
Xsuite code

R. De Maria and G. Iadarola

With contributions from
A. Abramov, X. Buffat, P. Hermes, S. Kostoglou, A. Latina,

A. Oeftiger, M. Schwinzerl, G. Sterbini

FCCIS WP2 Workshop 2021 - 4 November 2021

https://xsuite.readthedocs.io

https://xsuite.readthedocs.io/

Outline

• Introduction to Xsuite

o Motivation

o Requirements

o Design choices

o Architecture

o Development status

o Documentation and developer's resources

• Usage examples

o Single-particle tracking

o Collective elements

o Interface to other codes

• Checks and first applications

• Summary

Outline

• Introduction to Xsuite

o Motivation

o Requirements

o Design choices

o Architecture

o Development status

o Documentation and developer's resources

• Usage examples

o Single-particle tracking

o Collective elements

o Interface to other codes

• Checks and first applications

• Summary

4

CERN-developed multiparticle codes

We currently have at least five CERN-developed multiparticle codes that are used in production
studies for CERN synchrotrons (+ need to use PyORBIT-PTC for Particle-In-Cell space charge
studies)

This has multiple drawbacks:

• Simulation capabilities are limited (e.g. full-lattice + impedance is not possible)

• Expensive to maintain and further develop (duplicated efforts)

• Long and very specific learning curve for new-comers (know-how is not transferrable)

• Difficult to define a consistent strategy to tackle future challenges, FCC-ee, muon collider, PBC

Available Not available Experimental

5

Adapting one of the existing codes to fulfil all the needs would be very difficult

→ Opted to start a new design (Xsuite) considering all requirements

→ No need to reinvent the wheel → reused experience from existing codes, notably
sixtracklib and pyheadtail

Available Not available Experimental

CERN-developed multiparticle codes

Xsuite: requirements

6

The following main requirements were identified :

• Sustainability: development/maintainance compatible
with ABP's available manpower and knowhow

o Favor mainstream technologies (e.g. python) to:

o profit from existing knowhow in ABP

o have a short learning curve for newcomers

o "guarantee" sufficient long life of the code

o Code simple and slim: introduction of new features
should be “student friendly”

• Code should easy and flexible to use (scriptable)

• It should be easy to interface with many existing physics tools:

o MAD-X via cpymad, PyHEADTAIL, pymask, COMBI/PyPLINE, FCC-EPFL framework

• Speed matters

o Performance should stay in line with Sixtrack on CPU and with Sixtracklib on GPU

• Need to run on CPUs and GPUs from different vendors

Outline

• Introduction to Xsuite

o Motivation

o Requirements

o Design choices

o Architecture

o Development status

o Documentation and developer's resources

• Usage examples

o Single-particle tracking

o Collective elements

o Interface to other codes

• Checks and first applications

• Summary

8

Xsuite – Python packages

This has several advantages:

o Profit of ABP know-how and experience with python (OMC tools, pytimber, PyHEADTAIL,
PyECLOUD, harpy, lumi modeling and followup tools, …)

o Newcomers typically have been already exposed to Python + learning-curve is common
many tools used in ABP and at CERN for simulation, data analysis, operation…

o Python can be used as glue among Xsuite modules and with several CERN and general-
purpose Python packages (plotting, fft, optimization, data storage, ML, …)

o Python is easy to extend with C, C++ and FORTRAN code for performance-critical parts

Design choice #1:

• The code is provided in the form of a set of
Python packages (Xobjects, Xtrack, Xpart, …)

9

Xsuite – Support of GPUs

Support of Graphics Processing Units (GPUs) is a necessary requirement

→ applications like incoherent effects studies of space-charge or e-cloud are feasible
only with GPUs

Market situation is somewhat complicated

→ there is no accepted standard for GPU programming

→ Different vendors have different languages, frameworks, etc.

→ Picture not expected to change on the short term

Design choice #2: same code should work on multiple platforms

• Usable on conventional CPUs (including multithreading support)
and on GPUs from major vendors (NVIDIA, AMD, Intel)

• It is ready to be extended to new standards that are likely to
come in the near future

Leveraged on available open-source packages for
compiling/launching CPU and GPU code through Python

10

Xsuite is made of five python modules:

• One low-level module (xobjects) managing memory and code compilation at
runtime on CPUs and GPUs

• Four physics modules which interact with the underlying computing platforms
(CPU or GPU) through Xobjects

Xsuite – architecture

Xobjects
interface to different computing plaforms

(CPUs and GPUs of different vendors)

Xfields
computation of EM fields
from particle ensembles

Xtrack
single particle

tracking engine

Xpart
generation of particles

distributions

P
h

ys
ic

s
m

o
d

u
le

s

Outline

• Introduction to Xsuite

o Motivation

o Requirements

o Design choices

o Architecture

o Development status

o Documentation and developer's resources

• Usage examples

o Single-particle tracking

o Collective elements

o Interface to other codes

• Checks and first applications

• Summary

12

Xsuite development status

• Several colleagues could already contribute to the development (many thanks!)

