

Heavy flavor production in protonnucleus collisions at the LHC.

Theraa Tork

Quarkonia as Tools 2022

Outline

- Introduction and motivation:
 - → Cold nuclear matter effects.
 - The nuclear modification factor.
 - Why to study yields vs multiplicity.

- → Charmonia : J/Ψ and Ψ(2S).
- → Open charm : D-mesons.
- → Bottomonia : Y(nS).
- □ Summary

Cold nuclear matter effects

pA Collisions are important to study cold nuclear matter effects (CNM).

- → Initial state effect:
 - Parton shadowing due to modification of nuclear PDFs.
 - Color Glass Condensate CGC i.e medium with high density of small x gluons.
- → Intial-Final state effect :
 - Energy loss energy lost by partons via gluon emission.

- → Final state effects
 - Interaction with comoving particles.
 - Nuclear absorption due to the interaction with the nucleons of the colliding nuclei.

Cold nuclear matter effects

pA Collisions are important to study cold nuclear matter effects (CNM).

- → Initial state effect:
 - Parton shadowing due to modification of nuclear PDFs.
 - Color Glass Condensate CGC i.e medium with high density of small x, self interacting gluons.
- → Intial-Final state effect:
 - Energy loss energy lost by partons via gluon emission.

- → Final state effects
 - Interaction with comving particles.
 - Nuclear absorption due to the interaction with the nucleons of the colliding nuclei (neglected at LHC energies).

Nuclear modification factor

Goal : to understand the CNM effect on the particles production by comparing cross section in pA collisions to pp collisions

if $R_{pA} \neq 1 \rightarrow nuclear$ effect

Charged-particle multiplicity

Goal: gain some insight into the processes occurring in the collision and the interplay between the hard and soft mechanisms in particle production.

- Charm and beauty are produced in hard processes.
- A larger multiplicity in events with charm production with respect to those without charm was observed in 1988 by the NA27 Collaboration.
- At LHC energies, a correlation between the heavy flavor production and charged-particle multiplicity was found.

NA27 Z.Phys.C41:191,1988

The ground state "J/Ψ"

- Agreement between ALICE and LHCb results.
- Results is described by different models:
 - · Shadowing.
 - nPDF.
 - CGC.
 - Energy loss.
 - Transport.
 - Comovers.

J/Ψ at midrapidity

- $R_{pPb}^{J/\Psi}$ at midrapidity
- Described by CNM models which contain shadowing, CGC and energy loss.

The excited state "Ψ(2S)"

- ψ(2S) experience a stronger suppression than J/ψ at backward rapidity.
- Initial state CNM effects did not reproduce the Ψ(2S) results at backward rapidity.

Ψ(2S) With final state effect calculations

 Ψ (2S) is better described with final state models "Comovers" i.e interaction of the J/ Ψ or Ψ (2S) with the co-moving final-state hadrons.

J/Ψ yields Vs charged-particle multiplicity

JHEP09(2020)162

- J/Ψ normalized yields Vs normalized charged-particle multiplicity.
- Increase with increasing multiplicity.
- Different behavior at forward and backward rapidity (different bjorken x regions.)

p-Pb (p-going direction)

Pb-p (Pb-going direction)

J/Ψ Vs multiplicity and model calculations

See Johannes presentation about EPOS.

Ψ(2S)-over-J/Ψ double ratio

Comovers model described the double ratio Vs <N_{coll}>

R_{pPb} of Prompt D⁰ at forward rapidity

- Prompt D⁰ meson Vs rapidity.
- Stronger suppression at forward rapidity than backward rapidity.
- CNM effects reproduced the behavior of R Vs y of D⁰ meson.

R_{pPb} of Prompt D⁰ at midrapidity

The overall R_{pPb} is compatible with unity at midrapidity .

Quarkonia as tools T.TORK 17

Prompt D-meson Vs multiplicity

- Increase of normalized yields of D-meson as a function of charged particle multiplicity.
- The trend of the results was reproduced with EPOS event generator.

$R_{pPb}^{\gamma(1s)}$ Vs y

- Hint of stronger suppression at forward rapidity than backward.
- Agreement between ALICE and LHCb results.

Described by models include CNM effects.

- a suppression at midrapidity.
- No rapidity dependence at midrapidity observed.

21 T.TORK **Ouarkonia** as tools

$R_{pPb}^{\gamma(nS)}$ Vs y

A hint of stronger suppression for excited states compared to the ground state at forward rapidity.

γ(1S) Vs mulltiplicity at midrapidity

- Increase of the Y(1S) as a function of multiplicity.
- Similar to the behavior of J/ψ and open heavy flavor.

γ(nS) Vs multiplicity at midrapidity

- γ(nS) increases with increase multiplicity.
- Stronger increase for the results in pp than p-Pb.

Summary

Charmonia production at 8.16 TeV :

- J/Ψ stronger suppression at forward rapidity.
- Ψ(2S) experience a stronger suppression than J/Ψ at backward rapidity.
- Final state effects described the $\Psi(2S)$ production better than CNM effects.
- Increasing of J/Ψ normalized yields as a function of charged-particle multiplicity.

Open heavy flavor production at 5 TeV :

- Stronger suppression at forward rapidity than backward region of D meson.
- At midrapidity, R_{nPh} is compatible with unity.
- Increase of the normalized yields as a function of multiplicity.

Bottomonia production at 8 and 5 TeV :

- Hint of stronger suppression at forward rapidity.
- Excited state suppression experience stronger suppression at forward rapidity.
- Normalised Yields are increasing as multiplicity increases.

High multiplicity events in small systems

△ Small systems = pp or p-Pb collisions

Unexpected observations in small systems at high multiplicity:

- Elliptic Flow: long-range angular correlation. 10.1007/JHEP09(2010)091.
- Enhanced production of strange hadrons similar to Pb-Pb collisions.
 Nature Phys 13, 535–539 (2017).

How to interpret this behavior?

- → QGP droplets in high multiplicity events.
- → Multi parton interactions: several interaction at parton level in a single collision.

Ψ(2S)-over-J/Ψ double ratio

Prompt D Vs multiplicity

- Increase of prompt D Vs multiplicity.
- Stronger increase in pp than p-Pb.

ALICE, ATLAS and LHCb: $R_{pPb}^{\gamma(1s)}$

- Suppression at midrapidity!
- No rapidity dependence at midrapidity.