Quarkonium production and MPI effects in p+p collisions at RHIC

Leszek Kosarzewski

Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague

Quarkonia as Tools 9-15.1.2022, Centre Paul Langevin, Aussois, France

Image source: Wikimedia Commons

EUROPEAN UNION European Structural and Investment Funds Operational Programme Research. Development and Education

The work was also supported from European Regional Development Fund-Project through International Mobility of Researchers project of

the Ministry of Education, Youth and Sports of the Czech Republic, Project No. CZ.02.2.69/0.0/0.0/18.053/0016980

¹ [Motivation](#page-2-0)

² [Quarkonium spectra at RHIC](#page-4-0)

- J/ψ in p+p \sqrt{s} = 200 GeV [by STAR](#page-4-0)
- J/ψ in p+p \sqrt{s} = 200 GeV [by STAR](#page-5-0)S
 J/ψ in p+p \sqrt{s} = 500 GeV and \sqrt{s} = 510 GeV by STAR
- J/ψ in p+p \sqrt{s} = 500 GeV and \sqrt{s} = 510 GeV [by PHENIX](#page-6-0)
 J/ψ in p+p \sqrt{s} = 200 GeV and \sqrt{s} = 510 GeV by PHENIX
- $\gamma \psi$ in p+p \sqrt{s} = 200 GeV and \sqrt{s}
 γ in p+p \sqrt{s} = 500 GeV [by STAR](#page-7-0)

³ [Multiplicity dependence - introduction](#page-10-0)

⁴ [Multiplicity dependence - results](#page-15-0) J/ψ [in p+p](#page-15-0) $\sqrt{s} = 200$ GeV

- J/ψ [in p+p](#page-16-0) \sqrt{s} = 500 GeV
 J/ψ in p+p \sqrt{s} = 500 GeV
- $T \text{ in } p+p \sqrt{s} = 500 \text{ GeV}$
T [in p+p](#page-17-0) $\sqrt{s} = 500 \text{ GeV}$

⁵ [Prospects](#page-21-0)

⁶ [Summary](#page-27-0)

Motivation

- Measure quarkonium production in order to study the production mechanism by comparing to model calculations
- Quarkonium production is often assumed to factorize into:
	- Production of heavy $Q\bar{Q}$ pair in a hard scattering (mostly through gluon fusion at RHIC)
	- **e** Evolution and formation of a bound state (non-perturbative)
- **Quarkonium production mechanism:**
	- **Describes the bound state formation**
	- Still not fully understood
	- Consists of color singlet (CS) and color octet (CO) channels
	- Implemented in:
		- Non-relativistic QCD (+CGC EFT) [\[PRD](https://doi.org/10.1103/PhysRevD.51.1125) [51\(3\)\(1995\)\],](https://doi.org/10.1103/PhysRevD.51.1125)[\[JHEP01\(2014\)056\]](https://doi.org/10.1007/JHEP01(2014)056)
		- **Color Evaporation Model [\[Phys.Lett.B 67\(2\),](https://doi.org/10.1016/0370-2693(77)90108-3)** [217–221\(1977\)\]](https://doi.org/10.1016/0370-2693(77)90108-3)
		- **· Color Dipole Model [\[PoS\(EPS-HEP2015\),191\]](https://doi.org/10.22323/1.234.0191)**
		- ...
- CS color neutral
- CO any color and quantum numbers possible

[\[B. Trzeciak, Prague, HQPC 2015\]](https://drupal.star.bnl.gov/STAR/system/files/JpsiPolarization_STARPrague2015.pdf)

Relativistic Heavy Ion Collider

[\[https://www.bnl.gov/newsroom/news.php?a=119262\]](https://www.bnl.gov/newsroom/news.php?a=119262)

 J/ψ measured by <code>STAR</code> at $\sqrt{s}=200\>{\rm GeV}$

[^{\[}Phys. Lett. B, 786, 87–93\]](https://doi.org/10.1016/j.physletb.2018.09.029)

- Precise measurements performed by STAR at mid-rapidity with $0 < p_{\text{T}} < 15 \text{ GeV/c}$
- \bullet Data are well described by CEM and NLO+NRQCD B calculations for direct J/ψ
- NLO+NRQCD A model calculations for prompt J/ψ also rather well describe the data
- Prompt CGC+NRQCD above the data, but on the edge of uncertainties
- \bullet $B \rightarrow J/\psi$ contribution not included in models
- **Precise results over wider** $0 < p_T < 20$ GeV/c range
- Model calculations include $B \to J/\psi$ feed-down calculated with FONLL
- Inclusive CGC+NRQCD and ICEM above the data at low p_T , but on the verge of uncertainties
- NLO NRQCD and ICEM at high p_T for inclusive J/ψ describe the data