→ Demonstrated short learning curve for developers

→ Greatly helped to achieve a quick progress of the project (Xsuite is now being
used for first production studies)

(1) Uses optimized implementation of Faddeeva function

providing x10 speedup on GPU (M.Schwinzerl)
(2) To be ported from Sixrtacklib (straightforward)
(3) Electron lens implemented (P. Hermes)
(4) Geant4 interface working (A. Abramov)
(5) Porting K2 scattering and Fluka coupling

is under development (F. Van Der Veken, P. Hermes)

(6) Through PyHEADTAIL interface (X. Buffat)

Only CPU for now
(7) Under development (P. Kicsiny, X. Buffat)
(8) Under development (A. Latina)
(9) Under study

(1) (1) (2) (1) (3,4,5) (6) (6) (6) (1,7) (1,7) (8) (7) (9)

13

Xsuite development status

• Several colleagues could already contribute to the development (many thanks!)

→ Demonstrated short learning curve for developers

→ Greatly helped to achieve a quick progress of the project (Xsuite is now being
used for first production studies)

(1) (1) (2) (1) (3,4,5) (6) (6) (6) (1,7) (1,7) (8) (7) (9)

→Include developments dedicated to FCC-ee (EPFL/Chart collaboration)

14

User's guide

• Documentation pages available at https://xsuite.readthedocs.io and integrated by
sets of examples available in the repository

→ So far experience was very positive: users with some python experience were
able to get started with little or no tutoring

• Xsuite is intended as an open-source community project:

o User community is encouraged to contribute

o Documentation includes developer's guide on how to extend the code

o Aiming at keeping learning curve for new developers as short as possible

https://xsuite.readthedocs.io/
http://githib.com/xsuite

Outline

• Introduction to Xsuite

o Motivation

o Requirements

o Design choices

o Architecture

o Development status

o Documentation and developer's resources

• Usage examples

o Single-particle tracking

o Collective elements

o Interface to other codes

• Checks and first applications

• Summary

16

A basic example: single-particle tracking

import xobjects as xo
import xtrack as xt
import xpart as xp

Generate a simple beamline
line = xt.Line(

elements=[xt.Drift(length=1.), xt.Multipole(knl=[0, 1.], ksl=[0,0]),
xt.Drift(length=1.), xt.Multipole(knl=[0, -1.], ksl=[0,0])],

element_names=['drift_0', 'quad_0', 'drift_1', 'quad_1'])

Choose a context
context = xo.ContextCpu() # For CPU

Transfer lattice on context and compile tracking code
tracker = xt.Tracker(_context=context, line=line)

Build particle object on context
n_part = 200
import numpy as np
particles = xp.Particles(_context=context, p0c=6500e9,

x=np.random.uniform(-1e-3, 1e-3, n_part),
zeta=np.random.uniform(-1e-2, 1e-2, n_part),
delta=np.random.uniform(-1e-4, 1e-4, n_part))

Track (saving turn-by-turn data)
tracker.track(particles, num_turns=100, turn_by_turn_monitor=True)

The particle is changed in place and turn-by-turn data is available at:
tracker.record_last_track.x, tracker.record_last_track.px # etc...

Simulations are configured and launched with a Python script (or Jupyter notebook)

We import the Xsuite
modules that we need

import xobjects as xo
import xtrack as xt
import xpart as xp

Generate a simple beamline
line = xt.Line(

elements=[xt.Drift(length=1.), xt.Multipole(knl=[0, 1.], ksl=[0,0]),
xt.Drift(length=1.), xt.Multipole(knl=[0, -1.], ksl=[0,0])],

element_names=['drift_0', 'quad_0', 'drift_1', 'quad_1'])

Choose a context
context = xo.ContextCpu() # For CPU

Transfer lattice on context and compile tracking code
tracker = xt.Tracker(_context=context, line=line)

Build particle object on context
n_part = 200
import numpy as np
particles = xp.Particles(_context=context, p0c=6500e9,

x=np.random.uniform(-1e-3, 1e-3, n_part),
zeta=np.random.uniform(-1e-2, 1e-2, n_part),
delta=np.random.uniform(-1e-4, 1e-4, n_part))

Track (saving turn-by-turn data)
tracker.track(particles, num_turns=100, turn_by_turn_monitor=True)

The particle is changed in place and turn-by-turn data is available at:
tracker.record_last_track.x, tracker.record_last_track.px # etc...

