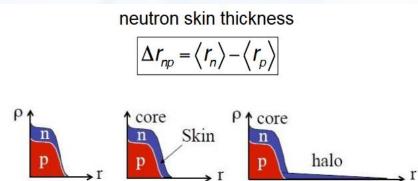
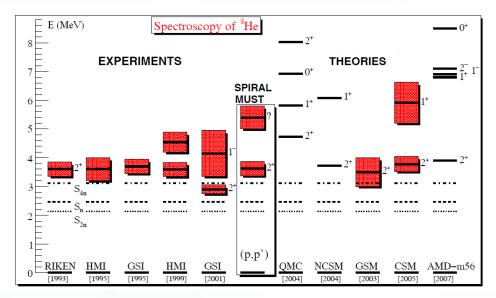
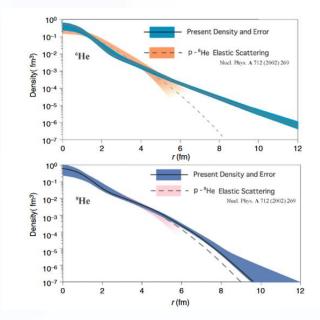


Study of the neutron skin and soft dipole resonance in 8He

Yassid Ayyad (IGFAE/FRIB), Ben Kay (ANL) and Jie Chen (ANL) and the ISS Collaboration



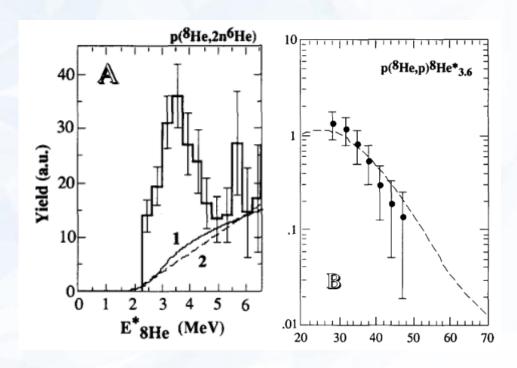


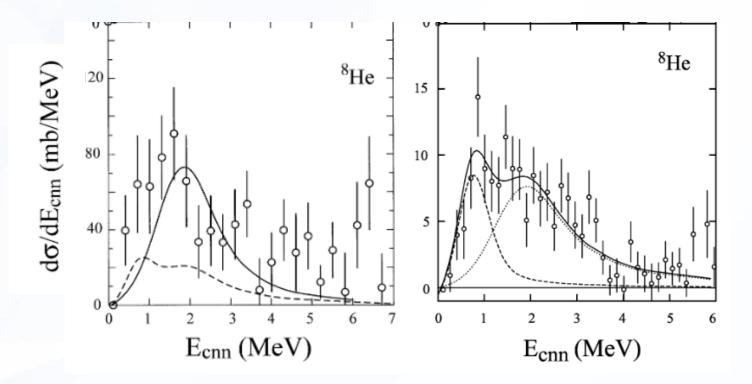


- 8He has the largest N/Z= 3 of all known bound isotopes.
- 8He has a four neutron-skin structure around a 4He core.
- Larger two-neutron separation energy and smaller radius than ⁶He: N=6 subshell closure.
- Density distribution consistently determined by elastic scattering and reaction cross section.
- 8He has no bound excited states
- Experimental information from transfer reactions is rather scarce...

