[1-(1-¢0)?) ] + (4FS - CT)*e, VENS (no IC) 555

VENS (SEMKEIC) @ Same LO VFNS computation
‘/’i 45Gey  VENS (BHPSIC) . .
@1 previously shown in green except
10 GV W,y < 20 Gev for the charm-detection efficiency
- €c: VNS =
10° Flev2Gevito ! P USFS X (1 — (1 — €)2) + (0'4FS — U'CT) X €
wl @ At ,/Sep = 45 GeV, yield limited to

do(ep —J/¢ c)/dPr [nb/GeV]

low P7 even with £ = 100 fb~—?

ST @ But it is clearly observable if
ol ec = 0.1 with O(500, 50, 5) events
e for £ = (100,10,1) o~
£ .0 @ At /Sgp = 140 GeV, Pr range up to
B . 10 GeV with up to thousands of
E §\\\\\\\\§\\\\\ \\x\\%\\\\% events with £ = 100 fo~!

0 2 s p 5 s @ Could be observed via charm jet

Pr[GeV]

@ 4FS yc — J/yc depend on ¢(x) and could be enhanced by intrinsic charm
@ Small effect at /Sgp = 140 GeV [We used IC c(x) encoded in CT14NNLO]
@ Measurable effect at ,/S¢p = 45 GeV: BHPS valence-like peak visible !
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Part V

Study of the impact of the NLO
corrections to Pr-integrated
photoproduction cross section
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The negative cross-sections issue at high energies

A. Colpani Serri, Y. Feng, C. Flore, J.P. Lansberg, M.A. Ozcelik, H.S. Shao, YY: arXiv:2112.05060 [hep-ph]
10°

Jly photoproduction
CT18NLO, z< 0.9
Myy=2m, = 3 GeV'
20% FD (y "= Jiy)

[Ryy(0)*=1.25 GeV®
) ]
10 100 1000
5 [GeV]

Exp. data: H1 - M.Kraemer: NPB 459(1996)3-50, FTPS - B.H.Denby et al.: PRL 52(1984)795-798, NAI -
NA14Collaboration, R.Barate et al.:Z.Phys.C 33(1987)505
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The negative cross-sections issue at high energies

A. Colpani Serri, Y. Feng, C. Flore, J.P. Lansberg, M.A. Ozcelik, H.S. Shao, YY: arXiv:2112.05060 [hep-ph]
10°

NES: E%E:E )
-
iy
1 02 4
2
o&

Jiy photoproduction
CT18NLO,z<0.9
My, =2m = 3 GeV/
20% FD (y '— Jiy)

[Ryy(0)*=1.25 GeV® |
.
10 100

1000
5, [GeV]

@ NLO cross section for J/4 photoproduction becomes negative
for large yr when /s, increases

Exp. data: H1 - M.Kraemer: NPB 459(1996)3-50, FTPS - B.H.Denby et al.: PRL 52(1984)795-798, NAI -
NA14Collaboration, R.Barate et al.:Z.Phys.C 33(1987)505
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The negative cross-sections issue at high energies

A. Colpani Serri, Y. Feng, C. Flore, J.P. Lansberg, M.A. Ozcelik, H.S. Shao, YY: arXiv:2112.05060 [hep-ph]

102 |
7
2
&
10 Jhy photoproduction
CT18NLO, 2 < 0.9
M, y=2m, = 3 GeV
20% FD (y "> Jy)
10°

[Ryy(0)*=1.25 GeV® |

100
vy [GeV]

@ NLO cross section for J/4 photoproduction becomes negative
for large yr when /s, increases

For up = 2M, o < 0 as in case of 1. hadroproduction

1000

J.P. Lansberg, M.A. Ozcelik: Eur.Phys.J.C 81 (2021) 6, 497

Exp. data: H1 - M.Kraemer: NPB 459(1996)3-50, FTPS - B.H.Denby et al.: PRL 52(1984)795-798, NAI
NA14Collaboration, R.Barate et al.:Z.Phys.C 33(1987)505
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The negative cross-sections issue at high energies