17

A basic example: single-particle tracking

Simulations are configured and launched with a Python script (or Jupyter notebook)

We use Xtrack to
create a simple
sequence (a FODO)
→ can import more

complex lattice
from MAD-X

import xobjects as xo
import xtrack as xt
import xpart as xp

Generate a simple beamline
line = xt.Line(

elements=[xt.Drift(length=1.), xt.Multipole(knl=[0, 1.], ksl=[0,0]),
xt.Drift(length=1.), xt.Multipole(knl=[0, -1.], ksl=[0,0])],

element_names=['drift_0', 'quad_0', 'drift_1', 'quad_1'])

Choose a context
context = xo.ContextCpu() # For CPU

Transfer lattice on context and compile tracking code
tracker = xt.Tracker(_context=context, line=line)

Build particle object on context
n_part = 200
import numpy as np
particles = xp.Particles(_context=context, p0c=6500e9,

x=np.random.uniform(-1e-3, 1e-3, n_part),
zeta=np.random.uniform(-1e-2, 1e-2, n_part),
delta=np.random.uniform(-1e-4, 1e-4, n_part))

Track (saving turn-by-turn data)
tracker.track(particles, num_turns=100, turn_by_turn_monitor=True)

The particle is changed in place and turn-by-turn data is available at:
tracker.record_last_track.x, tracker.record_last_track.px # etc...

18

A basic example: single-particle tracking

Simulations are configured and launched with a Python script (or Jupyter notebook)

We choose the
computing platform
on which we want to
run (CPU or GPU)

import xobjects as xo
import xtrack as xt
import xpart as xp

Generate a simple beamline
line = xt.Line(

elements=[xt.Drift(length=1.), xt.Multipole(knl=[0, 1.], ksl=[0,0]),
xt.Drift(length=1.), xt.Multipole(knl=[0, -1.], ksl=[0,0])],

element_names=['drift_0', 'quad_0', 'drift_1', 'quad_1'])

Choose a context
context = xo.ContextCpu() # For CPU

Transfer lattice on context and compile tracking code
tracker = xt.Tracker(_context=context, line=line)

Build particle object on context
n_part = 200
import numpy as np
particles = xp.Particles(_context=context, p0c=6500e9,

x=np.random.uniform(-1e-3, 1e-3, n_part),
zeta=np.random.uniform(-1e-2, 1e-2, n_part),
delta=np.random.uniform(-1e-4, 1e-4, n_part))

Track (saving turn-by-turn data)
tracker.track(particles, num_turns=100, turn_by_turn_monitor=True)

The particle is changed in place and turn-by-turn data is available at:
tracker.record_last_track.x, tracker.record_last_track.px # etc...

19

A basic example: single-particle tracking

Simulations are configured and launched with a Python script (or Jupyter notebook)

We build a tracker
object, which can track
particles in our beam
line on the chosen
computing platform

import xobjects as xo
import xtrack as xt
import xpart as xp

Generate a simple beamline
line = xt.Line(

elements=[xt.Drift(length=1.), xt.Multipole(knl=[0, 1.], ksl=[0,0]),
xt.Drift(length=1.), xt.Multipole(knl=[0, -1.], ksl=[0,0])],

element_names=['drift_0', 'quad_0', 'drift_1', 'quad_1'])

Choose a context
context = xo.ContextCpu() # For CPU

Transfer lattice on context and compile tracking code
tracker = xt.Tracker(_context=context, line=line)

Build particle object on context
n_part = 200
import numpy as np
particles = xp.Particles(_context=context, p0c=6500e9,

x=np.random.uniform(-1e-3, 1e-3, n_part),
zeta=np.random.uniform(-1e-2, 1e-2, n_part),
delta=np.random.uniform(-1e-4, 1e-4, n_part))

Track (saving turn-by-turn data)
tracker.track(particles, num_turns=100, turn_by_turn_monitor=True)

The particle is changed in place and turn-by-turn data is available at:
tracker.record_last_track.x, tracker.record_last_track.px # etc...

20

A basic example: single-particle tracking

Simulations are configured and launched with a Python script (or Jupyter notebook)

We generate a set of
particles (in this case
using a standard
python random
generator)

import xobjects as xo
import xtrack as xt
import xpart as xp

Generate a simple beamline
line = xt.Line(

elements=[xt.Drift(length=1.), xt.Multipole(knl=[0, 1.], ksl=[0,0]),
xt.Drift(length=1.), xt.Multipole(knl=[0, -1.], ksl=[0,0])],

element_names=['drift_0', 'quad_0', 'drift_1', 'quad_1'])

Choose a context
context = xo.ContextCpu() # For CPU

Transfer lattice on context and compile tracking code
tracker = xt.Tracker(_context=context, line=line)

Build particle object on context
n_part = 200
import numpy as np
particles = xp.Particles(_context=context, p0c=6500e9,

x=np.random.uniform(-1e-3, 1e-3, n_part),
zeta=np.random.uniform(-1e-2, 1e-2, n_part),
delta=np.random.uniform(-1e-4, 1e-4, n_part))

Track (saving turn-by-turn data)
tracker.track(particles, num_turns=100, turn_by_turn_monitor=True)

The particle is changed in place and turn-by-turn data is available at:
tracker.record_last_track.x, tracker.record_last_track.px # etc...

