Spin alignment in quarkonium production in SIDIS

In collaboration with: U. D'Alesio, F. Murgia, C. Pisano, R. Sangem

Speaker: Luca Maxia

Università di Cagliari - INFN CA

Onia as Tools 2022

Date: 12/01/2022

QUARKONIUM PUZZLE

Quarkonium formation is described via different models different ways to evaluate *short-* and *long-* distance scales

$$\begin{array}{ll} \mathsf{NRQCD} & \text{G.T. Bodwi, E. Braaten, G.P. Lepage (1997)} \\ \text{P. Cho & K. Leibovich (1996)} & \mathsf{FF} & \text{G. C. Nayak, J. W. Qiu, G. Sterman (2005)} \\ \mathcal{I} & \text{B. Kang, J. W. Qiu, G. Sterman (2014)} \\ \\ \sigma(\mathcal{Q}) &= \sum_{n} \hat{\sigma}(Q\bar{Q}[n]) < \mathcal{O}[n] > & \sigma_{\mathcal{Q}}(p_T \gg m_{\mathcal{Q}}) = \mathrm{d}\hat{\sigma}_i(p_T/z) \otimes D_{i \rightarrow \mathcal{Q}}(z, m_{\mathcal{Q}}) \\ & +\mathrm{d}\sigma_{Q\bar{Q}[c]}(P_{Q\bar{Q}[c]} = p_T/z) \otimes D_{Q\bar{Q}[c] \rightarrow \mathcal{Q}}(z, m_{\mathcal{Q}}) \\ \end{array}$$

POLARIZATION AS A KEY OBSERVABLE

Polarization is less dependent from theoretical uncertainties

(factorization scale, heavy quark masses, LDME, ...)

$$d\sigma \sim 1 + \lambda \cos^2 \theta + \mu \sin 2\theta \cos \phi + \frac{\nu}{2} \sin^2 \theta \cos 2\phi$$

Angular parameters are defined through ratio of polarized cross sections

Complete analysis of quarkonium polarization requires measurement of both polar and azimuthal angles

(for spin-1)

INFN

OUTLINE

Matching procedure (in NRQCD) Section A

HERA recap Section B

EIC preliminary results for the collinear region Section C

TMD FACTORIZATION

TMD factorization is formally proven only for few processes

Collins, Cambridge University Press (2011)

INFN

Section A 1/16

ANGULAR STRUCTURE OF THE CROSS SECTION

 J/ψ polarization is accessed by the angular distribution of its decay products

 $J/\psi \to l^+ l^-$

Faccioli, Lourenço, Seixas, Wöhri, EPJC 69 (2010)

SIDIS cross section is parameterized as

 $d\sigma \propto \mathcal{W}_{T}(1 + \cos^{2} \theta) + \mathcal{W}_{L}(1 - \cos^{2} \theta) + \mathcal{W}_{\Delta} \sin 2\theta \cos \phi + \mathcal{W}_{\Delta\Delta} \sin^{2} \theta \cos 2\phi$ with $\Omega(\theta, \phi)$ solid angle of l^{+} Boer & Vogelsang, PRD 74 (2006) The parameterization could be obtained from model independent arguments Hermiticity Parity conservation Gauge invariance

SPIN-QUANTIZATION FRAME

J/ ψ polarization is studied in the quarkonium rest frame $\gamma^*(q) + p(P) \rightarrow J/\psi(P_\psi) + X$

Different choices for the reference frame

- GJ Gottfried-Jackson frame
- CS Collins-Soper frame
- HX *Helicity* frame
- TF *Target* frame

Frames are related by a rotation around Y-axis

J/ψ POLARIZATION IN NRQCD

In the NRQCD approach there is a double expansion: α_s and v

NRQCD symmetries allow interference among states with same L and S

$$\mathcal{W}_{\Lambda}^{\mathcal{P}} = \mathcal{W}_{\Lambda}^{\mathcal{P}} \begin{bmatrix} {}^{3}S_{1}^{(1)} \end{bmatrix} + \mathcal{W}_{\Lambda}^{\mathcal{P}} \begin{bmatrix} {}^{1}S_{0}^{(8)} \end{bmatrix} + \mathcal{W}_{\Lambda}^{\mathcal{P}} \begin{bmatrix} {}^{3}S_{1}^{(8)} \end{bmatrix} + \mathcal{W}_{\Lambda}^{\mathcal{P}} \begin{bmatrix} \{L = 1, S = 1\}^{(8)} \end{bmatrix}$$

$$\stackrel{\Lambda}{\longrightarrow} \begin{array}{l} \Lambda = T, L, \Delta, \Delta \Delta J/\psi \text{ helicity} \\ \mathcal{P} = T, L, \chi^{*} \text{ polarization} \end{array}$$
Beneke, Krämer, Vänttinen, PRD 57 (1998)