Eur. Phys. J. A (2015) 51: 91

Progress in Particle and Nuclear Physics 68 (2013) 215-313



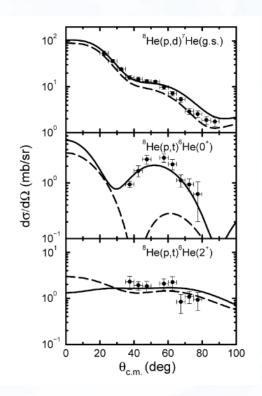

⁸He+p 72A MeV 3.6 MeV 2⁺

Physics Letters B 316 (1993) 38-44

227A MeV 8He+Pb (Coulomb) Below 2 MeV 2⁺, 4.15 MeV 1⁻

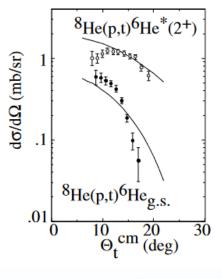
227A MeV ⁸He+C 2.9 MeV 2⁺, 4.15 MeV 1⁻

Nuclear Physics A 679 (2001) 462-480



Physics Letters B 646 (2007) 222-226

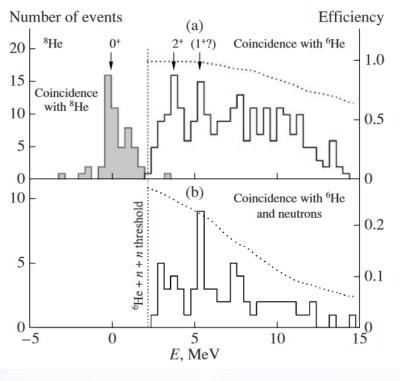
8He(p, t)6He at 15.7A MeV

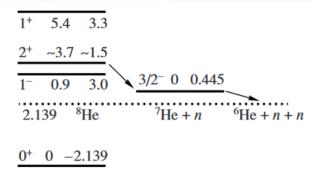

- Significant probability of finding the "valence" neutrons in other configurations: as (1p_{3/2})²(1p_{1/2})²
- ⁸He(p, t)⁶He reaction is a rather more sensitive probe of the ⁸He ground state than the ⁸He(p, d)⁷He neutron pickup.
- SF of ⁶He(0⁺)+2n and 6He(2⁺)+2n 1.0 and 0.014. Very small contribution of the ⁶He(2⁺) state in ⁸He

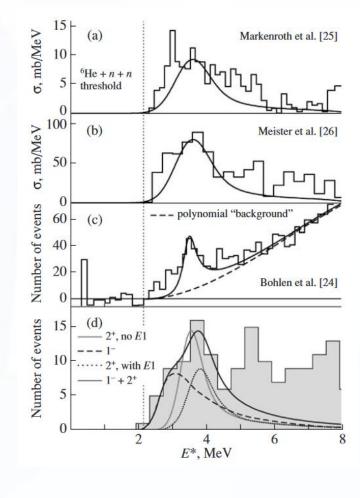
Phys. Rev. Lett. 90, 082501 (2003)

8He(p, t)6He at 61.3AMeVA MeV

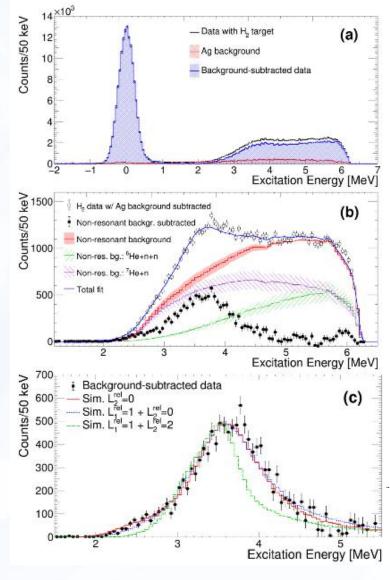
- Ground state and the 2⁺ excited state of ⁶He were populated.
- Cross section for $p(^{8}He,t)^{6}He(2^{+})$ larger than $^{6}He(0^{+})$.
- 6He(2+) configuration dominates in the 8He g.s.