21

A basic example: single-particle tracking

Simulations are configured and launched with a Python script (or Jupyter notebook)

We launch the tracking
(particles are updated
as tracking progresses)

import xobjects as xo
import xtrack as xt
import xpart as xp

Generate a simple beamline
line = xt.Line(

elements=[xt.Drift(length=1.), xt.Multipole(knl=[0, 1.], ksl=[0,0]),
xt.Drift(length=1.), xt.Multipole(knl=[0, -1.], ksl=[0,0])],

element_names=['drift_0', 'quad_0', 'drift_1', 'quad_1'])

Choose a context
context = xo.ContextCpu() # For CPU

Transfer lattice on context and compile tracking code
tracker = xt.Tracker(_context=context, line=line)

Build particle object on context
n_part = 200
import numpy as np
particles = xp.Particles(_context=context, p0c=6500e9,

x=np.random.uniform(-1e-3, 1e-3, n_part),
zeta=np.random.uniform(-1e-2, 1e-2, n_part),
delta=np.random.uniform(-1e-4, 1e-4, n_part))

Track (saving turn-by-turn data)
tracker.track(particles, num_turns=100, turn_by_turn_monitor=True)

The particle is changed in place and turn-by-turn data is available at:
tracker.record_last_track.x, tracker.record_last_track.px # etc...

A basic example: single-particle tracking

Simulations are configured and launched with a Python script (or Jupyter notebook)

Access to the recorded
particles coordinates

import xobjects as xo
import xtrack as xt
import xpart as xp

Generate a simple beamline
line = xt.Line(

elements=[xt.Drift(length=1.), xt.Multipole(knl=[0, 1.], ksl=[0,0]),
xt.Drift(length=1.), xt.Multipole(knl=[0, -1.], ksl=[0,0])],

element_names=['drift_0', 'quad_0', 'drift_1', 'quad_1'])

Choose a context
context = xo.ContextCpu() # For CPU

Transfer lattice on context and compile tracking code
tracker = xt.Tracker(_context=context, line=line)

Build particle object on context
n_part = 200
import numpy as np
particles = xp.Particles(_context=context, p0c=6500e9,

x=np.random.uniform(-1e-3, 1e-3, n_part),
zeta=np.random.uniform(-1e-2, 1e-2, n_part),
delta=np.random.uniform(-1e-4, 1e-4, n_part))

Track (saving turn-by-turn data)
tracker.track(particles, num_turns=100, turn_by_turn_monitor=True)

The particle is changed in place and turn-by-turn data is available at:
tracker.record_last_track.x, tracker.record_last_track.px # etc...

23

A basic example: single-particle tracking

Simulations are configured and launched with a Python script (or Jupyter notebook)

To run on GPU all we
need to do is to
change the context

import xobjects as xo
import xtrack as xt
import xpart as xp

Generate a simple beamline
line = xt.Line(

elements=[xt.Drift(length=1.), xt.Multipole(knl=[0, 1.], ksl=[0,0]),
xt.Drift(length=1.), xt.Multipole(knl=[0, -1.], ksl=[0,0])],

element_names=['drift_0', 'quad_0', 'drift_1', 'quad_1'])

Choose a context
context = xo.ContextCupy() # For NVIDIA GPUs

Transfer lattice on context and compile tracking code
tracker = xt.Tracker(_context=context, line=line)

Build particle object on context
n_part = 200
import numpy as np
particles = xp.Particles(_context=context, p0c=6500e9,

x=np.random.uniform(-1e-3, 1e-3, n_part),
zeta=np.random.uniform(-1e-2, 1e-2, n_part),
delta=np.random.uniform(-1e-4, 1e-4, n_part))

Track (saving turn-by-turn data)
tracker.track(particles, num_turns=100, turn_by_turn_monitor=True)

The particle is changed in place and turn-by-turn data is available at:
tracker.record_last_track.x, tracker.record_last_track.px # etc...

24

A basic example: single-particle tracking

Simulations are configured and launched with a Python script (or Jupyter notebook)

To run on GPU all we
need to do is to
change the context

import xobjects as xo
import xtrack as xt
import xpart as xp

Generate a simple beamline
line = xt.Line(

elements=[xt.Drift(length=1.), xt.Multipole(knl=[0, 1.], ksl=[0,0]),
xt.Drift(length=1.), xt.Multipole(knl=[0, -1.], ksl=[0,0])],

element_names=['drift_0', 'quad_0', 'drift_1', 'quad_1'])

Choose a context
context = xo.ContextPyopencl() # For AMD GPUs and other hardware

Transfer lattice on context and compile tracking code
tracker = xt.Tracker(_context=context, line=line)

Build particle object on context
n_part = 200
import numpy as np
particles = xp.Particles(_context=context, p0c=6500e9,

x=np.random.uniform(-1e-3, 1e-3, n_part),
zeta=np.random.uniform(-1e-2, 1e-2, n_part),
delta=np.random.uniform(-1e-4, 1e-4, n_part))

Track (saving turn-by-turn data)
tracker.track(particles, num_turns=100, turn_by_turn_monitor=True)

The particle is changed in place and turn-by-turn data is available at:
tracker.record_last_track.x, tracker.record_last_track.px # etc...