[\[Physical Review D, 100\(5\), 052009\]](https://link.aps.org/doi/10.1103/PhysRevD.100.052009)

[\[Phys. Rev. D, 101\(5\), 052006\]](http://dx.doi.org/10.1103/PhysRevD.101.052006)

- \bullet Data overestimated by LO-NRQCD+CGC calculation at low p_T
- Prompt NLO-NRQCD calculation describes the data, but overestimates at high $p_T > 5 \,\text{GeV/c}$

- Both p_T and rapidity spectra measured by STAR
	- Separated $\Upsilon(2S)$ and $\Upsilon(3S)$ states vs. y
- \bullet $\Upsilon(15)$ data are:
	- Well described by inclusive CEM calculation
	- Overestimated by direct CGC+NRQCD calculation

$$
\bullet \ \ x_T = \frac{2p_T}{\sqrt{s}}, \ \sigma^{inv} \equiv E \frac{d^3 \sigma}{d^3 p} = \frac{F(x_T)}{p_T^{n(x_T, \sqrt{s})}} = \frac{F'(x_T)}{\sqrt{s}^{n(x_T, \sqrt{s})}}
$$

[\[F. Arleo et al., JHEP06,035\(2010\)\]](http://dx.doi.org/10.1007/JHEP06(2010)035)

- pQCD predicts that spectra of hard processes should follow x_T scaling check with $n = 5.6$ (number of partons taking active part in the process) obtained for J/ψ [\[L. Adamczyk et al., Phys.Rev.C 80, 041902\(2009\)\]](http://dx.doi.org/10.1103/PhysRevC.90.024906)
- No clear scaling observed, some indication for LHC data at high p_T

Multiplicity dependence of quarkonium production

Multiplicity dependence - introduction

- Linear increase for J/ψ vs. N_{ch} at both mid- and forward rapidity [\[Phys.Lett.B](http://dx.doi.org/10.1016/j.physletb.2012.04.052)] [712,165–175\(2012\)\]](http://dx.doi.org/10.1016/j.physletb.2012.04.052)
	- \bullet Stronger increase at mid-rapidity in high- N_{ch} events
- Strong increase of $\Upsilon(1S)$ self normalized yields observed at LHC [\[JHEP04,103\(2014\)\]](http://dx.doi.org/10.1007/JHEP04(2014)103)
- Can similar effect be seen at RHIC energy? What is the cause of the effect?
- Expectation: quarkonium production $\propto N_{MPI}$, $N_{ch} \propto$ energy density
- Way to study interesting interplay between hard and soft QCD processes

Multiple parton interactions (MPI)

<https://www.bnl.gov/rhic/images/proton-with-gluouns-300px.jpg> <http://www.desy.de/~jung/multiple-interactions/may06/mi-rick.gif>

- Protons are complex objects consisting of constituent quarks, sea quarks and gluons.
- Multiple parton interactions (MPI) may happen in $p + p$ collison implemented in PYTHIA.
	- Besides the main hard process, there may be additional hard and soft processes in MPI.
- As implemented in PYTHIA8, heavy quarks can also be produced during MPI.
- MPI together with initial- (ISR), final-state radiation (FSR) and beam remnants define the event activity, which can be characterized experimentally using the charged particle multiplicity.
- Charged particle multiplicity $N_{ch} \propto$ energy density

String Percolation Model

[\[Ann.Rev.Nucl.Part.Sci.60, 463-489\(2010\)\]](http://dx.doi.org/10.1146/annurev.nucl.010909.083629) [\[Proc.of SPIE, 100313U\(2016\)\]](http://dx.doi.org/10.1117/12.2249342)

- Models particle production originating from strings of color field formed in $p + p$ collisions.
- Soft particle production dampened by interaction of overlapping strings with transverse size $r_T \propto 1/m_T$
- A simple model inspired by Color Glass Condensate approach
- Quarkonium production $\propto N_{MPI}$, while $N_{ch} \propto$ energy density
- Predicts quadratic dependence of normalized yield for particles from hard processes vs. normalized charged particle multiplicity in high multiplicity events.