A. Colpani Serri, Y. Feng, C. Flore, J.P. Lansberg, M.A. Ozcelik, H.S. Shao, YY: arXiv:2112.05060 [hep-ph]

3
10
LO: (En&r)=(1.0,0.86) (EnEr=(2.0,2.0) —
NLO: (ZRE5)=(1:0,0:86) — (B En=(051.0)
BrEn=(0505) - - — EREN=(1.010) — -
(ERER=(1.005) ErEh=@o10) —--
ENED=(1.02.0) Exp. dita 5

Jly photoproduction
CT18NLO, z< 0.9
Myy=2m, = 3 GeV'
20% FD (y "= Jiy)

[Ryy(0)*=1.25 GeV® |

10 100 1000
vy [GeV]

@ NLO cross section for J/4 photoproduction becomes negative
for large yr when /s, increases

@ For up =2M, o < 0 as in case of 7 hadroproduction

J.P. Lansberg, M.A. Ozcelik: Eur.Phys.J.C 81 (2021) 6, 497

@ 2 possible sources of negative partonic cross sections: loop
corrections (interference) and from real emission (subtraction of
IR poles)

Exp. data: H1 - M.Kraemer: NPB 459(1996)3-50, FTPS - B.H.Denby et al.: PRL 52(1984)795-798, NAI -
NA14Collaboration, R.Barate et al.:Z.Phys.C 33(1987)505
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Negative cross-section values

A. Colpani Serri, Y. Feng, C. Flore, J.P. Lansberg, M.A. Ozcelik, H.S. Shao, YY: arXiv:2112.05060 [hep-ph]

10°

0k

G0 [nD]
e
e
e

\

Jly photoproduction
CT18NLO, < 0.9
/ B Myp=2m = 3 GeV
plo-—- 20% FD (y '— JAy)

[Ryy(0)[?=1.25 GeV® |
.
10 100 1000
6,5 [GeV]

@ Initial state collinear divergences are removed via the
subtraction into the PDFs via AP-CT
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Negative cross-section values

A. Colpani Serri, Y. Feng, C. Flore, J.P. Lansberg, M.A. Ozcelik, H.S. Shao, YY: arXiv:2112.05060 [hep-ph]

10°

LO: =(1.0,0.86 j Er)=(2.02.0) - - -
niO: EREio0ss fre 6070
L h B Rabey ==
(EREP(10.20) o . data e
102 | % 4
z i
£
&
10'

Jly photoproduction
CT18NLO, z < 0.9
) i My, =2m = 3 GeV
plo-—- 20% FD (y ‘= Jiy)

IRy 0)=1.25 GeV* |

I
10 100

5, [GeV]

@ Initial state collinear divergences are removed via the
subtraction into the PDFs via AP-CT

@ limg ULV (Iog —|—A7,> Ayg=Ayg

1000
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Negative cross-section values

A. Colpani Serri, Y. Feng, C. Flore, J.P. Lansberg, M.A. Ozcelik, H.S. Shao, YY: arXiv:2112.05060 [hep-ph]

10°

Jly photoproduction
CT18NLO, z < 0.9
My, =2m = 3 GeV
20% FD (y ‘= Jiy)

IRy 0)=1.25 GeV* |

.
10 100 1000
5, [GeV]

@ Initial state collinear divergences are removed via the
subtraction into the PDFs via AP-CT

@ limg ‘T!YV (Iog —|—A7,> Ayg=Ayg

@ Iflarge jif — 0 < 0 — o < 0: over-subtraction from AP-CT
into the PDFs
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A scale prescription for ug
J.P. Lansberg, M.A. Ozcelik: Eur.Phys.J.C 81 (2021) 6, 497
@ In principle, such negative terms should be
compensated by the evolution of the PDFs governed by
the DGLAP equations;

Yo
R
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A scale prescription for ug

J.P. Lansberg, M.A. Ozcelik: Eur.Phys.J.C 81 (2021) 6, 497

@ In principle, such negative terms should be
compensated by the evolution of the PDFs governed by
the DGLAP equations;

@ A,g, Ayq are process-dependent, while the DGLAP

= equations are process-independent, which makes the
compensation imperfect;
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A scale prescription for ug
J.P. Lansberg, M.A. Ozcelik: Eur.Phys.J.C 81 (2021) 6, 497
@ In principle, such negative terms should be
compensated by the evolution of the PDFs governed by
the DGLAP equations;