 $\mathcal{P} = T, L \gamma^*$ polarization

ÍNFŃ

Luca Maxia (Università di Cagliari - INFN CA)

Section A 4/16

FACTORIZATION SCHEME

In the J/ψ rest frame the virtual photon has a transverse momentum (TM) $m{q}_T$

J/ψ polarization at small q_T

4 frame independent ${\mathcal W}$ helicity structure functions survive

$$\mathcal{W}_{T}^{\perp} = \widetilde{w}_{T}^{\perp} f_{1}(x, \boldsymbol{q}_{T}^{2}) \qquad \mathcal{W}_{L}^{\perp} = \widetilde{w}_{L}^{\perp} f_{1}(x, \boldsymbol{q}_{T}^{2})
\mathcal{W}_{L}^{\parallel} = \widetilde{w}_{L}^{\parallel} f_{1}(x, \boldsymbol{q}_{T}^{2}) \qquad \mathcal{W}_{\Delta\Delta}^{\perp} = \widetilde{w}_{\Delta\Delta}^{\perp} h_{1}^{\perp}(x, \boldsymbol{q}_{T}^{2})
proportional to < \mathcal{O}_{8}[{}^{3}P_{0}] > \qquad \text{access to}$$

D'Alesio, LM, Murgia, Pisano, Sangem, under review

INFŃ

Luca Maxia (Università di Cagliari - INFN CA)

Neglecting smearing effects:

Section A 6/16

J/ ψ POLARIZATION AT HIGH q_T

Luca Maxia (Università di Cagliari - INFN CA)

INFN

Section A 7/16

MATCHING AND SMEARING EFFECT

In the $\Lambda_{OCD} \ll q_T \ll Q$ region $(\Lambda, \mathcal{P}) = (L, \bot), \ (T, \bot), \ (L, \parallel)$ $\mathcal{W}_{\Delta\Delta}^{\perp}\big|_{\text{coll}} - \mathcal{W}_{\Delta\Delta}^{\perp}\big|_{\text{TMD}} = 0 \qquad \mathcal{W}_{\Lambda}^{\mathcal{P}}\big|_{\text{coll}} - \mathcal{W}_{\Lambda}^{\mathcal{P}}\big|_{\text{TMD}} \neq 0$ (P. Taels talk) matching requires shape functions Echevarria, JHEP 10 (2019) Fleming, Makris, Mehen, JHEP 04 (2020) Shape function $\Delta^{[n]}$ is a TMD generalization of NRQCD LDME $f_1^g \longrightarrow \mathcal{C}\left[f_1^g \Delta^{[n]}\right] \longrightarrow \Delta^{[n]}(\mathbf{k}_T;\mu) = C_A \frac{\alpha_s}{2\pi^2 \mathbf{k}_T^2} < \mathcal{O}[n] > \ln \frac{\mu^2}{\mathbf{k}_T^2} k_T^2 >> m_p^2$ $h_1^{\perp g} \longrightarrow \mathcal{C}\left[w h_1^{\perp g} \Delta^{[n]}\right] \longrightarrow \Delta^{[n]}(k_T, \mu^2)$ not observable at this α_s order Boer, D'Alesio, Murgia, Pisano, Taels, JHEP 09 (2020) D'Alesio, LM, Murgia, Pisano, Sangem, under review

Section A 8/16

COLLINEAR PHENOMENOLOGY

Experimentally a different parameterization is usually adopted for $d\sigma \equiv \frac{d\sigma}{dx_B dy dz d^4 P_{\psi} d\Omega}$

$$d\sigma \propto 1 + \lambda \cos^2 \theta + \mu \sin 2\theta \cos \phi + \frac{\nu}{2} \sin^2 \theta \cos 2\phi$$

$$\lambda = \frac{W_T - W_L}{W_T + W_L} \qquad \mu = \frac{W_\Delta}{W_T + W_L} \qquad \nu = \frac{2W_{\Delta\Delta}}{W_T + W_L} \qquad \text{where} \qquad \begin{array}{l} \lambda = +1 \quad \longrightarrow \quad \text{transverse} \\ \lambda = -1 \quad \longrightarrow \quad \text{longitudinal} \end{array}$$

