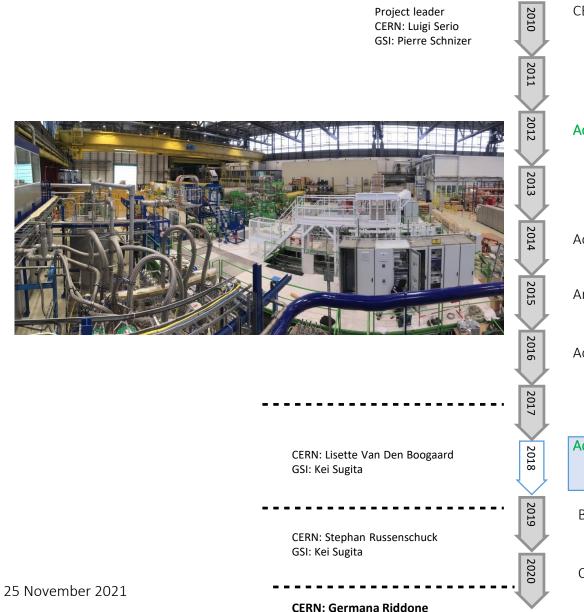

CERN-GSI Collaboration Super FRS magnets for FAIR

B180 Test facility and CERN activities

25 November 2021 G. Riddone on behalf of the CERN-GSI team, TE-RAS

CERN facility in B180

Racks for quench protection system



25 November 2021

Content

- Collaboration agreement: where we stand
- Organisation and CERN involvement
- Magnet assembly deliveries
- CERN activities
- Status of the main systems
- From FoS to Series: preparation and planning
- Conclusions