@ A,g, Ayq are process-dependent, while the DGLAP

= equations are process-independent, which makes the
compensation imperfect;

@ Butas A,y = A4, We can choose ¢ such that

; ~NLO _
I/mg_maw. =0
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A scale prescription for ug
J.P. Lansberg, M.A. Ozcelik: Eur.Phys.J.C 81 (2021) 6, 497
@ In principle, such negative terms should be
compensated by the evolution of the PDFs governed by
the DGLAP equations;

@ A,g, Ayq are process-dependent, while the DGLAP
equations are process-independent, which makes the
compensation imperfect;

@ Butas A,y = A4, We can choose ¢ such that

; ~NLO _
I/mg_maw. =0

@ This amounts to consider that all the QCD corrections
are in the PDFs
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A scale prescription for ug

J.P. Lansberg, M.A. Ozcelik: Eur.Phys.J.C 81 (2021) 6, 497

@ In principle, such negative terms should be
compensated by the evolution of the PDFs governed by
the DGLAP equations;

@ A,g, Ayq are process-dependent, while the DGLAP

equations are process-independent, which makes the
compensation imperfect;

@ Butas A,y = A4, We can choose 1. such that
/imgﬁw&yfo =0

@ This amounts to consider that all the QCD corrections
are in the PDFs

@ The choice of factorisation scale to avoid possible
negative hadronic cross-section: (for 7q: Agi = —1)
HE = fiF = Mei/?;
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A scale prescription for ug

J.P. Lansberg, M.A. Ozcelik: Eur.Phys.J.C 81 (2021) 6, 497

@ In principle, such negative terms should be
compensated by the evolution of the PDFs governed by

the DGLAP equations;

A, g, A,q are process-dependent, while the DGLAP
equations are process-independent, which makes the
compensation imperfect;

But as A,y = A,q, We can choose ¢ such that

; A~NLO _
I/mg_maw. =

@ This amounts to consider that all the QCD corrections

are in the PDFs

@ The choice of factorisation scale to avoid possible

negative hadronic cross-section: (for 7q: Agi = —1)
ur = fip = Me™i’2;

For J/ (Y) photoproduction: jif = 0.86M

(Pr €10,00], z<0.9)
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HEF: resummation of collinear emission contributions

J.P. Lansberg, M.Nefedov, M.A. Ozcelik: 2112.06789 [hep-ph]

@ Mellin transformation: f(N) = f01 ax xN=1f(x), we can
rewrite & from x to N space

@ From the DGLAP equations we know that:
f(N,jif) = f(N yo)exp(w) where we used
Yog(N) = —A, as # as(p), po is the default scale
choice.

@ In the exponent we did some approximate resummation

of collinear emission contributions for § 2—> 00:
a2In™ 11 — & for n=0, where 2 = M
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Results with fif = 0.85M

A. Colpani Serri, Y. Feng, C. Flore, J.P. Lansberg, M.A. Ozcelik, H.S. Shao, YY: arXiv:2112.05060 [hep-ph]

NLO: pg unc. m=== |
LO: pg unc. 1
NLO: PDF unc. oy
Exp. data —&—

20% FD (y '— J/y)
IRy, (0)°=1.25 GeV® |

108 ¢ ——
I J/y photoproduction
CT18NLO
My=2m¢=3 GeV, z < 0.9
np=0.86M,, ug € [2.5; 10]GeV
10% %
2 i ¢
TA
bg: e =
10"
100 E . . . M|
10" 102

s, [GeV]

10°

Exp. data: H1 - M.Kraemer: Nucl.Phys.B 459(1996)3-50, FTPS - B.H.Denbyet al.: Phys.Rev.Lett. 52(1984)795-798, NAI

- NA14Collaboration, R.Barateet al.:Z.Phys.C 33(1987)505
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Part VI

Can J/¢ & Y allow us to probe PDFs? :
PDF vs scale uncertainties
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J/y: PDF uncertainties of o(,/5,p)

A. Colpani Serri, Y. Feng, C. Flore, J.P. Lansberg, M.A. Ozcelik, H.S. Shao, YY: arXiv:2112.05060 [hep-ph]
PDF uncertainties increase at large /s (i.e. small x)