$$
\frac{N_{\text{hard}}}{\langle N_{\text{hard}}\rangle} = \langle \rho \rangle \left(\frac{\frac{dN_{\text{ch}}}{d\eta}}{\left\langle \frac{dN_{\text{ch}}}{d\eta} \right\rangle} \right)^2 \text{ [Phys. Rev. C, 86, 034903 (2012)]}
$$

CGC - Saturation

[\[Ann.Rev.Nucl.Part.Sci.60, 463-489\(2010\)\]](http://dx.doi.org/10.1146/annurev.nucl.010909.083629) [\[D. Boer, EICUG Meeting 2019, Paris\]](https://indico.in2p3.fr/event/18281/contributions/70132/attachments/54524/71441/EICUGmeeting-Boer-July2019-v4.pdf)

- Color Glass Condensate (CGC) is a high density state of gluonic matter [\[arXiv:hep-ph/0104285\]](https://arxiv.org/abs/hep-ph/0104285)
- Due to time dilation the gluons move slowly they are "frozen" like in a glass
- Constant splitting and merging of gluons causes gluon density to saturate
- \bullet CGC EFT models relativistic hadron collisions by treating low- x partons as classical fields
- \bullet Saturation affects N_{ch}
- Implemented in CGC/Saturation model [\[E. Levin, M. Siddikov, EPJC 97\(5\), 376\(2019\)\],](http://dx.doi.org/10.1140/epjc/s10052-019-6894-1) [\[EPJC](https://doi.org/10.1140/epjc/s10052-020-8086-4) [80\(6\), 560\(2020\)\]](https://doi.org/10.1140/epjc/s10052-020-8086-4)

Multiplicity distribution via unfolding

Response matrix for T events

[\[L. Kosarzewski, MPI2019, Prague\]](https://indico.cern.ch/event/816226/contributions/3603858/)

Unfolding method used to obtain corrected N_{ch}

- **4** A response matrix is obtained using the PYTHIA8 event generator for both min-bias and quarkonium events taking into account tracking efficiency
- ² Use tracks matched to fast detector (TOF) to remove pileup
- **3** The measured distributions are unfolded using their respective response matrices
- ⁴ This procedure yields the unfolded (true) distribution

[\[Phys.Lett.B 786,87-93\(2018\)\]](https://doi.org/10.1016/j.physletb.2018.09.029)

- Similar trend seen by STAR and ALICE [Phys.Lett.B 712,165-175(2012)]
- Qualitatively described by PYTHIA8, Percolation model and EPOS3 for D mesons

 $\mathrm{J}/\psi\;\sqrt{\mathsf{s}} = 200\:\text{GeV}$

vs. $\sqrt{s} = 500 \text{ GeV}$ $p+p \sqrt{s} = 200,500 \text{ GeV}$ 2012, 2011 datasets $J/\psi\rightarrow e^+e^-$

[\[L. Kosarzewski, MPI2019, Prague\]](https://indico.cern.ch/event/816226/contributions/3603858/)

- Percolation model: [\[E. G. Ferreiro, C. Pajares, Phys.Rev.C, 86, 034903\(2012\)\]](https://link.aps.org/doi/10.1103/PhysRevC.86.034903)
	- \bullet Low- p_{τ} data are well described
	- \bullet High- p_T data are above the model at high N_{ch} . Note that the calculation is for $p_T > 0$ GeV/c

CGC/Saturation model: [\[E. Levin, M. Siddikov, EPJC 97\(5\), 376\(2019\)\],](http://dx.doi.org/10.1140/epjc/s10052-019-6894-1) [\[EPJC 80\(6\), 560\(2020\)\]](https://doi.org/10.1140/epjc/s10052-020-8086-4)

- Describes the data, however uncertainties are large
- Data are slightly above the model at high p_T . Note that the calculation is for $p_T > 0$ GeV/c

Cross section ratios: $\Upsilon(nS)/\Upsilon(1S)$

 $p+p\;\sqrt{s}=500\>{\rm GeV}\;2011$ dataset $\varUpsilon\to e^+e^-$

[\[L. Kosarzewski, MPI2019, Prague\]](https://indico.cern.ch/event/816226/contributions/3603858/) [\[W. Zha, et al, Phys.Rev.C 88,067901\(2013\)\]](http://dx.doi.org/10.1103/PhysRevC.88.067901)

