
https://root.cern

ROOT
Data Analysis Framework

Improving the performance
of DistRDF tasks

Enric Tejedor, Vincenzo Eduardo Padulano, Enrico
Guiraud

https://root.cern

Context

2

▶ DistRDF (and Python RDF) mostly rely on jitted code
● E.g. rdf.Filter("x > 0")

▶ Jitted code is currently compiled at O0
● Serious performance penalty for DistRDF!

▶ Possible solutions
● Increase the optimization level of jitted code in RDF (PR and

commit)

● Generate a C++ workflow in DistRDF workers (PR)

https://github.com/root-project/root/pull/7283
https://github.com/eguiraud/root/commit/2d08e010d68b3ddd7a2f37a3706d787edcb7c40e
https://github.com/root-project/root/pull/8867

How do DistRDF workers run tasks?

3

▶ DistRDF workers receive a Python graph object that represents the
RDF computation
● Nodes correspond to operations and their arguments

▶ Default behaviour: the graph is used to construct an RDF workflow,
from Python, operation by operation

 df = RDataFrame(dataset)
 df2 = df.Filter("x > 0")
 h = df2.Histo1D("x")

Filter
x > 0

data
set

Histo1D
x

C++ workflow generation

4

▶ New behaviour: use the graph to generate the code of a C++ function
that constructs the RDF workflow, then ACLIC it (with optimizations)

▶ Note: the current implementation still involves jitting of the string
arguments that contain C++ expressions!

 Result GenerateWorkflow(RNode &headnode) {
 auto df1 = headnode.Filter("x > 0");
 auto res1 = df1.Histo1D("x");

 ...

 }

Filter
x > 0

data
set

Histo1D
x

rdfworkflow_XYZ_cxx.so

Questions to ask ourselves

5

▶ What’s the gain in jitting with optimizations (w.r.t. O0)?

● And what’s the price to pay in terms of jitting times?

▶ What’s the gain in compiling the whole computation graph
together (and with no jitting at all)?

● Tells us if it’s worth improving the C++ workflow generation

To help us answer… benchmarks!

6

▶ We took three of the RDF benchmarks in rootbench and
adapted them for DistRDF
● NanoAOD dimuon (df102), NanoAOD Higgs (df103), Higgs to two

photons (df104)

● Code is available here

▶ For each benchmark, we have two versions:
● DistRDF in Python, jitted strings

● C++ no jitting, lambdas

https://github.com/etejedor/DistRDF_benchmarks/tree/main/benchmarks

Test #1: No opt vs opt in PyDistRDF

7

▶ Performance of Python DistRDF, one partition (i.e. one task), in two
jitting modes:

● O0 as default (master)

● O1 as default (PR) + O3 activated in RDF jitting (commit)

https://github.com/root-project/root/pull/7283
https://github.com/eguiraud/root/commit/2d08e010d68b3ddd7a2f37a3706d787edcb7c40e

No opt vs opt: df102

8
G1

No opt vs opt: df103

9

no
 o
pt op

t

no
 o
pt op

t

no
 o
pt op

t

no
 o
pt op

t

no
 o
pt op

t

G1 G2 G3 G4 G5

No opt vs opt: df104

10

no
 o
pt op

t

no
 o
pt op

t

no
 o
pt op

t

G1 G2 G3

Test #2: PyDistRDF vs CxxDistRDF

11

▶ Performance of DistRDF, one partition, with jitting optimizations,
in two modes:

● Generation of the graph in Python (default)

● Generation and compilation of C++ workflow (new)
◼ Generated C++ code for each benchmark can be found here

▶ For the C++ workflow mode, show also a multi-partition (multi-task)
run, to see how the CompileMacro cost is paid only once

https://github.com/etejedor/DistRDF_benchmarks/tree/main/cxx_workflow_code

Py DistRDF vs C++ DistRDF: df102

12

G1

Py DistRDF vs C++ DistRDF: df103

13
Py
Di
st
RD
F

Cx
xD
is
tR
DF

Py
Di
st
RD
F

Cx
xD
is
tR
DF

Py
Di
st
RD
F

Cx
xD
is
tR
DF

Py
Di
st
RD
F

Cx
xD
is
tR
DF

Py
Di
st
RD
F

Cx
xD
is
tR
DF

G1 G2 G3 G4 G5

Py DistRDF vs C++ DistRDF: df104

14
Py
Di
st
RD
F

Cx
xD
is
tR
DF

G1
Py
Di
st
RD
F

Cx
xD
is
tR
DF

G2
Py
Di
st
RD
F

Cx
xD
is
tR
DF

G3

C++ DistRDF: df102 multi-task

15

task1 task2 task3 task4

● Only the first
mapper task in
the worker pays
the CompileMacro
price

● The generated
library is reused
afterwards by
tasks on other
ranges of the
dataset

Test #3: CxxDistRDF vs CxxNoJIT

16

▶ Performance of two benchmark versions:

● Python DistRDF, one partition, with jitting optimizations,
generation and compilation of the graph in C++

● C++, no jitting (use of lambdas), compiled at O3

DistRDF C++ vs C++ No JIT: df102

17

CxxNoJIT
avg compilation time:
3.43 s

G1

DistRDF C++ vs C++ No JIT: df103

18

CxxNoJIT
avg compilation time:
7.38 s

Cx
xD
is
tR
DF

Cx
xN
oJ
IT

Cx
xN
oJ
IT

Cx
xN
oJ
IT

Cx
xN
oJ
IT

Cx
xN
oJ
IT

G1 G2 G3 G4 G5
Cx
xD
is
tR
DF

Cx
xD
is
tR
DF

Cx
xD
is
tR
DF

Cx
xD
is
tR
DF

DistRDF C++ vs C++ No JIT: df103 10x data

19

CxxNoJIT
avg compilation time:
7.39 s

Cx
xD
is
tR
DF

Cx
xN
oJ
IT

Cx
xN
oJ
IT

Cx
xN
oJ
IT

Cx
xN
oJ
IT

Cx
xN
oJ
IT

G1 G2 G3 G4 G5
Cx
xD
is
tR
DF

Cx
xD
is
tR
DF

Cx
xD
is
tR
DF

Cx
xD
is
tR
DF

DistRDF C++ vs C++ No JIT: df104

20

CxxNoJIT
avg compilation time:
5.09 s

Cx
xD
is
tR
DF

G1
Cx
xD
is
tR
DF

G2
Cx
xD
is
tR
DF

G3
Cx
xN
oJ
IT

Cx
xN
oJ
IT

Cx
xN
oJ
IT

Test #4: all in one plot, more data

21

▶ Using both 1x and 10x more data, compare all the configurations
seen so far:

● Python DistRDF with no jitting optimizations

● Python DistRDF with jitting optimizations

● C++ DistRDF with jitting optimizations

● C++ no jitting, compiled at O3

▶ Sum all times (Event loop, JIT, CompileMacro, Other) for each
computation graph of each benchmark

Time to plot: all benchmarks

22

Original dataset size 10x dataset size

Time to plot: all benchmarks [Log Scale]

23

Original dataset size 10x dataset size

Conclusions

24

▶ Enabling optimizations pays off

▶ PyDistRDF and CxxDistRDF (in its current form) have the same
performance

▶ The performance of CxxDistRDF could still improve further

● By compiling all graphs together in a multi-graph application (via
DistRDF RunGraphs) -> to reduce CompileMacro cost

● By generating C++ code that does not jit: can pay off for big
datasets

▶ Still CxxDistRDF does not seem a good default

● CompileMacro times penalize too much for small datasets

Backup