@ The upg unc. are reduced at NLO in comparison with LO;

100
103 Jhy photoproduction CT18NLO PDF unc. - -
Jhy photoproduction NLO: ug unc. zzza CT18NLO MSHT20 PDF unc.
CT18NLO LO: g unc. Myy=2m,=3 GeV, z < 0.9 NNPDE31 PDF unc.
My;,=2m =3 GeV, z < 0.9 NLO: PDF unc, sy 1E=0.86M,,, g € [2.5; 10]GeV LO: ﬁ: unc.
1p=0.86My, g € [2.5; 10]GeV Exp. data +—&— 50 v
5 e A A5
2 s 0 iz 7o
b% b& ,,,,,
10' F <
20% FD (y '~ Jhy) -50
[Ry(0)P=1.25 GeV®
10° w 3 100 ‘
1 2 3 1 2 3
10 10 10 10 10 10
\Ew [GeV] \Evp [GeV]
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J/v: PDF uncertainties of o(,/S,p)

A. Colpani Serri, Y. Feng, C. Flore, J.P. Lansberg, M.A. Ozcelik, H.S. Shao, YY: arXiv:2112.05060 [hep-ph]

@ PDF uncertainties increase at large /s (i.e. small x)

@ The ug unc. are

@ Anincrease of u
corrections.

reduced at NLO in comparison with LO;
g unc. from ,/s,, 2 50 GeV comes from the loop

@ At NNLO we will have such contributions squared; we expect
rather positive NNLO corrections, which will reduce pg unc.

100

50

Aoy, /c,,p [%]
o

-50

Y. Yedelkina (lJCLab)

Jhy photoproduction ' CT18NLO PDF unc. - - -
CT18NLO MSHT20 PDF unc. --- - - ,
My =2m=3 GeV,z < 0.9 NNPDI:\‘QE PDFunc. — -

O:pgunc. rzz2 .
1p=0.86M,,, g € [2.5; 10]GeV LO:pgunc. % ¢

Ew [GeV]
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Y photoproduction

A. Colpani Serri, Y. Feng, C. Flore, J.P. Lansberg, M.A. Ozcelik, H.S. Shao, YY: arXiv:2112.05060 [hep-ph]

100
1 00 Y(1S) photoproduction CT18NLO PDF unc. - - -
Y(1S) photoproduction NLO: pg unc. === CT18NLO MSHT20 PDF unc. ------
CT18NLO LO: pg unc. My 15=2m,=9.5 GeV, z < 0.9 N e
My(15)=2M;,=9.5 GeV, z < 0.9 NLO: PDF unc. p=0.86My y). i < [8; 32GeV LO: 47 une, f—
1E=0.86My(15), g € [8; 32]GeV > 50 |
107 = 4
oy
= =
e
©
107 E
4.2% FD (Y(3S)- Y(1S))
17.6% FD (Y(2S)- Y(1S))
[Ry(1(0)*=7.5 GeV®
3 : -100 :
10
10 10° 10°
5,5 [GeV] s, [GeV]

@ We see further reduction of scale uncertainties at NLO

comparably to LO

@ PDF uncertainties are larger at high ,/s,,: a potential to probe

PDFs
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Predictions of the high-energy factorization

a private communication with M.Nefedov;

100 I ! I ! ! ! !

 LONER G5 CTIaNLO, rvarision e @ The Leading-Twist
] . CS, , Mp=1.7m¢, pp=My r . . .
L1 L0 oM. 2o D, Oyl — | High-Energy factorization
o e e i T e —— (HEF) is the formalism to
b 19 Va1’ ey i resum large logarithms

60<uy,<80, 0.3<2<0.9

In(1/z4) in higher-order
corrections to the CF
description of inclusive

i I — h & h— hreactions

= @ No significant difference with
i NLO at low pr

do(ep->1/yX)/dpr, nb/GeV
-
5

w0° = @ However, at large Pr HEF may
: N f be not applicable
10 T T T T T T T @ We need a consistent
0.0 2.0 4.0 6.0 o :elil 10.0 12.0 14.0 matching With NLO CF

calculation

NB:z, = "j/w/(x‘ Pty LC Kkt = k0 + k3, x4 is the momentum fraction of the parton initiating the hard process, Pt = 2Ep - (+)-comp. of p moment.
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Tep(V/S)