- Left plot: cross section ratios measured in 500 GeV p+p collisions are slightly below (within 2σ) world data average, shown as solid lines in the left plot.
- Right plot: Ratios vs. TofMult no strong multiplicity dependence observed.
- **TofMult: number of tracks matched to TOF within** $|\eta| < 1$ **,** $p_T > 0.2 \text{ GeV/c}$ (uncorrected)

γ production vs. event activity

 $p+p\;\sqrt{s}=500\>{\rm GeV}\;2011$ dataset $\varUpsilon\to e^+e^-$

- Self-normalized yield vs. self-normalized multiplicity in p $+$ p $\sqrt{s} = 500 \,\mathrm{GeV}$ measured for $\Upsilon(1S + 2S + 3S)$ and $\Upsilon(1S)$
- Data consistent with a linear rise (black line), with a hint for stronger-than-linear rise for $\Upsilon(15)$ above $p_T > 4 \,\text{GeV/c}$

Percolation model predicts quadratic dependence $\frac{N_{\text{hard}}}{\langle N_{\text{hard}}\rangle} = \langle \rho \rangle \left(\frac{\frac{dN_{\text{ch}}}{d\eta}}{\frac{dN_{\text{ch}}}{d\eta}} \right)$

high multiplicity [\[E. G. Ferreiro, C. Pajares, Phys.Rev. C, 86, 034903 \(2012\)\]](https://link.aps.org/doi/10.1103/PhysRevC.86.034903)

• Quadratic fit $y = ax^2$ describes the data

 $\Big)^2$ at

γ production vs. event activity - data

[\[L. Kosarzewski, MPI2019, Prague\]](https://indico.cern.ch/event/816226/contributions/3603858/)

[\[JHEP04,103\(2014\)\],](http://dx.doi.org/10.1007/JHEP04(2014)103)[\[Nucl.and Part.Phys. Proc., 276-278, pp.261–264\(2016\)\],](http://dx.doi.org/10.1016/j.nuclphysbps.2016.05.059)[\[Phys.Lett.B](http://dx.doi.org/10.1016/j.physletb.2012.04.052) [712,165–175\(2012\)\],](http://dx.doi.org/10.1016/j.physletb.2012.04.052)[\[Phys.Lett.B 786,87-93\(2018\)\]](https://doi.org/10.1016/j.physletb.2018.09.029)

• Similar trend at RHIC and LHC for Υ and J/ψ

γ production vs. event activity - models

[\[L. Kosarzewski, MPI2019, Prague\]](https://indico.cern.ch/event/816226/contributions/3603858/)

- PYTHIA8 and Percolation models reproduce the trend in the data [\[E. G. Ferreiro, C.](https://link.aps.org/doi/10.1103/PhysRevC.86.034903) [Pajares, Phys.Rev.C, 86, 034903\(2012\)\]](https://link.aps.org/doi/10.1103/PhysRevC.86.034903)
- CGC/Saturation model describes the data within large uncertainties [\[E. Levin M.](http://dx.doi.org/10.1140/epjc/s10052-019-6894-1) [Siddikov, EPJC, 97\(5\), 376\(2019\)\],](http://dx.doi.org/10.1140/epjc/s10052-019-6894-1) [\[EPJC 80\(6\), 560\(2020\)\]](https://doi.org/10.1140/epjc/s10052-020-8086-4)

Prospects

Event activity dependence - new ideas

Problems

- Auto-correlation bias we measure the multiplicity and quarkonium in the same phase space
- We want to characterize the underlying event

New methods

- Measure charged particle multiplicity in the transverse region with respect to quarkonium emission angle
	- This is related to underlying event, while not affected by particles produced in association with the quarkonium
- Measure particles in a cone around quarkonium momentum direction

γ ratios vs. event activity - CMS

[\[Santona Tuli, Hot Quarks 2018\]](https://indico.cern.ch/event/703015/contributions/3095254/attachments/1714268/2764920/HotQuarks2018-SantonaTuli-Final.pdf)

Υ ratios vs. N_{ch}

- Similar trend in transverse, forward and backward regions
- More flat dependence of $\Upsilon(2S)/\Upsilon(1S)$ for > 3 particles in a $\Delta R < 0.5$ cone
	- **•** Opposite to expectation from comover interactions
- Need to test it at RHIC energy as well

STAR Upgrades and plans for 2022+

[\[D. Brandenburg: Hard Probes 2020\]](https://indico.cern.ch/event/751767/contributions/3771220/attachments/2051204/3438168/jdb_STAR_Forward_Rapidity.pdf)