History, testing at CERN and coll. agreement

CERN-GSI Agreement K1727

General agreement on collaboration in accelerator science and technologies

Addendum No.2

Cryogenic testing of SuperFRS Magnets at CERN

Addendum No.4 Procurement of pre-cooler, QPS, Survey tools

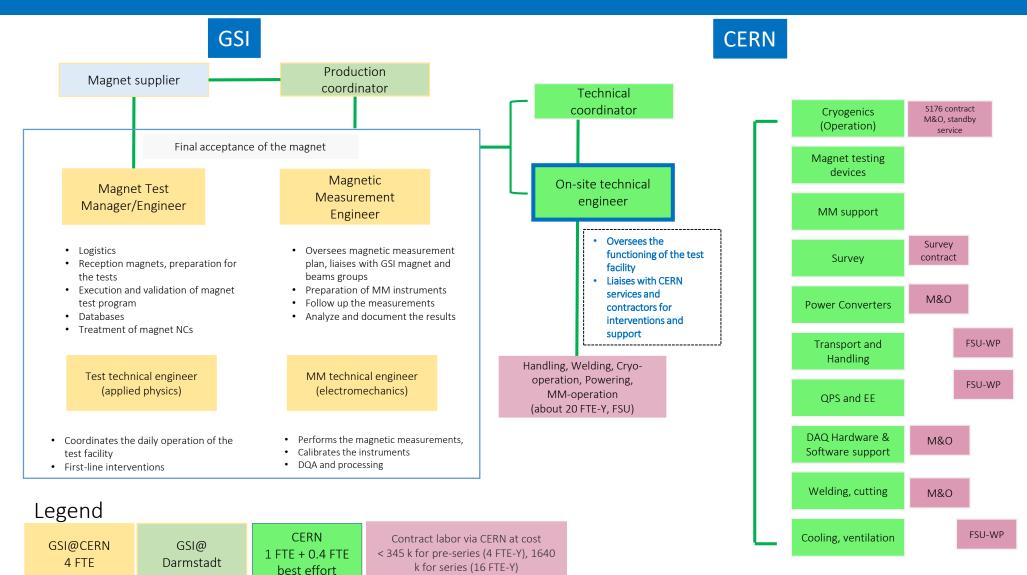
Amendment to K1727 Extension of scope

Addendum No.5 Floor, control room

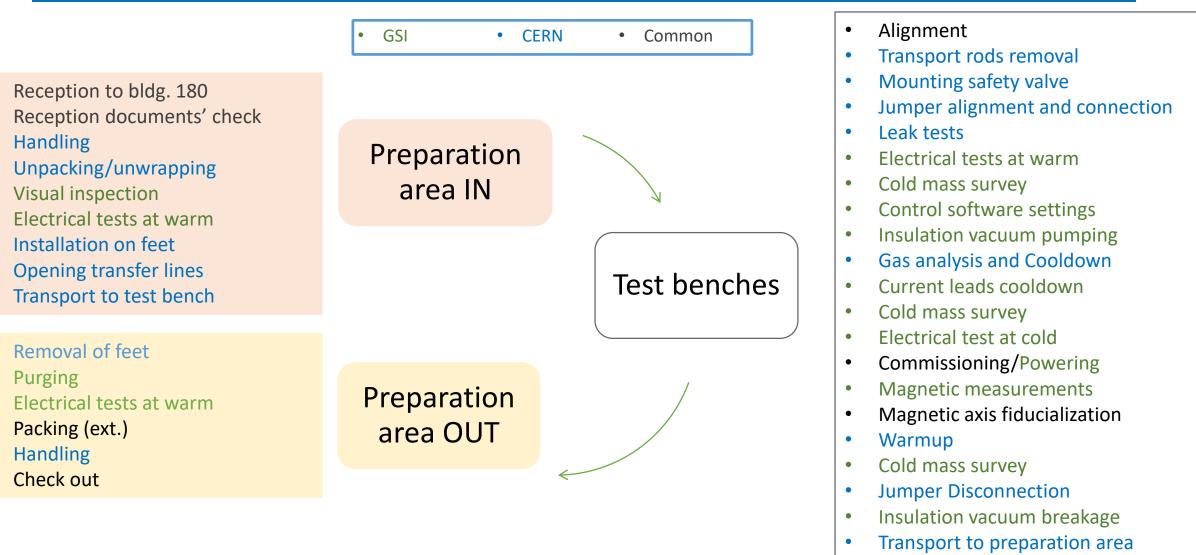
Addendum No.12 [KR3912] Operation of the cryogenic test facility at CERN for the test of the Super-FRS magnets for FAIR

Books closed for project

Operation in times of Sars-Cov-2


4

GSI-CERN collaboration agreement


KR3912/TE, Addendum No. 12 to the 2010 agreement K1727/DG

- GSI is leading the activity, and contributes to it with:
 - 4 FTE: operation team (2 eng. and 2 technical eng.)
- CERN is contributing with:
 - 1.4 FTE of expertise, support and coordination with internal services and CERN contractors (operation and maintenance, special activities such as handling and survey);
 - 1 FTE: on-site technical engineer officially from Jan 1st 2022
- Industrial support from other groups which is charged to GSI on **cost-recovery basis**: the total cost estimated at 5.4 MCHF for the two phases now until Q1/2026 (originally until Q1/2024).
 - GSI has requested to make payments in advance. The result is that there is now a disconnect between Revenue and Expenses, substantial funds still available: 1.946 MCHF.

Organisation

Work flow – <u>Magnet</u> assembly main steps

•

.

•

•

Activities and CERN resources

(7 groups, 4 departments)

Magnet

Resources

1)	Transport	EN-HE + Magnet supplier
2)	Unwrapping	TE-MSC + FSU
3)	Foot installation and	TE-MSC + FSU + GSI@CER
	alignment	
4)	Installation of safety valve	TE-MSC + FSU
5)	Jumper alignment	EN-MME
6)	Jumper connection	EN-MME
7)	Insulation vacuum	TE-VSC + CERN Contractor
8)	Cold mass survey	GSI survey + BE-GM
9)	Removal transport rods	TE-MSC + FSU + GSI@CER
10)	Leak tests	TE-VSC, Contractor
11)	Purging	TE-CRG
12)	Electrical tests	TE-MSC + GSI@CERN

