Quarkonium detection and physics opportunities at the EIC

Wangmei Zha University of Science and Technology of China

Quarknia As Tools 2022, Centre Paul Langevin, 9–15 Jan 2022

Physics Opportunities at the EIC

- Global properties and parton structure of hadrons
 - ✓ Scaling violations of the inclusive structure function $g_1(x, Q^2)$
 - ✓ The gluon polarization $\Delta g(x, Q^2)$
- Multi-dimensional imaging of nucleons and nuclei
 - ✓ Probe quark TMDs and TMD evolution
 - ✓ Probe gluon Sivers TMD
- The nucleus: a laboratory for QCD
 - ✓ Probe the linearly polarized gluon distributions
 - ✓ Nuclear PDFs
 - ✓ Strong interactions in nuclei

Production mechanism for quarkonia

Part of global Quarkonia puzzle

- ✓ Colour Singlet Model
- ✓ NRQCD and Colour Octet Mechanism
- ✓ Colour Evaporation Model
- Explore the cold medium effect
 - \checkmark A + A collisions
 - ✓ p + A collisions
 - ✓ e + A collisions
 - ✓ e + e collisions

C. Flore, J.P. Lansberg etal., Phys. Lett. B (2020) 135926

Gluon tomography and mass decomposition

Sensitive to the gluon distribution

- ✓ Image the gluon distribution in nucleon
- ✓ The mass decomposition of proton (near threshold photoproduction)

The facility: EIC at BNL

- ✓ Luminosity: 10³³⁻³⁴ cm⁻²sec⁻¹
 - (100-1000 times HERA)
- ✓ Hadrons up to 275 GeV
- ✓ Electrons : 5-10 (20) GeV
- ✓ CM energy: 20-100 (140) GeV
- ✓ Polarized beams
- ✓ >1200 scientists, 250 institutions [Webpage]
- ✓ CD0 and site selection at Brookhaven National Lab in 2019
- Framework for international participation being set up CD1 achieved in 2021 [Webpage]
- ✓ Project hosted/managed jointly by BNL and JLab
- ✓ EIC Yellow Report Physics-Detector studies completed 2021 [2103.05419]
- ✓ Call for Collaboration Proposals for EIC detectors (1 Dec, 2021) [Webpage]
- ✓ CD4 and operations expected in 2030+

The candidates of detector system at EIC

ATHENA: athena-eic.org

CORE: eic.jlab.org/core

ECCE: ecce-eic.org

Detector Configuration of ECCE

Quarknia As Tools 2022

Detector Configuration—Tracking

- MAPS based silicon vertex/ tracking layers/ planes.
- MPGD /µRwell gas tracker.

Quarknia As Tools 2022

Tracking performance at ECCE

Electron identification capability at ECCE

EMCal +Tracking

- ✓ The energy deposition => E/p cut
- ✓ The transverse profile of the showers
- ✓ The position resolution

Cherenkov + TOF

(GeV/c) pythia6 10×100 10⁵ Ξ 10 10^{4} Ξ 10^{3} dRICH 10^{2} **hpDIRC mRICH** 10 TOF 10^{-1} -5 -3 -2 0 2 3 -1 η Wangmei Zha 10

Quarknia As Tools 2022

Electron identification capability at ECCE—EMCal+Tracking

Quarknia As Tools 2022

Electron identification capability at ECCE—EMCal+Tracking

Quarknia As Tools 2022

Wangmei Zha

Electron identification capability at ECCE—Cherenkov+TOF

- h-endcap: dRICH with two radiators (gas + aerogel)
 - π/K separation up to ~50 GeV/c e/ π separation up to ~15 GeV/c
- e-endcap: compact aerogel mRICH π/K separation up to ~10 GeV/c e/π separation up to ~2 GeV/c
- barrel: compact high-performance DIRC π/K separation up to ~6-7 GeV/c e/π separation up to ~1.2 GeV/c
- LGAD based TOF:

cover lower momenta down to ~0.2 GeV/c

HPDIRC

Quarknia As Tools 2022

Wangmei Zha

J/ψ Reconstruction

generator: pythia6 (eRHIC tuned) Full Geant simulation (fun4All) events: ~20million

J/ψ Reconstruction

Central region with better mass width.

From e-going to h-going, signal backround ratio turns better.