25

A basic example: single-particle tracking

Simulations are configured and launched with a Python script (or Jupyter notebook)

To run on GPU all we
need to do is to
change the context

Outline

• Introduction to Xsuite

o Motivation

o Requirements

o Design choices

o Architecture

o Development status

o Documentation and developer's resources

• Usage examples

o Single-particle tracking

o Collective elements

o Interface to other codes

• Checks and first applications

• Summary

[Imports, contexts, particles as for single-particle simulations]

Build a collective element (e.g. space-charge interaction)
import xfields as xf
spcharge = xf.SpaceCharge3D(_context=context, update_on_track=True,

x_range=(-5e-3, 5e-3), y_range=(-4e-3, 4e-3), z_range=(-4e-3, 4e-3),
length=1, nx=256, ny=256, nz=100, solver='FFTSolver2p5D')

Build a simple beamline including the space-charge element
line = xt.Line(

elements = [xt.Multipole(knl=[0, 1.]), xt.Drift(length=1.),
spcharge,
xt.Multipole(knl=[0, -1.]), xt.Drift(length=1.)]

element_names = ['qf1', 'drift1', 'spcharge' 'qd1', 'drift2', '])

Transfer lattice on context and compile tracking code
as for single particle simulations
tracker = xt.Tracker(_context=context, line=line)

27

A PIC space-charge
element is a collective
element

Xsuite can handle collective elements, i.e. elements for which the action on a particle
depends on the coordinates of other particles

→ it means that the tracking of different particles cannot happen asynchronously

No special action is required by the user. Collective elements are handled
automatically by the the Xtrack tracker

Collective beam elements

[Imports, contexts, particles as for single-particle simulations]

Build a collective element (e.g. space-charge interaction)
import xfields as xf
spcharge = xf.SpaceCharge3D(_context=context, update_on_track=True,

x_range=(-5e-3, 5e-3), y_range=(-4e-3, 4e-3), z_range=(-4e-3, 4e-3),
length=1, nx=256, ny=256, nz=100, solver='FFTSolver2p5D')

Build a simple beamline including the space-charge element
line = xt.Line(

elements = [xt.Multipole(knl=[0, 1.]), xt.Drift(length=1.),
spcharge,
xt.Multipole(knl=[0, -1.]), xt.Drift(length=1.)]

element_names = ['qf1', 'drift1', 'spcharge' 'qd1', 'drift2', '])

Transfer lattice on context and compile tracking code
as for single particle simulations
tracker = xt.Tracker(_context=context, line=line)

28

It can be included in a
Xtrack line together
with single-particle
elements

Xsuite can handle collective elements, i.e. elements for which the action on a particle
depends on the coordinates of other particles

→ it means that the tracking of different particles cannot happen asynchronously

No special action is required by the user. Collective elements are handled
automatically by the the Xtrack tracker

Collective beam elements

[Imports, contexts, particles as for single-particle simulations]

Build a collective element (e.g. space-charge interaction)
import xfields as xf
spcharge = xf.SpaceCharge3D(_context=context, update_on_track=True,

x_range=(-5e-3, 5e-3), y_range=(-4e-3, 4e-3), z_range=(-4e-3, 4e-3),
length=1, nx=256, ny=256, nz=100, solver='FFTSolver2p5D')

Build a simple beamline including the space-charge element
line = xt.Line(

elements = [xt.Multipole(knl=[0, 1.]), xt.Drift(length=1.),
spcharge,
xt.Multipole(knl=[0, -1.]), xt.Drift(length=1.)]

element_names = ['qf1', 'drift1', 'spcharge' 'qd1', 'drift2', '])

Transfer lattice on context and compile tracking code
as for single particle simulations
tracker = xt.Tracker(_context=context, line=line)

29

The tracker takes care of cutting the sequence at the collective elements
• Tracking between the collective elements is performed asynchronously (better performance)
• Simulation of collective interactions is performed synchronously

The tracker can be built
as seen for single-particle
simulations

Collective beam elements

Xsuite can handle collective elements, i.e. elements for which the action on a particle
depends on the coordinates of other particles

→ it means that the tracking of different particles cannot happen asynchronously

No special action is required by the user. Collective elements are handled
automatically by the the Xtrack tracker

Outline

• Introduction to Xsuite

o Motivation

o Requirements

o Design choices

o Architecture

o Development status

o Documentation and developer's resources

• Usage examples

o Single-particle tracking

o Collective elements

o Interface to other codes

• Checks and first applications

• Summary

31

Xsuite is conceived to be interfaced to other Python modules

• Any python object provideing a "el.track(particles)" method can be insterted in a Xsuite
lattice (assumes convention on particle coordinates naming and data structure)

• For example PyHEADTAIL can be used to intruduce collective beam elements
(impedances, dampers, e-cloud) in Xsuite simulation

• For this purpose we built a "PyHEADTAIL-compatiblity mode" in Xtrack as
PyHEADTAIL uses a slightly different naming convention

import xtrack as xt
xt.enable_pyheadtail_interface()

Create a PyHEADTAIL element
from PyHEADTAIL.feedback.transverse_damper import TransverseDamper
damper = TransverseDamper(dampingrate_x=10., dampingrate_y=15.)

