Does the EIC need a muon detector for effective quarkonium studies?

Detection configurations

- $J/\psi \rightarrow e^+e^-$: BR = (5.971 ± 0.032) % - $J/\psi \rightarrow e^+e^-\gamma$: BR = (8.8 + 1.4.) × 10-3 (intr
 - J/ ψ \rightarrow e⁺e⁻ γ : BR = (8.8 ± 1.4) × 10⁻³ (intrinsic Bremsstrahlung
- $J/\psi \rightarrow \mu^+\mu^-$: BR = (5.961± 0.033) %

Upsilon:

• BR is the same for e^+e^- and $\mu^+\mu^-$ channels

Detection configurations

- $J/\psi \rightarrow e^+e^-$
 - Typically different electron ID at low and high p_T
 - Low p_T : Time-of-Flight, Ring Imaging Cherenkov, Transition Radiation Detector, High- p_T : E-M callorimeter
 - No absorber
 - Mass resolution sensitive to detector material budget due to Bremsstrahlung (important for $\Upsilon(2S)$ and $\Upsilon(3S)$ separation)
 - Combinatorial background sensitive detector material budget due to $\gamma \rightarrow e+e-$ conversion (mostly at low- p_T)

Detection configurations

- $J/\psi \rightarrow \mu^+\mu^-$
 - Main background: misidentified pions
 - Setup with or without absorber (impact on background level)
 - Mass resolution insensitive to detector material budget, typically sufficient for $\Upsilon(1S)/\Upsilon(2S)$ and $\Upsilon(3S)$ separation.

Example: LHC detectors

Quarkonium at LHC

- LHC energies: $\sqrt{s} = 2.76, 5, 7, 8, 13 \text{ TeV}$
- Complementary kinematic ranges

LHCb	forward-y	2.0 < y < 4.5	$\mu^+\mu^-$
ALICE	forward-y mid-y	2.5 < y < 4.0 y < 0.9	$\mu^+\mu^ e^+e^-$
ATLAS	mid-y	y < 2.0	$\mu^+\mu^-$
CMS	mid-y	y < 2.4	$\mu^+\mu^-$

Li Xu,

https://indico.cern.ch/event/1084752/contributions/4560675/att achments/2369997/4047563/LHC Production QaT22.pdf

LHCb

ALICE

ATALS

CMS

Jan 10, 2022

Inclusive J/ ψ production at midrapidity in pp collisions at \sqrt{s} = 13 TeV, https://link.springer.com/article/10.1140/epjc/s10052-021-09873-4

https://arxiv.org/pdf/2109.15240.pdf

Figure 1: Examples of fit to the OS dimuon invariant mass distribution in the mass region $2 < m_{\mu^+\mu^-} < 5 \text{ GeV}/c^2$ for $p_T < 20 \text{ GeV}/c$ (left), and $7 < m_{\mu^+\mu^-} < 13 \text{ GeV}/c^2$ for $p_T < 15 \text{ GeV}/c$ (right).

https://cds.cern.ch/record/2723301/plots#0

Example: STAR detector

STAR Detector System

15 fully functioning detector systems

Muon Telescope Detector (MTD) added as an upgrade to improve detection capabilities at low- p_T and $\Upsilon(2S)$ and $\Upsilon(3S)$ separation

X10³ increases in DAQ rate since 2000, most precise Silicon Detector (HFT)

Measurements of the transverse-momentum-dependent cross sections of J/psi production at mid-rapidity in proton+proton collisions at \sqrt{s} = 510 and 500 GeV with the STAR detector, Phys. Rev. D 100 (2019) 52009

The candidates of detector system at EIC

ATHENA: athena-eic.org

CORE: eic.jlab.org/core

ECCE: ecce-eic.org

J/ψ Reconstruction

Central region with better mass width.

From e-going to h-going, signal backround ratio turns better.

Electron identification capability at ECCE—EMCal+Tracking

Does the EIC need a muon detector?

• In general e+e- channel is sufficient for spectra/asymmetry studies

- EIC may need muon detector for
 - Low-p_⊤ and mid-rapidity measurements
 - Statistic-hungry studies (double the yields)
 - Measurement of $\Upsilon(1S)$, $\Upsilon(2S)$ and $\Upsilon(3S)$ and their separation
 - Studies of associated production: J/ψ + charmed meson (vertex detector need for charm reconstruction is a source of additional background)