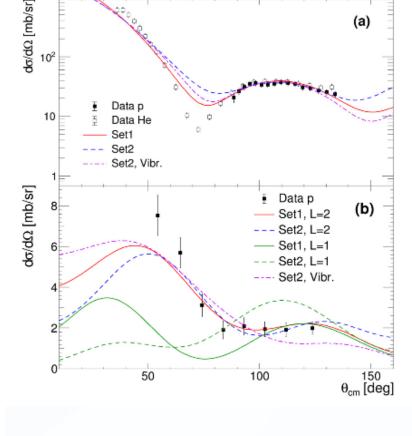


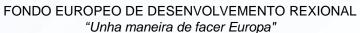


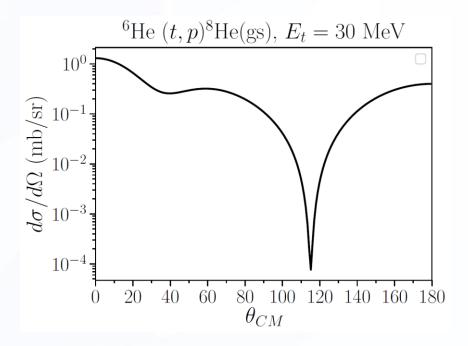


- ⁶He(t,p)⁸He at 25A MeV observed clear resonance structures.
- Spectroscopic factor of 0.8–1.1 for the ⁶He(gs)/⁸He(gs) overlap.
- ⁶He(gs) and the ⁶He(2⁺)state is not strongly dependent in the (1p_{3/2})⁴ and (1p_{3/2})²(1p_{1/2})² mixing.
- Evidence of a near-threshold low-lying dipole mode 1⁻

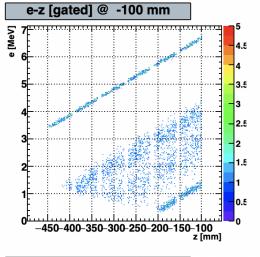


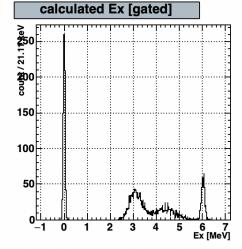


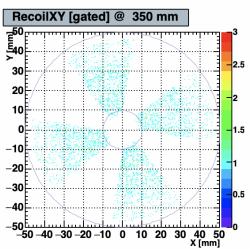

- 8He(p,p') at 8.25A MeV observed a L=2 resonance at 3.54 MeV (0.89 MeV FWHM).
- Microscopic coupled reaction channels with structure inputs from no-core shell model (NCSM).
- Quadrupole deformation parameter of β_2 = 0.40(3), large deformation.
- No evidence of a low-energy dipole resonance or any E1 strength.

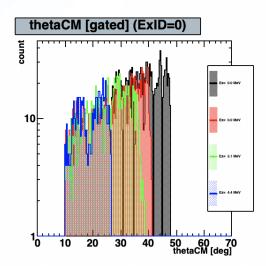


- Particle-particle correlations might be a distinctive feature of dipole resonances where halo neutrons act as a nucleon Copper pair around an inert core.
- Two-neutron transfer is a powerful tool to investigate low-energy dipole modes where pairing plays a key role (Eur. Phys. J. A, 55:243, 2019).
- Absolute differential cross sections: two neutron transfer on second order DWBA (G. Potel, E. Vigezzi, F. Barranco, R. Broglia).
- 8He wave function with $(1p_{3/2})^4$ configuration with 34.9% and of the $(1p_{3/2})^2(p_{1/2})^2$ with 23.7% (Phys. Rev. C 77, 054317 (2008)) and calculated potentials.
- Estimates are consistent with the reported cross sections of Golokov et al (Physics Letters B 672 (2009) 22–29).
- Objectives of the experiment: Investigate the ⁸He gs and possible resonance structures with high-resolution. Determine the role of the configuration mixing in the ⁸He shape configuration. Elucidate the existence of a possible E1 soft-dipole resonance.






- (t,p) reaction on ⁶He at 10 MeV/u using the Isolde Solenoidal Spectrometer (ISS).
- Si array placed at 100 mm upstream of the target.
- Recoil detector placed at 350 mm downstream of the target.
- Magnetic field of 2 T.
- Angular coverage 10 45 deg CM.
- Titanium tritide target ~45 μg/cm² (450 μg/cm² of titanium). To be used in IS696 (Wimmer, Macchiavelli) and IS695 (Ayyad, Vigezzi).
- Expected resolution of 150 keV (FWHM).