A. Colpani Serri, Y. Feng, C. Flore, J.P. Lansberg, M.A. Ozcelik, H.S. Shao, YY: arXiv:2112.05060 [hep-ph]

2 0
10 Jhy photoproduction i NLO: p‘ﬂ unc. Fzz4 10 T(18) photoproducdon NLO: LR unc. rzz2
CT18NLO LO: ug unc. CT18NLO LO: pg unc.
My, =2m=3 GeV, z < 0.9 NLO: PDF unc. [ Mias=2my=9.5 GeV, z < 0.9 NLO: PDF unc. e
10! 1g=0.86My,, g € [2.5; 10]GeV 10 F 1g=0.86My15), g < [8; 32]GeV 3
-2
= T 10°F
I 0 =
g 10 8
© © 403 L
1 ) | ] 4.2% FD (Y(35)— Y(1S))
10 20% FD (y "> Jy) 104 L 17.6% FD (Y(25)- Y(1S)) |
[Ryy(0)/°=1.25 GeV' IRrs(0)°=7.5 GeV®
102 . . 108 . .
102 10° 102 10°
\sp [GeV] Sgp [GeV]
Exp. 5, £ (o~ N, N
P Ve L®T) Ny is) Ny = 0.08 x Njy,
EIC 45 100 8.5705.106  7.8709.102
e o N. ~ 0.5 x N
+0.1 107 +0.3 403 Y(2S) — ¥ Y(1S)
EIC 140 100 2575410 9.775g-10
~Y

Ny(ss)

04 x Ny(13)

We expect 1z unc. to shrink at NNLO: possibility to constrain PDF
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Part VII

Electroproduction of J/¢ and Y

o = = = = DAl
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Inclusive electro P roduction J.P. Lansberg, Phys.Rept. 889 (2020); Z. Sun, H.F.

Zhang, Phys.Rev.D 96 (2017) 9, 091502; J.W. Qiu,
X.P. Wang, H. Xing, Chin.Phys.Lett. 38 (2021) 4,
041201

@ Ininclusive J/y(Y) production:

QP> Q) +p—J/p+X;

for Q2 ~ (1,1.5)GeV?
@ Small resolved contributions

@ Larger @2 (higher resolution) suppress the gluon saturation effects
and also improve the perturbative expansion in ag

@ The computation more complicated

@ o is suppressed 1/Q%; only 4 exp. studies: H1 (urPhys.J.c 10 (1999),

373-393);Eur.Phys.J.C 25 (2002), 41-53;Eur.Phys.J.C 68 (2010), 401-420), ZEUS (Eur.Phys.J.C 44 (2005),
13-25)
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Photoproduction vs electroproduction of J/¢

J.W. Qiu, X.P. Wang, H. Xing, Chin.Phys.Lett. 38 (2021) 4, 041201

@ The electroproduction could scale as « p;s and the
photoproduction as o« p78
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Photoproduction vs electroproduction of J/¢

J.W. Qiu, X.P. Wang, H. Xing, Chin.Phys.Lett. 38 (2021) 4, 041201
e

T
1000 £ Bodwin
Butenschoen

Chao E

Gong

V5 = 141.4 GeV
0.0l g <4

0.001 ¢ ]

do/dpr [pb/GeV]

0.9E ]

I~ 0]&

0.5
3

6 7 8 9 10 11 12 13 14 15
pr [GeV]

s
ot

@ The electroproduction could scale as « p;s and the
photoproduction as o« p78

@ R" = 1: only photoproduction; R7 = 0: only electroproduction

@ So, at higher pt the effect for electroproduction will be larger
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LDME study with electroproduction of J/¢

J.W. Qiu, X.P. Wang, H. Xing, Chin.Phys.Lett.38 (2021) 4, 041201

e

LO:CO 7*(‘75 E 77777 Q
&

@ At LO only color octet 1Sc[,8] and 3P58] ¢t pair can contribute to high
pr J/1 production in ep collisions