Future plans for STAR

- iTPC already running improved momentum resolution
- Forward upgrade $2.5 < y < 4$ <https://drupal.star.bnl.gov/STAR/starnotes/public/sn0648>
	- Silicon detectors (FST) tracking
	- small-strip Thin Gap Chambers (sTGC) tracking
	- **Electromagnetic and hadronic calorimeters**
- High integrated luminosity for precision quarkonium production studies both at mid and forward rapidity

J/ψ and Υ in p+p projections 2017+2022

[\[L. Kosarzewski, 20th Conference of Czech and Slovak Physicists, 2020\]](https://drupal.star.bnl.gov/STAR/presentations/20th-conference-czech-and-slovak-physicists/recent-results-upsilon-production-measured)

Projections 2017+2022

- High precision measurement of J/ψ and Υ dependence on normalized N_{ch}
- Very high integrated luminosity:
	- $\mathcal{L}_{\textit{int}} \sim 750 \text{ pb}^{-1}$ for Barrel High Tower triggered e high energy electrons
	- $\mathcal{L}_{int} \sim 375 \text{ pb}^{-1}$ for $\mu\mu$ triggers
- **Possible to discriminate different models**
- 2017 data is already 10x more than 2011

s PHENIX quarkonium program in $p+p$

 $Y(1S,2S,3S) \rightarrow e^+e^-$

PHENIX Ream Hee Pronosal (RHP) «PH-TRG-2020-001 August 31, 2020

[\[A. Frawley, Physics Opportunity with Heavy Quarkonia at the EIC, 2021\]](https://indico.bnl.gov/event/13477/)

- Focused on heavy-ion reference and cold QCD
- Only dielectron channel
- \bullet Good separation between Υ states
- **•** Smaller integrated luminosity than STAR
- TPC allows to measure charged particle multiplicity dependence

Quarkonium spectra

- CEM and NLO NRQCD models describe the data well
- CGC+NRQCD overestimates the data J/ψ and $\Upsilon(1S)$ at low p_{τ}

Multiplicity dependence of quarkonium production

- \bullet Similar trend observed for J/ψ and Υ at RHIC and LHC
- Percolation Model, PYTHIA and CGC/Sat models qualitatively describe the data
	- Indication of quarkonium production in MPI
	- **•** Possible effect of parton saturation

Prospects

- More precise data are needed to distinguish between event activity models
- 10x more data available now for STAR
- ^{20x} more data after 2024

Thank you for your attention!

BACKUP

Polarization

Quarkonium polarization (spin alignment)

• Is a tool to study the quarkonium production mechanism in more detail

$$
\tfrac{d\sigma}{d(\cos(\theta)) d\phi} \propto 1 + \boldsymbol{\lambda}_\theta \cos^2(\theta) + \boldsymbol{\lambda}_{\theta \phi} \sin(2\theta) \cos(\phi) + \boldsymbol{\lambda}_\phi \sin^2(\theta) \cos(2\phi)
$$

- It can be studied by measuring the angular distribution of the decay daughters
- Provides access to J_z eigenstates and their relative contributions

[\[A. Stahl, SQM 2021\]](https://indico.cern.ch/event/985652/contributions/4296078/)

J/ψ polarization at RHIC

[\[Phys. Rev. D 102, 092009\]](http://dx.doi.org/10.1103/PhysRevD.102.092009) [\[Phys. Rev. D 102, 072008\]](http://dx.doi.org/10.1103/PhysRevD.102.072008)

- All polarization coefficients measured by STAR and PHENIX in (almost) all frames
	- Consistent results in different frames
	- **Consistent with no** J/ψ **polarization (except** λ_{θ} at high- p_{τ} in $|y| < 0.5$)
- Data best described by CGC+NRQCD calculation
	- Other models hard to rule out due to large uncertainties
- No difference between forward $1.2 < y < 2.2$ and mid-rapidity $|y| < 0.35$ measured by PHENIX

[\[JHEP, 2020\(11\), 1\]](https://doi.org/10.1007/JHEP11(2020)001)

- Same behavior in forward/backward/transverse regions
	- Decrease in ratios related to UE event

[\[JHEP, 2020\(11\), 1\]](https://doi.org/10.1007/JHEP11(2020)001)

• No dependence on N_{ch} for each $\Upsilon(nS)$ state in events with $S_T < 0.55$

- Same multiplicity for each state
- No link between multiplicity dependence and mass difference
- Source UE event