Build a simple sequence including the space-charge element
line = xt.Line(

elements = [xt.Multipole(knl=[0, 1.]), xt.Drift(length=1.),
damper,
xt.Multipole(knl=[0, -1.]), xt.Drift(length=1.)]

element_names = ['qf1', 'drift1', 'damper', 'qd1', 'drift2'])

Transfer lattice on context and compile tracking code
as for single particle simulations
tracker = xt.Tracker(_context=context, line=line)

Interface to other codes

import xtrack as xt
xt.enable_pyheadtail_interface()

Create a PyHEADTAIL element
from PyHEADTAIL.feedback.transverse_damper import TransverseDamper
damper = TransverseDamper(dampingrate_x=10., dampingrate_y=15.)

Build a simple sequence including the space-charge element
sequence = xt.Line(

elements = [xt.Multipole(knl=[0, 1.]), xt.Drift(length=1.),
damper,
xt.Multipole(knl=[0, -1.]), xt.Drift(length=1.)]

element_names = ['qf1', 'drift1', 'damper', 'qd1', 'drift2'])

Transfer lattice on context and compile tracking code
as for single particle simulations
tracker = xt.Tracker(_context=context, line=line)

• PyHEADTAIL can be used to intruduce collective beam elements (impedances,
dampers, e-cloud) in Xsuite simulation

• For this purpose one needs to enable the "PyHEADTAIL-compatiblity mode" in Xtrack

• PyHEADTAIL elements can be used as valid Xtrack collective elements

• Only on CPU context supported for now (GPU support would require modifications
in PyHEADTAIL)

32

Interface to other codes

Tracking, impedance and damper
in PyHEADTAIL

Tracking Xsuite
impedance and in PyHEADTAIL

Comparison

X. Buffat

Outline

• Introduction to Xsuite

o Motivation

o Requirements

o Design choices

o Architecture

o Development status

o Documentation and developer's resources

• Usage examples

o Single-particle tracking

o Collective elements

o Interface to other codes

• Checks and first applications

• Summary

Single-particle tracking – benchmarks and performance

34

• Single-particle tracking has been successfully benchmarked against SixTrack

→ Checks performed for protons and ions

• Computation time very similar to Sixtrack on CPU and to sixtracklib on GPU

Platform Computing time

CPU 190 (ms/part./turn)

GPU (Titan V, cupy) 0.80 (ms/part./turn)

GPU (Titan V, pyopencl) 0.85 (ms/part./turn)

(*) tests made on ABP GPU server

35

Parameters of pilot study

Full HL-LHC lattice (20k elements)
Weak strong Beam-beam

N. tune configurations = 625
N. tracked particles/conf. = 1780
N. turns = 106

N. jobs = ~10'000

Comp. time ~48h on INFN- CNAF cluster

HL-LHC Dynamic Aperture scan

Example of integration with other Pythonic tools in a complex workflow

• Pymask used to prepare the machine configurations

• Generation of matched particle distribution using python module from pysixtrack

• Job management using a new Python package (TreeMaker)

• Tracking performed with Xsuite (parquet files used for data storage)

• Dynamic Aperture computation in Python using Pandas

G. Sterbini, K. Paraschou, S. Kostoglou

V
e
rt

ic
a
l
tu

n
e

Horizontal tune Horizontal tune Horizontal tune

106 particles
32 turns
Comp. time:
CPU 24 h
GPU 9 min

Xsuite allows different kinds of space-charge simulations (frozen, quasi-frozen, Particle
In Cell - switching from one to the other is straightforward)

• Tested in the realistic case of the full SPS lattice with 540 space-charge interactions

• Example of application where the usage of GPUs is practically mandatory

Space-charge – benchmarks and performance

Xsuite used to simulate strong-strong beam beam effects

• Additional package (PyPLINE) is under development to provides multi-node
parallelization and simulate many bunches

→ Provides two-level parallelization in combination with Xsuite multithreading

• Tested and routinely used on CERN HPC cluster

Tune

T
ra

n
sv

e
rs

e
 s

p
e
ct

ru
m

Horizontal

Vertical

Coherent beam spectrum (2 bunches)

Strong-strong beam beam

X. Buffat

LHC

Xsuite used for first studies on beam-beam
effects in recirculating linac for muon collider

Xsuite used to simulate strong-strong beam beam effects

• Additional package (PyPLINE) is under development to provides multi-node
parallelization and simulate many bunches