The theoretical setup of exclusive process (for projection)

$$\sigma(eA \to eAV) = \int \frac{dW}{W} \int dk \int dQ^2 \frac{d^2 N_{\gamma}}{dk \, dQ^2} \sigma_{\gamma^*A \to VA}(W, Q^2)$$
$$\frac{d^2 N_{\gamma}}{dk \, dQ^2} = \frac{\alpha}{\pi k Q^2} \left[1 - \frac{k}{Ee} + \frac{k^2}{2E_e^2} - \left(1 - \frac{k}{Ee}\right) \left| \frac{Q_{\min}^2}{Q^2} \right| \right]$$

$$\sigma_{\gamma^*A \to VA}(W, Q^2) = f(M_V)\sigma(W, Q^2 = 0) \left(\frac{M_V^2}{M_V^2 + Q^2}\right)^n \qquad n = c_1 + c_2 \left(Q^2 + M_V^2\right),$$

$$\sigma(W, Q^2 = 0) = \int_{t_{\min}}^{\infty} dt \frac{d\sigma(\gamma A \to VA)}{dt} \Big|_{t=0} F(t)|^2$$
Con be related to the cross section for $\sigma(\gamma L = \Delta VL)$

Can be related to the cross section for $\sigma(\gamma + p \rightarrow V + p)$

eSTARLight: Michael Lomnitz and Spencer Klein, Phys. Rev. C **99** (2019) 015203 Wangmei Zha etal, Phys. Rev. C **97** (2018) 044910

Quarknia As Tools 2022

Wangmei Zha

Two improvements for eSTARLight

Minimum momentum transfer

 $t_{\rm min} = (M_V^2/2k)^2$ Approximation

Parametrization for cross section input

Z. Cao etal., Chin. Phys. C43 (2019) 064103

The theoretical input for ep and eAu

Efficiency and S/B correction

High J/ ψ efficiency in central region

Forward region with a low efficiency

The projected statistics

The gluon nPDF projection

Quarknia As Tools 2022

Wangmei Zha

The t distribution projection

The near threshold production mechanism

$$\frac{d\sigma}{dt} = \mathcal{N}_{2g} v \frac{(1-x)^2}{R^2 \mathcal{M}^2} F_{2g}^2(t) \left(s - m_p^2\right)^2$$

$$\frac{d\sigma}{dt} = \mathcal{N}_{3g} v \frac{(1-x)^0}{R^4 \mathcal{M}^4} F_{3g}^2(t) \left(s - m_p^2\right)^2$$

SJ Brodsky, Phys. Lett. B 498 (2001) 23–28

A. Ali et al. (GlueX Collaboration), Phys. Rev. Lett. 123, 072001(2019)

The trace anomaly parameter projection

$$M_q = \frac{3}{4} \left(a - \frac{b}{1 + \gamma_m} \right) M_N,$$

$$M_g = \frac{3}{4} (1 - a) M_N,$$

$$M_m = \frac{4 + \gamma_m}{4(1 + \gamma_m)} b M_N,$$

$$M_a = \frac{1}{4} (1 - b) M_N,$$

Rong Wang, Xurong Chen and Jarah Evslin, Eur. Phys. J. C (2020) 80:507

Extract the QCD trace anomaly parameter b

Wangmei Zha

Muon ID at EIC?

- ✓ Less bremsstrahlung
- ✓ Internal photon radiation
- Combinatorial background

- ✓ Detector technology?
- ✓ R&D and cost evaluation?
- ✓ Space limitations?

Impact from material to Upsilon (ee) measurement [early sPHENIX optimization]

Quarknia As Tools 2022

- Rich physics opportunities with heavy Quarkonia at EIC
- \geq Excellent capability of J/ ψ reconstruction at ECCE
- Some selected projection results at ECCE
- >More input, ideas and requirements from theorists

Thank you!

Detector Configuration (July Concept)

Electron Endcap EMCal

Nearly final ECCE detector image for the proposal

J/ψ detection

a forward light cone variables can be used to see scattering beam e⁻ influence $x_{+} = \frac{b_0 + (-b_z)}{a_0 + (-a_z)}$ (cause beam e⁻ moves along negative z axis), b is beam e⁻.

J/ψ detection

Quarknia As Tools 2022

eID——TOF(fastsimulation)

	η range	path length	time resolution
forward	-1.5>ŋ>-3.5	250(cm) / cos(Θ)	20 (ps)
barrel	1.5>ŋ>-1.5	50 / sin(Θ)	20
end	3.5>ŋ>1.5	150 / cos(Θ)	20

TOF eID

p < 0.4(GeV/c) |1/β-1|<0.04 survival possibility: e: 99.5% π: 0.1%

Electron identification capability at ECCE

Electron identification capability at ECCE

Quarknia As Tools 2022

Wangmei Zha