12) Electrical tests

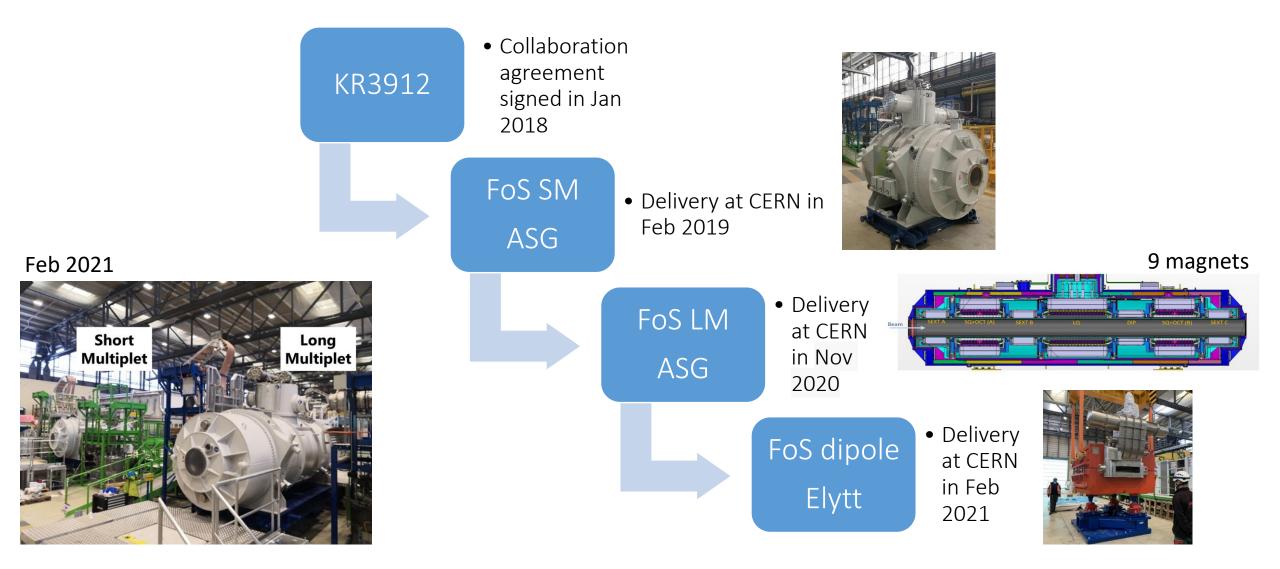
13) Magnetic measurements

E-MSC + FSU E-MSC + FSU + GSI@CERN E-MSC + FSUN-MME N-MME E-VSC + CERN Contractor SI survey + BE-GM E-MSC + FSU + GSI@CERN -VSC, Contractor

TE-MSC + GSI@CERN

GSI@CERN + TE-MSC

Facility

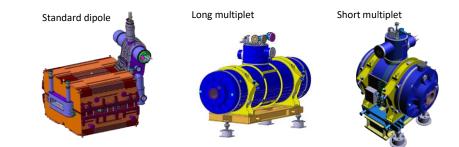

- **Removal platforms** 1)
- **Platform adjustments** 2)
- 3) Install brackets (for survey)
- Piping for current leads 4)
- 5) Cabling instrumentation panel and electrical cabinet
- Safety inspection 6)
- QDS cable integrity 7)
- 8) Commissioning facility
- 9) Commissioning electrical cabinet and instrumentation panel

Resources

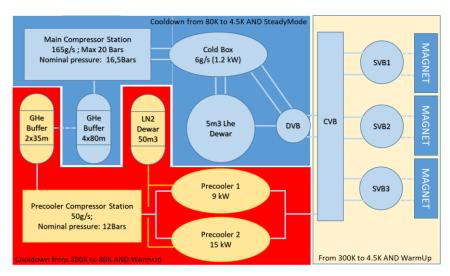
EN-HE + FSU **EN-HE FN-SMM** TE-CRG + CERN Contractor GSI@CERN

HSE-OHS **TE-MPE** TE-MPE + TE-MSC SY-EPC + GSI + GSI@CERN

Main milestones



CERN Test facility – cryogenic system


The test facility must be compatible with all 35 types of magnets: 11 types of dipoles, 24 types of multiplets

3 test benches3 main cryogenic sub-systems

Cryogenic system (recently done or to be done)


Precoolers (CWU)

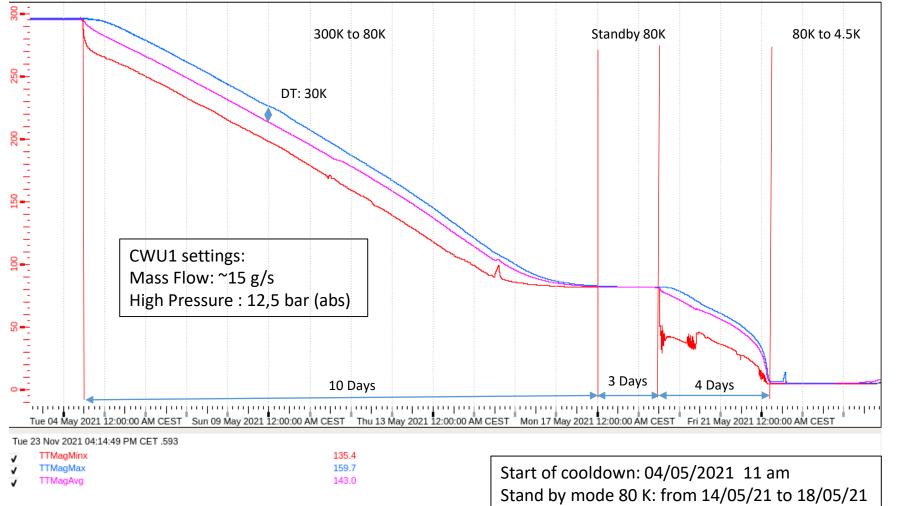
- Regeneration sequence issue:
 - new regeneration group (Busch) ordered and received during W33 (installation in W38/39)
- Precooler 2 (CWU2)
 - Commissioning foreseen with next magnet cooldown or warmup
 - Replacement of mass flowmeter in Jan 2022