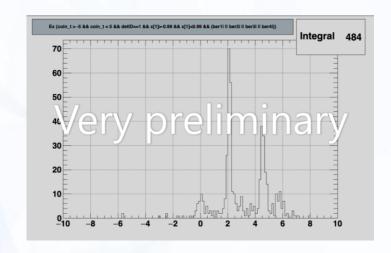
ThetaCM vs Z

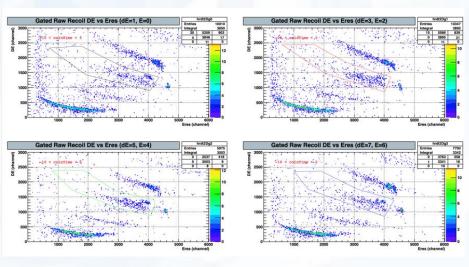
<u>⊼</u>60

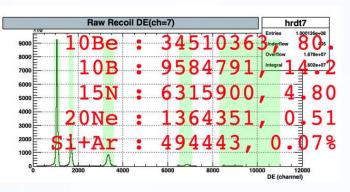

```
6He(t,p)8He @ 10.00 MeV/u
field = -2.00 T, into plan
gate:
hit == 1
```

hit == 1 & loop <= 1 & thetaCM > 10 & rhoRecoil > 5

-450-400-350-300-250-200-150-100 z [mm]

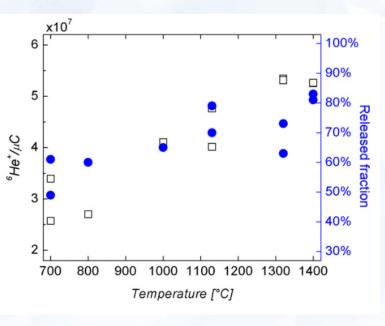






- SOLARIS experiment at ReA6 (FRIB): ¹⁰Be(t,p)¹²Be at 10A MeV.
- Performed with a 10⁵ pps beam (10⁶ instantaneous rate).
- Titanium tritide target of arounf 20 µg/cm²
- Clear identification of the ¹²Be levels with a preliminary resolution better tan 200 keV (FWHM).

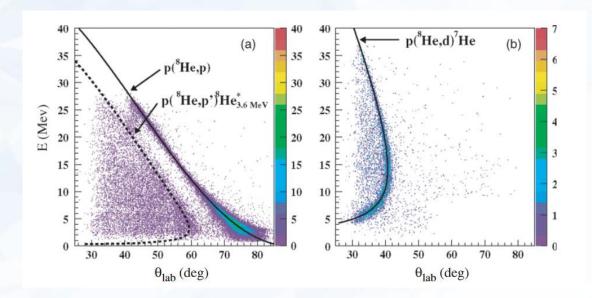
Excellent background rejection capabilities.

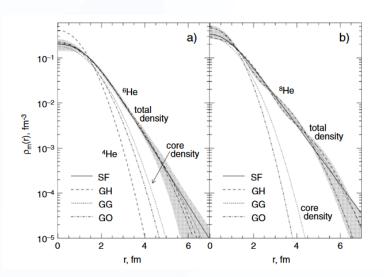


Beam time request

- 21 shifts of beam time to study the (t,p) reaction on ⁶He at 10 MeV/u.
- 3 shift of stable 4He.
- Beam intensity of around 10⁶ pps, based on previous experimental data (4.70×10⁷ Yield/μC).
- INTC TAC Comments: The TAC has identified one serious issue with this proposal. The transmission through the machine appears to be quite significantly over-estimated if previous experience can be used as a guide. The shift evaluation needs to be re-considered for an estimation of 0.1-0.03% rather than 5%. If approved, this experiment would benefit from development time to optimise the transmission of such beams to HIE ISOLDE. Possible hot spots along the machine could also complicate scheduling.

Thank you!





Phys. Rev. C 73 (2006) 044301

