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Context
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▶ DistRDF (and Python RDF) mostly rely on jitted code
● E.g.  rdf.Filter("x > 0")

▶ Jitted code is currently compiled at O0
● Serious performance penalty for DistRDF!

▶ Possible solutions
● Increase the optimization level of jitted code in RDF (PR and 

commit)

● Generate a C++ workflow in DistRDF workers (PR)

https://github.com/root-project/root/pull/7283
https://github.com/eguiraud/root/commit/2d08e010d68b3ddd7a2f37a3706d787edcb7c40e
https://github.com/root-project/root/pull/8867


How do DistRDF workers run tasks?
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▶ DistRDF workers receive a Python graph object that represents the 
RDF computation
● Nodes correspond to operations and their arguments

▶ Default behaviour: the graph is used to construct an RDF workflow, 
from Python, operation by operation

 df = RDataFrame(dataset)
 df2 = df.Filter("x > 0")
 h = df2.Histo1D("x")

Filter
x > 0

data 
set

Histo1D
x



C++ workflow generation
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▶ New behaviour: use the graph to generate the code of a C++ function 
that constructs the RDF workflow, then ACLIC it (with optimizations)

▶ Note: the current implementation still involves jitting of the string 
arguments that contain C++ expressions!

 Result GenerateWorkflow(RNode &headnode) {
   auto df1 = headnode.Filter("x > 0");
   auto res1 = df1.Histo1D("x");

   ...

 }

Filter
x > 0

data 
set

Histo1D
x

rdfworkflow_XYZ_cxx.so



Questions to ask ourselves
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▶ What’s the gain in jitting with optimizations (w.r.t. O0)?

● And what’s the price to pay in terms of jitting times?

▶ What’s the gain in compiling the whole computation graph 
together (and with no jitting at all)?

● Tells us if it’s worth improving the C++ workflow generation



To help us answer… benchmarks!
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▶ We took three of the RDF benchmarks in rootbench and 
adapted them for DistRDF
● NanoAOD dimuon (df102), NanoAOD Higgs (df103), Higgs to two 

photons (df104)

● Code is available here

▶ For each benchmark, we have two versions:
● DistRDF in Python, jitted strings

● C++ no jitting, lambdas

https://github.com/etejedor/DistRDF_benchmarks/tree/main/benchmarks


Test #1: No opt vs opt in PyDistRDF
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▶ Performance of Python DistRDF, one partition (i.e. one task), in two 
jitting modes:

● O0 as default (master)

● O1 as default (PR) + O3 activated in RDF jitting (commit)

https://github.com/root-project/root/pull/7283
https://github.com/eguiraud/root/commit/2d08e010d68b3ddd7a2f37a3706d787edcb7c40e


No opt vs opt: df102
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No opt vs opt: df103
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No opt vs opt: df104
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Test #2: PyDistRDF vs CxxDistRDF
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▶ Performance of DistRDF, one partition, with jitting optimizations, 
in two modes:

● Generation of the graph in Python (default)

● Generation and compilation of C++ workflow (new)
◼ Generated C++ code for each benchmark can be found here

▶ For the C++ workflow mode, show also a multi-partition (multi-task) 
run, to see how the CompileMacro cost is paid only once

https://github.com/etejedor/DistRDF_benchmarks/tree/main/cxx_workflow_code


Py DistRDF vs C++ DistRDF: df102
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G1



Py DistRDF vs C++ DistRDF: df103
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Py DistRDF vs C++ DistRDF: df104
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C++ DistRDF: df102 multi-task
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task1 task2 task3 task4

● Only the first 
mapper task in 
the worker pays 
the CompileMacro 
price 

● The generated 
library is reused 
afterwards by 
tasks on other 
ranges of the 
dataset



Test #3: CxxDistRDF vs CxxNoJIT
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▶ Performance of two benchmark versions:

● Python DistRDF, one partition, with jitting optimizations, 
generation and compilation of the graph in C++

● C++, no jitting (use of lambdas), compiled at O3



DistRDF C++ vs C++ No JIT: df102
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CxxNoJIT
avg compilation time: 
3.43 s

G1



DistRDF C++ vs C++ No JIT: df103
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DistRDF C++ vs C++ No JIT: df103 10x data
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DistRDF C++ vs C++ No JIT: df104
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Test #4: all in one plot, more data
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▶ Using both 1x and 10x more data, compare all the configurations 
seen so far:

● Python DistRDF with no jitting optimizations

● Python DistRDF with jitting optimizations

● C++ DistRDF with jitting optimizations

● C++ no jitting, compiled at O3

▶ Sum all times (Event loop, JIT, CompileMacro, Other) for each 
computation graph of each benchmark



Time to plot: all benchmarks
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Original dataset size 10x dataset size



Time to plot: all benchmarks  [Log Scale]
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Original dataset size 10x dataset size



Conclusions
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▶ Enabling optimizations pays off

▶ PyDistRDF and CxxDistRDF (in its current form) have the same 
performance

▶ The performance of CxxDistRDF could still improve further

● By compiling all graphs together in a multi-graph application (via 
DistRDF RunGraphs) -> to reduce CompileMacro cost

● By generating C++ code that does not jit: can pay off for big 
datasets

▶ Still CxxDistRDF does not seem a good default

● CompileMacro times penalize too much for small datasets
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