Cryoplant 4.5K

- Problem with sand in the Cold Box cooling water from EN/CV: Turbines trips (x2),
 - New inlet filters procured (installation in W38/39)
 Remarks:
 - EN/CV filtering 1000 μm
 - Additional new filters: 100 μm

Cryogenic system (current status)

- 3 test benches, 3 main cryogenic sub-systems
 - Test Bench 1 (blue): Magnetic tests successfully completed (FoS LM) → WU started (issues on thermal shield circuit to be fully understood)
 - Test Bench 2 (green): Leak-tightness test before cooldown (FoS Dipole) showed important leak on thermal shield → back to Elytt for repair
 - Test Bench 3 (white): In Standby (no magnet

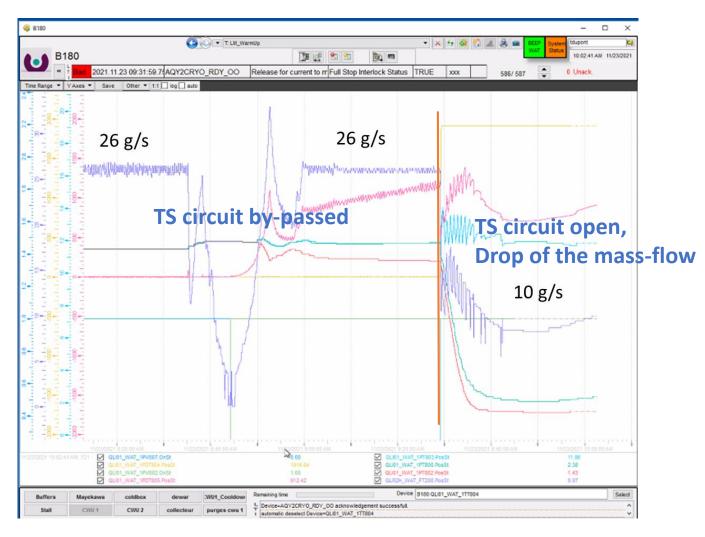

connected)

LM first cooldown (17 days)

ΔT~30 K over cold mass (< 40 K required during phase 1)

Start of cooldown: 04/05/2021 11 am Stand by mode 80 K: from 14/05/21 to 18/05/21 End of cooldown: from 18/05/21 to 21/05/21 Cooldown rate: 0.75 K/h

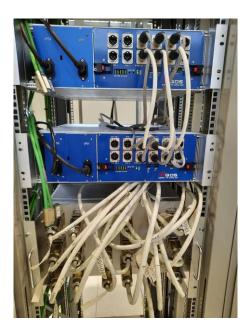
LM warmup


Several tests are being performed to understand the issue on thermal shield circuit, **namely the behaviour of the filter**.

Goal: warm up completed on 6 Dec 2021

Issue already observed in previous WU, but we manage to overcome with WU parameter adjustment

DN25 shield return, SVB1 @ CERN, FoS- Short Multiplet


Quench protection and energy extraction system

WP Quench Protection System

Mandate: Provide the Quench Detection System + controls layer for the Test Benches.

TB 1 blue: fully populate and fully commissioned TB 2 green: 2 x UQDS operational (to be commissioned)

TB 3 white: 2 x UQDS operational (to be commissioned)

Controls Layer for the TB

SW is all updated, running the last version of RDA 3, NX CALS, DQAMX and PM (Post Mortem)

CALS (old database) has been decommissioned.

9 Power converters, 3 with energy extraction

WP Energy Extraction System

Mandate: Provide the Energy Extraction System + controls layer for the Test Benches.

Fully commissioned.