→ Provides two-level parallelization in combination with Xsuite multithreading

• Tested and routinely used on CERN HPC cluster

Strong-strong beam beam

X. Buffat

Performance optimization is
ongoing
• Speed getting close to

COMBIp (heavily
optimized in the past)

39

Test run (10 turns)

Simulated

time interval

Realistic study (parametric scan)

* CPUs and GPUs in HTCondor

Hollow electron lens studies

More details at https://indico.cern.ch/event/1068125/contributions/4491551

Xsuite is being used to study halo depletion with hollow electron lenses for HL-LHC

• Implemented hollow e-lens in Xtrack

• Benchmarked against Sixtrack

• Performed first realistic studies (parametric scans)

→ Showed significant advantage of using GPUs

P. Hermes

https://indico.cern.ch/event/1068125/contributions/4491551

40

Xsuite-Geant4 simulations

• Needed for FCC-ee collimation studies

• Using a C++ framework based on BDSIM
(L. Nevay):
• Geant4 radiation transport model with

collimators in individual cells

• Particles exchanged between the tracking
code and the Geant4 model

• Similar mechanism to the SixTrack-FLUKA
coupling

• Dedicated C++ - Python interface
implemented (collimasim)

• The first integration with Xtrack is
available:
• Supports collimator definition, beamline

integration, and particle transfer

• Tests ongoing

collimators

isolated cells

plane for back-transfer
(green disk)

particle interacting

C++ Python

ROOT

Geant4

CLHEP

BDSIM collimasim xtrack

A. Abramov

https://gitlab.cern.ch/anabramo/collimasim

Outline

• Introduction to Xsuite

o Motivation

o Requirements

o Design choices

o Architecture

o Development status

o Documentation and developer's resources

• Usage examples

o Single-particle tracking

o Collective elements

o Interface to other codes

• Checks and first applications

• Final remarks and summary

And the ecosystem is growing…

Xobjects
interface to different computing plaforms

(CPUs and GPUs of different vendors)

Xfields
computation of EM fields
from particle ensembles

Xtrack
single particle

tracking engine

Xpart
generation of particles

distributions

P
h

ys
ic

s
m

o
d

u
le

s

Already a few spin-offs from the community (some at early stages):

• PyPLINE: multilevel parallelization for strong-strong beam beam simulations)

• Xdeps: equivalent of MAD-X deferred expressions in python

• Xsequence: sequence manager for different codes (including knobs via
xdeps), smart slicing, etc. (driven by EPFL collaborators for FCC-ee dev. efforts)

• Xcollimation: setup and post-processing of collimation simulations

Summary

Xsuite development experience so far:

• Shows feasibility of integrated modular code covering the application of our interest

• Demonstrates a convenient approach to handle multiple computing platform while
keeping compact and readable physics code

• Already being used for production runs → gradually becoming our workhorse for
tracking simulations

• Very positive response from external collaborators (EPFL team working on FCC-ee
software, Gamma factory collaboration, GSI, SEEIIST)

You are very welcome to give it a try, give us feedback and contribute more features!

Available Under development Under study

Thanks for your attention!

45

Test suite

• To verify that new modifications don’t
affect the functionality and correctness
of existing features, test suites are
implemented for all modules

o Notably they include check of
tracking results for LHC, HL-LHC
and SPS

• Before releasing new versions of the
code, the tests are run on different
computing platforms (CPU and GPU)

46

Platform Computing time

CPU 5.5 s

GPU (Titan V, cupy) 20 ms

GPU (Titan V, via pyopencl) 38 ms

(*) tests made on ABP GPU server for typical SPS space-charge
interaction (PIC)

Xfields PIC
Bassetti Erskine formula

Space-charge – benchmarks and performance

Space-charge check

• Different methods crosschecked against each other

• Particular care in optimizing performance on GPU

47

Xsuite foundations

We did not start from scratch, instead we could learn and inherit features from the
following existing tools:

sixtraklib-pysixtrack

• Clean, tested and documented implementation of machine
elements (basically reused without changes, physics from SixTrack)

• Particle description with redundant energy variables for better
precision and speed (from sixtrack experience)

• Experience with multiplatform code (CPU/GPU)

• Tools for importing machine model from MAD-X or sixtrack input

PyHEADTAIL

• Driving a multiparticle simulation through Python

• Usage of vectorization through numpy to speed up parts of the
simulation directly in Python

PyPIC

• 2D and 3D FFT Particle In Cell with integrated Green functions

• Experience with CPU and GPU

Don't reinvent
the wheel…

Xsuite: code complexity

48

• Xsuite leverages Python's flexibility (introspection) and massive code
autogeneration to minimize code complexity

• Code is compact and readable (significant step forward w.r.t. Sixtracklib, where
we had achieved multiplatform compatibility using pre-compiler macros)

• A developer who knows the basics of Python and C can easily contribute code
(e.g. introduce new beam elements)

→ Fundamental to guarantee future development and maintenance with available
manpower!