Y. Yedelkina (lJCLab) Quarkonium production at the EIC, theory Jan 10, 2022 29/32



LDME study with electroproduction of J/¢

J.W. Qiu, X.P. Wang, H. Xing, Chin.Phys.Lett.38 (2021) 4, 041201

NLO loop: ééﬁ; NLO real:
CO

CO+CS

@ At LO only color octet 1888] and 3P58] ¢t pair can contribute to high
pr J/¢ production in ep collisions

@ For NLO real contribution, all four leading c¢ states (3S}'!, 1S,
3S£8], 3P58]) contribute
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LDME study with electroproduction of J/¢

J.W. Qiu, X.P. Wang, H. Xing, Chin.Phys.Lett.38 (2021) 4, 041201

] 7*(11%;

1000 ¢
100
10

1

T

3 gl
LDMEs - Chao sl

1

3

do/dpr [pb/GeV]

0.1
0.01¢ V5 = 141.4 GeV 7(q) Q
0.001F <4

34 5 6 7 8 9 10 11 12 13 14 15 NLO loop: ééﬁ; NLO real:
CO

pr [GeV] CO+CS
@ At LO only color octet 1888] and 3P58] ¢t pair can contribute to high
pr J/¢ production in ep collisions
@ For NLO real contribution, all four leading c¢ states (3S}'!, 1S,
3S£8], 3P58]) contribute
o If 18([)8} dominates, since it is unpolarised, high-pr J/ produced in

inclusive ep collisions are expected to be unpolarized.
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Introducing inclusive electroproduction of J/¢

J.W. Qiu, X.P. Wang, H. Xing, Chin.Phys.Lett.38 (2021) 4, 041201

1000 f " Bodwin ——— | 1000 | " Bodwin ———
Butenschoen ———— Butenschoen ————
= 100 Chao —— 1 = 100 Chao ———
5 10 Gong ——— d‘i 10 Gong ———
< 7= 3
<~ Q
= |
£ o1 S
S o1l b
= /5 = 1414 GeV = /5 = 141.4 GeV
L 001F py<a L 001F <4
0.001 1 oomf @716V
J .
- h =
N 4 A — 1 = ost
05 L L L L L L L L L L L 06 L L L L L L L L L L L
3456 7 8 9101112131415 3456 7 8 9101112131415
pr [GeV] pr [GeV]

@ Different sets of LDMEs lead to very different production rate —
could provide new insights into the J /1 production mechanism

@ Ry — 1 (the gluon initiated fraction of total do ): the production is
dominated by initial gluon channel (as for photoproduction: s.12) —
a good observable to probe the initial gluon PDF
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Conclusions
@ The CSM up to aa? reproduces photoproduction at HERA

@ The EIC predictions can rely on CSM only

@ The consistent matching of HEF with NLO CF calculation can improve the
photoproduction predictions
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Conclusions
@ The CSM up to aa? reproduces photoproduction at HERA

@ The EIC predictions can rely on CSM only

@ The consistent matching of HEF with NLO CF calculation can improve the
photoproduction predictions

@ We have also seen that QCD corrections are important for Pr-integrated o

@ A specific ug choice can be employed to avoid a possible over subtraction of
collinear divergences which lead to NLO negative ¢ values at large /S, p

@ Loop correction matter and significant NNLO corrections (likely positive) are
expected as well as a further reduction of the iz unc., esp. around 100 GeV

@ This would likely allow one to better probe gluon PDFs
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Conclusions
@ The CSM up to aa? reproduces photoproduction at HERA

@ The EIC predictions can rely on CSM only

@ The consistent matching of HEF with NLO CF calculation can improve the
photoproduction predictions

@ We have also seen that QCD corrections are important for Pr-integrated o

@ A specific ug choice can be employed to avoid a possible over subtraction of
collinear divergences which lead to NLO negative ¢ values at large /S, p

@ Loop correction matter and significant NNLO corrections (likely positive) are
expected as well as a further reduction of the iz unc., esp. around 100 GeV

@ This would likely allow one to better probe gluon PDFs

@ Inclusive electroproduction of J/1i measured at the EIC could allow for new
constraints of the gluon PDF over a wide range of scales

@ The EIC could provide the 1st measurement of Y electroproduction
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Backup
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Feed down

C.Flore, JP Lansberg, H.S. Shao, YY, PLB 811 (2020) 135926

@ b FD (5% on the Pr-integrated yields and is significant around Py = 10 GeV):
we do not include it as it can be experimentally removed.

