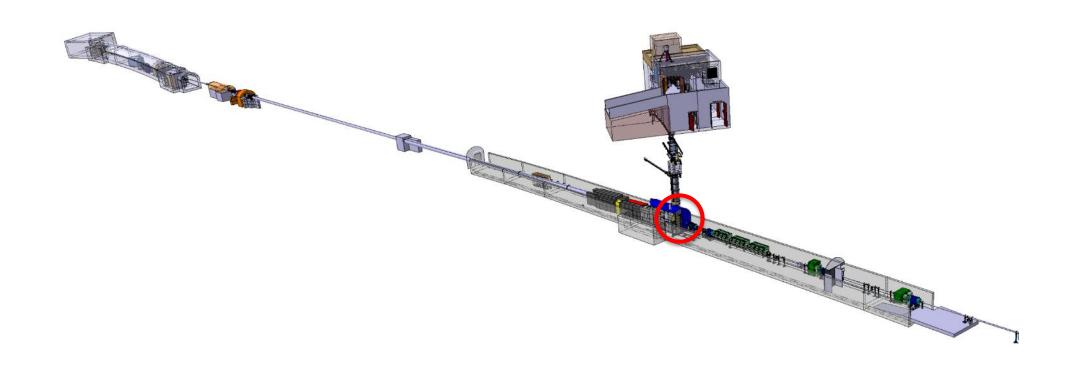
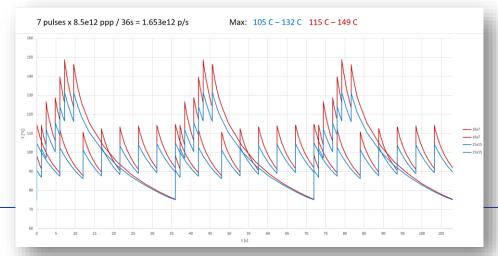


n_TOF Technical Report at the 68th INTC Meeting


Oliver Aberle, SY-STI-TCD

Outlook LS2

Main activities for the facility since June:


- New spallation target with beam
- FTN line
- Horizontal beam line
 - New collimator #2
 - NEAR

New n_TOF target

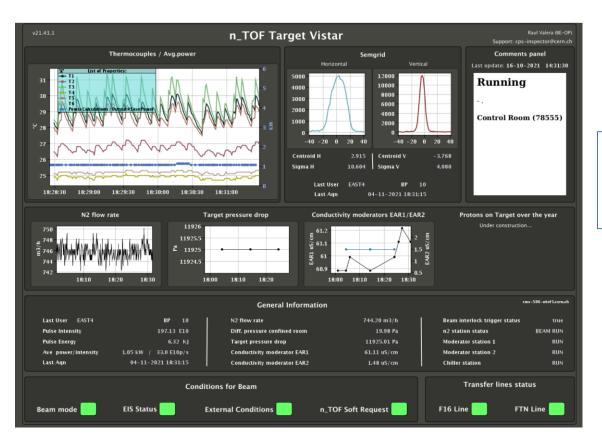
n_TOF spallation target #3

- First beam on target received on 19th July 2021
- Commissioning went well, no issues discovered

courtesy R. Esposito

• Our Constrains from target Target:

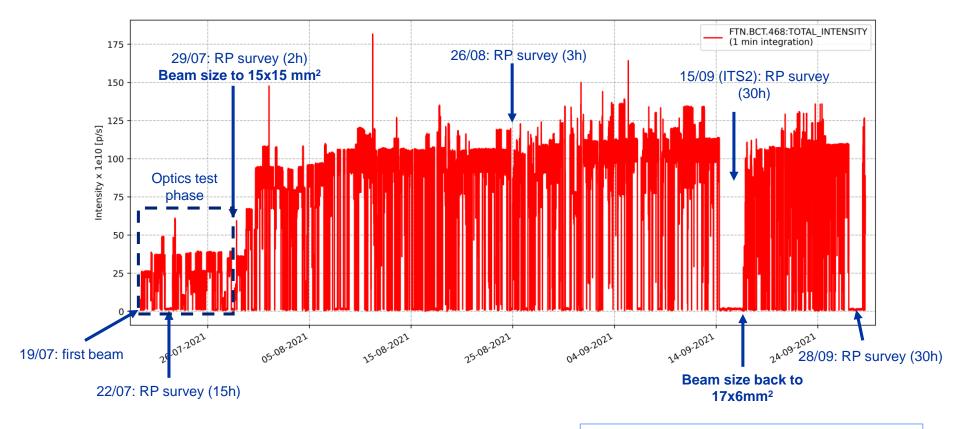
- Designed for 15x15mm²
- Maximum average intensity on target = 160e10 p/s
- Dimensions for high intensity pulses $\approx 215 \text{ mm}^2$.
- Dimensions for low intensity pulses $\approx 40 \text{ mm}^2$.