Next: focus on λ in CSM and NRQCD at scale $\mu_0/2 < \mu < 2\mu_0$ $\mu_0 = \sqrt{M_{\psi}^2 + Q^2}$ NRQCD with different LDME choices

C12 Chao, Ma, Shao, Wang, Zhang, PRL 108 (2012) G13 Gong, Wan, Wang, Zhang, PRL 110 (2013) BK11 Butenschoen & Kniehl, PRD 84 (2011) Hard State on polarization data include low-P_T and photoproduction unpolarized data

Section B 9/16

HERA UNPOLARIZED DATA

Adloff et al. (H1 Collaboration), EPJ C 25 (2002)

Kniehl & Zwirner, NPB 621 (2002)

Data from HERA collaboration

Theoretical prediction obtained by Kniehl-Zwirner

 P_T data show a general better agreement with NRQCD predictions

z (multiplicity) data show a general better agreement with CSM predictions

HERA POLARIZED DATA

Adloff et al. (H1 Collaboration), EPJ C 25 (2002)

Yuan & Chao, PRD 63 (2001)

Luca Maxia (Università di Cagliari - INFN CA)

INFŃ

Section B 11/16

CEM at HERA

No result yet regarding polarization in SIDIS within CEM

CEM predictions respect to photoproduction are promising for future SIDIS polarization result

Data from HERA collaboration

Adloff et al. (H1 Collaboration), EPJ C 25 (2002)

Prediction from

in photoproduction in

Eboli, Gregores, Halzen, PRD 67 (2003)

Butenschoen, Kniehl, PRL 107 (2011)

Luca Maxia (Università di Cagliari - INFN CA) INFŃ

Section B 12/16

POLARIZATION AT EIC

EIC collinear predictions for λ vs P_T Analysis for different frames and energies allows for a more complete picture (resolved photon not included)

Section C 13/16

INFN

POLARIZATION AT EIC

Luca Maxia (Università di Cagliari - INFN CA)

INFŃ

EIC collinear predictions for λ vs P_T Analysis for different frames and energies allows for a more complete picture (resolved photon not included)

Upon rotation around Y-axis from a to $b \lambda$, μ , ν mix up

$$\begin{pmatrix} \lambda^{b} \\ \mu^{b} \\ \nu^{b} \end{pmatrix} = \frac{1}{1 + \Delta} \begin{pmatrix} 1 - \frac{3}{2} \sin^{2} \theta_{ab} & -\frac{3}{2} \sin 2\theta_{ab} & \frac{3}{4} \sin^{2} \theta_{ab} \\ \frac{1}{2} \sin 2\theta_{ab} & \cos 2\theta_{ab} & -\frac{1}{4} \sin 2\theta_{ab} \\ \sin^{2} \theta_{ab} & \sin 2\theta_{ab} & 1 - \frac{1}{2} \sin^{2} \theta_{ab} \end{pmatrix} \begin{pmatrix} \lambda^{a} \\ \mu^{a} \\ \nu^{a} \end{pmatrix}$$

$$\text{with} \quad \Delta = \frac{\sin^{2} \theta_{ab}}{2} \left(\lambda - \frac{\nu}{2}\right) + \frac{\sin 2\theta_{ab}}{2} \mu$$

One can identify a family of functions which are invariant under this rotation

$$\mathcal{F}_{c_1,c_2,c_3} = \frac{(3+\lambda) + c_1(1-\nu/2)}{c_2(3+\lambda) + c_3(1-\nu/2)}$$

INFN

Luca Maxia (Università di Cagliari - INFN CA)

Luca Maxia (Università di Cagliari - INFN CA)

INFŃ

INFN

Luca Maxia (Università di Cagliari - INFN CA)

Luca Maxia (Università di Cagliari - INFN CA)

INFN

Luca Maxia (Università di Cagliari - INFN CA)

INFŃ

Luca Maxia (Università di Cagliari - INFN CA)

INFŃ

INFN

CONCLUSIONS

Importance of polarization states analysis

Access to gluon TMD PDFs

In TMD region $\mathcal{W}_{\Delta\Delta}^{\perp}$ is related to the linearly polarized gluon distribution h_1^{\perp}

Proper shape functions are necessary to provide correct expressions in the intermediate q_T region

Comparison between HERA and EIC predictions shows the importance of full polarization measurement to achieve a complete picture

Thanks for the attention