Load switches

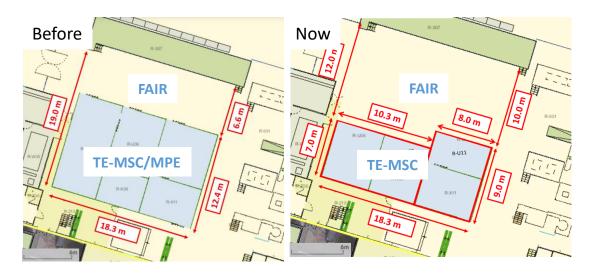
Interlock PLC, HV and DMM racks

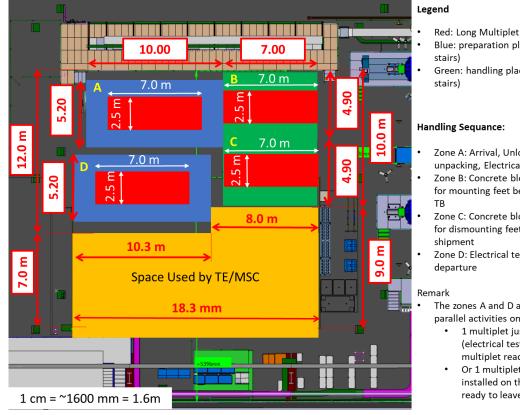
Interlock PLC

 ✓ Equipment commissioned in stand-alone 2 years ago
 ✓ Bench 1 running
 > Bench 2: waiting for cold
 tests
 > Bench 3 still to be
 commissioned
 > Yearly maintenance
 organized High Voltage racks 2 racks delivered, commissioned and already used for tests > Software upgraded: bugs removal > New rack to be constructed: all material received, except NI (PXI equipment ordered by GSI) and rack

DMM – precision measurements

 ✓ 2 racks stable and validated from hardware and software point of view
 ✓ Last software version upgraded this summer
 ➢ Operational safety procedure to be written


Software


For electrical tests

Space management: preparation for series

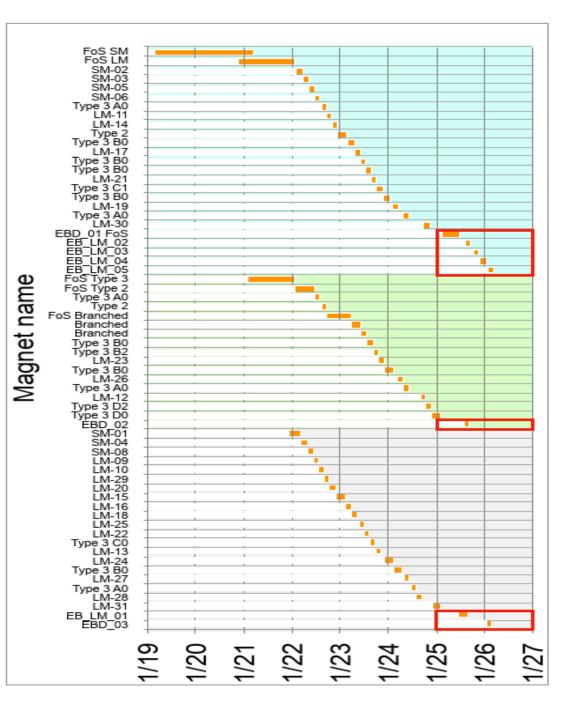
Magnet preparation area

- Handling sequence analysed and confirmed that additional ۰ space was needed
- Relocation of TE/MPE equipment from B180 to B272 done • by mid of July
- De-installation and Installation of the fence for the new area • allocated to TE-MS (see photo)

Before

Blue: preparation place (use of Green: handling place (no use of

Handling Sequance:


- Zone A: Arrival, Unloading, unpacking, Electrical tests
- Zone B: Concrete blocks positioning for mounting feet before moving to
- Zone C: Concrete blocks positioning for dismounting feet before shipment
- Zone D: Electrical tests, packing, departure
- The zones A and D are neded for parallel activities on
 - 1 multiplet just arrived (electrical tests) and 1 multiplet ready to leave
 - Or 1 multiplet ready to be installed on the feet and 1 readv to leave

Now

Overall Planning

- Continuous operation
 - the validation tests are performed on one bench, while the second bench is cooling down and the third one is warming up;
 - the test sequence lasts about six weeks for each magnet.
- Pre-series is scheduled to end Q1/2022
- Last series magnets tested in Q1/2026, including new request to test also the EB magnets (8 additional assembly)
- Next magnet assemblies at CERN:
 - short multiplet SM08 in Dec 2021 (ASG)
 - D2 in Jan 2022 (Elytt)

Conclusions

- CERN-GSI agreement on SC magnets testing signed in Jan 2018 very fruitful collaboration, see also recent <u>article in bulletin</u>
- CERN-GSI organization fully in place, including all interfaces (new post for CERN on-site technical engineer) – great collaboration with several CERN groups
- CERN test facility operational
- Pre-series magnets delivered from Feb 2019 to Feb 2020
- Series magnets' testing will start in Q1/2022
- New amendment to be prepared: extension of duration and scope