• Our Needs for Physics:

- Two different intensities: 7.5-8.5e12ppp and 2-3.5e12ppp.
- 1.05e17 protons per day made in 30 days, in average, as the campaigns before the LS2.

n_TOF spallation target #3

- First beam on target received on 19th July 2021
- Commissioning went well, no issues discovered



09/11/2021

new n_TOF Vistar! Thanks to R. Valera and colleagues

- RP discovered a hot(s) spot end of August
- Location identified and confirmed in the center of the first dipole
- Beam size measured with the new SEM at the end of the line
- Discrepancy with post-LS2 beam size and applied settings

RP surveys in FTN: history

courtesy F. Pozzi, J-F. Gruber

RP surveys in FTN: contact measurements

ID	Reference	Position	Dose rate [μSv/h]	Dose rate [μSv/h]	Dose rate [μSv/h]
"	Reference	Position	Date: 26-08-21	Date: 15-09-21	Date: 28-09-21
_			Cool down time: 3 h	Cool down time: 30 h	Cool down time: 30 h
1	-	Start of FTN	-	-	-
2	QFO.435	UPSTREAM	-	-	-
3	QFO.435	DOWNSTREAM	-	-	-
4	DHZ.436	DOWNSTREAM	-	-	-
5	QDE.450	UPSTREAM	1500	-	2200
6	QDE.450	DOWNSTREAM	1500	-	550
7	DVT.451	DOWNSTREAM	200	-	200
8	-	Between DVT.451 and FTN.BTV454	-	-	-
9	-	Between DVT.451 and FTN.BTV454	-	-	-
10	FTN.BTV454	UPSTREAM	200	-	200
11	FTN.BTV454	DOWNSTREAM	1500	800	1500
12	BHZ 456	HOT SPOT	10000	18000	8100
13	BHZ 456	DOWNSTREAM	600	-	
14	BHZ 459	DOWNSTREAM	300	-	
14.1	BHZ 462	UPSTREAM	400	-	
15	BHZ 462	DOWNSTREAM	200	-	
16	QFO.465	DOWNSTREAM	300	-	
17	UWB.474	DOWNSTREAM	-	-	-
18	QDE.480	UPSTREAM	2500	3200	1750
19	QDE.480	DOWNSTREAM	5000	3400	1630
20	BSG.484	DOWNSTREAM	-	-	1100

30/09/2021

Dedicated RP measurements at contact of the most activated equipments

Two hot-spots:

- 1. BHZ456 (decreased by a factor of 2.2)
- 2. SEMgrid (decreased by a factor 2.1)

courtesy F. Pozzi, J-F. Gruber

Conclusions

New optics implemented (pre-LS2 optics, 17x6 mm² beam size) shows a clear benefit in reducing beam lossess in FTN

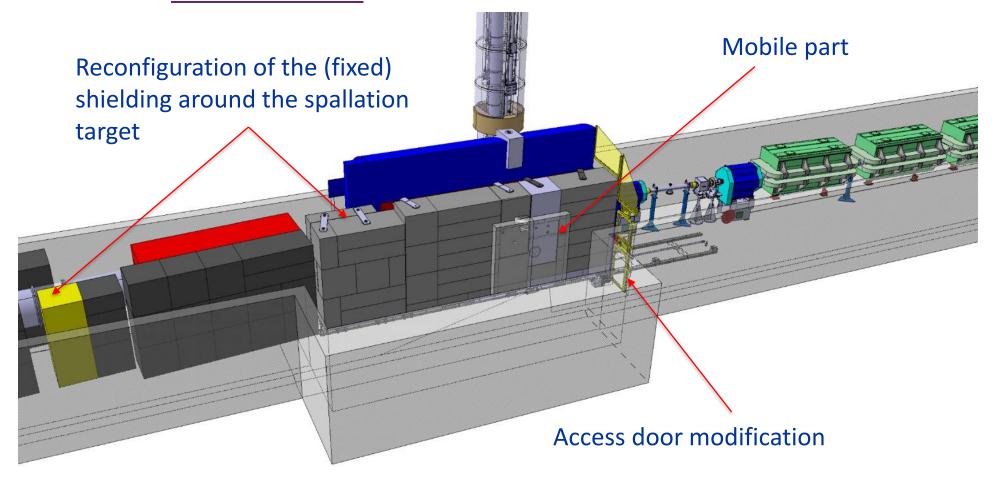
- Residual dose rate after 30 h of cool-down decreased from 360 μ Sv/h to 76 μ Sv/h at BHZ456 location
- No showstopper to increase the beam intensity (up to maximum average of 1.66e12 p/s)
 - > Open point: target survivability with reduced beam size