@ Tune Pythia 8.2 using a b analysis by H1 using di-electrons events which
extends to large Pr
» Compute the corresponding LO+PS cross section using Pythia 8.2
» Perform a x2-minimisation to compute a tuning factor (absorbs the theory
uncertainties), such that the obtained LO+PS Pythia spectrum reproduces
best the H1 b data
» Again use Pythia 8.2 to compute the b — J/1 cross section in the H1
kinematics.
» Subtract this b — J/¢ yield from the inclusive one
@ . FD: no theory or experimental indication that it could be relevant

@ 20% y' FD: follows from the ratio of the wave functions at the origin and from the
' — J/y branching: FDy _, /¢ = |Ry (0)12/|Ry,(0)|2 Br(y' — J/9)
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Basic pQCD approach: the Colour Singlet Model (CSM)

C.-H. Chang, NPB172, 425 (1980); R. Baier & R. Riickl Z. Phys. C 19, 251(1983);
One supposes two factorisations:

@ collinear, in which the hadronic cross section can be written as
the convolution of the PDFs with the partonic cross section;

@ between the hard part (a perturbative amplitude, which describes
the QQ pair production) and the soft part (a non-perturbative
matrix element, which describes hadronisation):

@ Perturbative creation of 2 quarks, Q and Q
» on-shell
» in a colour singlet state

» with a vanishing relative momentum o JIp
» ina3S; state (for J/y, ¢’ and Y) photeproguation

@ Non-perturbative binding of quarks
— Schrédinger wave function at r =0

CSM: the Taylor series expansion of the amplitude in the QQ relative
momentum (v) to the first non-vanishing (Leading-v NRQCD) term.
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Dependence of o, on the ug at an initial photon

energy S,p
35 T T T T T T
X J/y photoproduction LO: s, p=20GeV — - —
- CT18NLO NLO: \5,,=20GeV — - -
30 N My,=2mc=3 GeV, z < 0.9 LO: \s,;=100GeV — — - |
Y p=0.86My, NLO: 5,,=100GeV ——
' ~N
25 e — ! S o 7
1 ~
' ~
—_— ' ~ ~
{% 22() B : ~ o - 7
= ' -
& 15 <_/7 S~—___ ]
10 . Z e~ - N
<—- . —— e~ — e — e — _
5 e .
- IRy, (0)°=1.25 GeV®
0 : | | | | | | |
2 3 4 5 6 7 8 9 10
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g& g contributions

35 E 9: ug=5GeV, ug=0.85M - —--- 9: uR=7.5GeV, ug=0.85M - - - - |

F q: ug=5GeV, pg=0.85M --- -- q: ug=7.5GeV, ug=0.85M — — —

30 b 9: up=Hp=0.85M — - — 9: ug=10GeV, pp=0.85M ---- E

E q: uR=MF=0.85M - - - - a: up=10GeV, pp=0.85M - >~ 72" 4

g J/y photoproduction 2 T

20 E CT18NLO, 3 FS, z < 0.9, NLO E

E Mp=2m, = 3 GeV E
o) g

S 15 F E
b F

Vs, [GeV]
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1R choice

URp=HF=0.84M ——
100 T T

Jhy photoproduction

LO, CT14nlo, 3 FS, z < 0.9 @ the natural scale

M=2m, = 3 GeV . .

choice in case of

AR
S ol ] photoproduction is
] / not a mass of

c-quark, becase of
some loop
corrections.

1 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ For J/ P:
0 100 200 300 400 500 600 700 800 900 100C 116
V&,p [GeV] WRmin = 1.6M¢

(55 = 10Gev)
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NLO*: Pr-discussion

IR cut-off - a lower cut on the invariant mass of
each pair of massless partons, sj.

In(sf"™)(1/p7)N, N > 8

If the initial gluon/quark emits a large-pr
gluon/quark and if the final gluon is semi-hard, the
increase of pr results in the growth of all the
possible s;j— > (1/pr)®

We do not consider loop corrections in NLO*:
(1/pr)®
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