Operational dosimetry for RP surveys in FTN

Collective dose: 44 person.µSv

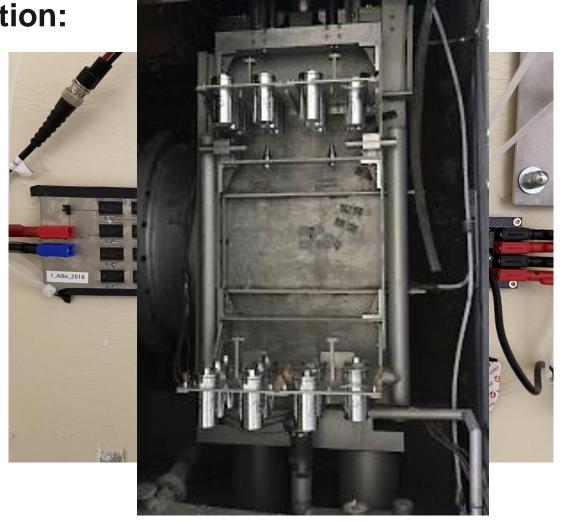
Max. individual dose: 23 μSv

the ABT team continues their FTN studies


30/09/2021

courtesy Bettina Mikulec

n_TOF target shielding and NEAR


Third Generation n_TOF Spallation Target and Vertical Neutron Beam Line EDMS TOF-TAR-EC-0001

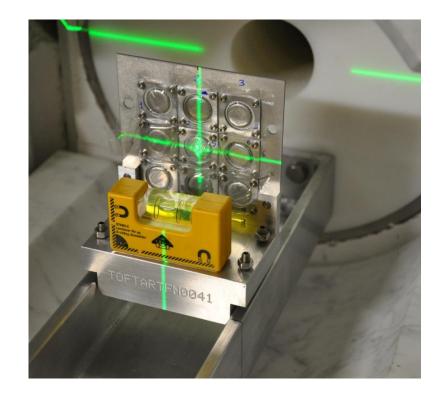
Perspectives on "NEAR-target" station

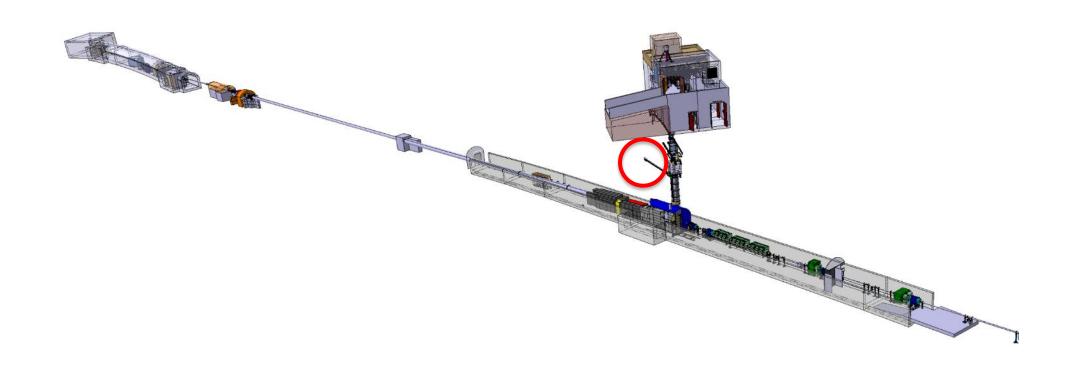
Three main areas and orientation:

- R2E
- R2M
- Sample activation

 Shelf for R2M samples installed in June, first series of samples installed for beam start

courtesy D. Senajova


 Irradiation test of AIF3 as potential moderator material

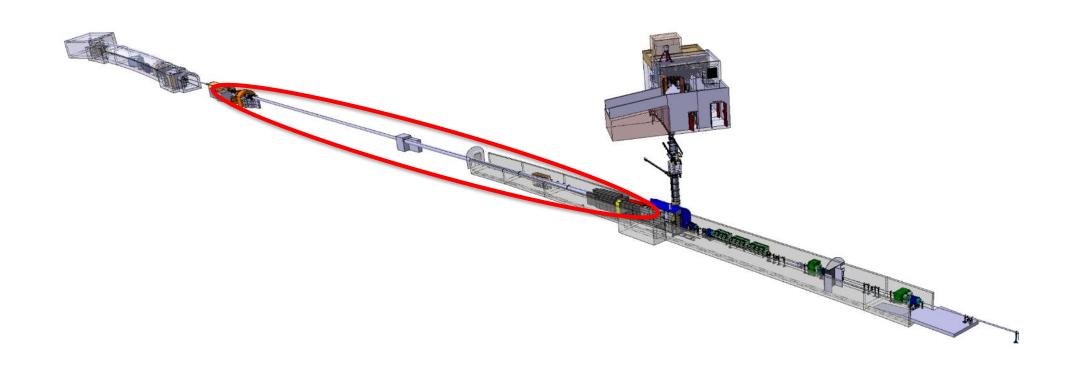

 Different set-ups for multi foil activation

n_TOF water cooling station

Target #3 cooling and moderator station

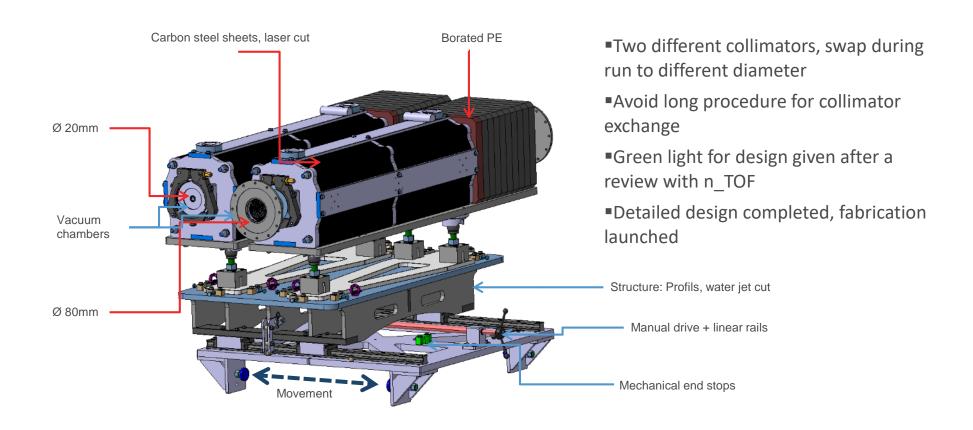
- Target nitrogen cooling required the full replacement of the target cooling and moderator circuits
- Major efforts from CV to develop the technology to match the specifications and RP requests (EDMS 2068336)

F. Dragoni


Target #3 cooling and moderator station

New spectrometer from CV

RP monitors CD10 + BM8


n_TOF horizontal beam line (TT2A)

New sweeping magnet

New collimator #2 → EAR1

Assembly ongoing, installation planned week 27

New collimator #2 → **EAR1**

- Already one collimator swap during run
- Beam position confirmed by Survey to be within 0.1 mm

n_TOF Experiment LS2 activities

- Cabling campaign in EAR1 (remove the old sweeping magnet cables, replace the detector cables in the rack/bunker area) -Completed
- Implementation of the ASN-OFSP safety recommendations in EAR2
- New safety file includes modifications implemented during LS2
 EMDS 2604713 n_TOF Target Facility Safety Overview
- Consolidation of the gas system in EAR2 completed
- Consolidation of the alignment system ongoing
- Upgrade of the n_TOF electronics laboratory completed
- DAQ upgrade
- Consolidation and R&D program for detectors ongoing

Conclusions

- Target performance as expected!
- Cooling and moderator stations up and running
- New permanent magnet and second collimator work well
- NEAR has started activity
- First beam on target 19th July 2021
- FTN line needs still tuning most likely modifications on the long term needed