Outline

• Introduction to Xsuite

o Motivation

o Requirements

o Design choices

o Architecture

o Development status

o Documentation and developer's resources

• Usage examples

o Single-particle tracking

o Import an existing lattice

o Collective elements

o PyHEADTAIL interface

• Checks and first applications

• A look under the hood (optional)

o Multiplatform programming with Xobjects

o Summary

50

import xobjects as xo

class DataStructure(xo.Struct):
a = xo.Float64[:] # Array
b = xo.Float64[:] # Array
c = xo.Float64[:] # Array
s = xo.Float64 # Scalar

A Xobjects Class can be defined as follows:

ctx = xo.ContextCpu()
ctx = xo.ContextCupy() # for NVIDIA GPUs

obj = DataStructure(_context=ctx,
a=[1,2,3], b=[4,5,6],
c=[0,0,0], s=0)

Independently on the context, the object is accessible in read/write directly
from Python. For example:

print(obj.a[2]) # gives: 3
obj.a[2] = 10
print(obj.a[2]) # gives: 10

An instance of our class can be instantiated on CPU or GPU by passing the
appropriate context

Xobjects – data manipulation in python

The main features of Xobjects can be illustrated with a simple example (Xsuite physics
packages are largely based on the features illustrated here)

51

The definition of a Xobject class in Python, automatically
triggers the generation of a set of functions (C-API) that can
be used in C code to access the data.

// ...

// Get the length of the array DataStructure.a
int64_t DataStructure_len_a(DataStructure obj);

// Get a pointer to the array DataStructure.a
ArrNFloat64 DataStructure_getp_a(DataStructure obj);

// Get an element of the array DataStructure.a
double DataStructure_get_a(const DataStructure obj, int64_t i0);

// Set an element of the array DataStructure.a
void DataStructure_set_a(DataStructure obj, int64_t i0, double value);

// get a pointer to an element of the array DataStructure.a
double DataStructure_getp1_a(const DataStructure obj, int64_t i0);

// ... similarly for b, c and s

Xobjects – data access from C

print(DataStructure._gen_c_decl(conf={}))

which gives (without the comments):

They can be inspected by:

From before
class DataStructure(xo.Struct):

a = xo.Float64[:]
b = xo.Float64[:]
c = xo.Float64[:]
s = xo.Float64

ctx = xo.ContextCpu() # CPU
ctx = xo.ContextCupy() # GPU

obj = DataStructure(_context=ctx,
a=[1,2,3], b=[4,5,6],
c=[0,0,0], s=0)

52

A C function that can be parallelized when running
on GPU is called "Kernel".

src = '''
/*gpukern*/
void myprod(DataStructure ob, int nelem){

for (int ii=0; ii<nelem; ii++){ //vectorize_over ii nelem
double a_ii = DataStructure_get_a(ob, ii);
double b_ii = DataStructure_get_b(ob, ii);
double c_ii = a_ii * b_ii;
DataStructure_set_c(ob, ii, c_ii);

}//end_vectorize
}
'''

Example: C function that computes obj.c = obj.a * obj.b

Xobjects – writing cross-platform C code

From before
class DataStructure(xo.Struct):

a = xo.Float64[:]
b = xo.Float64[:]
c = xo.Float64[:]
s = xo.Float64

ctx = xo.ContextCpu() # CPU
ctx = xo.ContextCupy() # GPU

obj = DataStructure(_context=ctx,
a=[1,2,3], b=[4,5,6],
c=[0,0,0], s=0)

53

A C function that can be parallelized when running
on GPU is called "Kernel".

The Xobjects context compiles the function from python:

ctx.add_kernels(
sources=[src],
kernels={'myprod': xo.Kernel(

args = [xo.Arg(DataStructure, name='ob'),
xo.Arg(xo.Int32, name='nelem')],

n_threads='nelem')
})

src = '''
/*gpukern*/
void myprod(DataStructure ob, int nelem){

for (int ii=0; ii<nelem; ii++){ //vectorize_over ii nelem
double a_ii = DataStructure_get_a(ob, ii);
double b_ii = DataStructure_get_b(ob, ii);
double c_ii = a_ii * b_ii;
DataStructure_set_c(ob, ii, c_ii);

}//end_vectorize
}
'''

Example: C function that computes obj.c = obj.a * obj.b

Xobjects – writing cross-platform C code

From before
class DataStructure(xo.Struct):

a = xo.Float64[:]
b = xo.Float64[:]
c = xo.Float64[:]
s = xo.Float64

ctx = xo.ContextCpu() # CPU
ctx = xo.ContextCupy() # GPU

obj = DataStructure(_context=ctx,
a=[1,2,3], b=[4,5,6],
c=[0,0,0], s=0)

The kernel can be easily called from Python and is executed on CPU or GPU based on the context:

obj.a contains [3., 4., 5.] , obj.b contains [4., 5., 6.]
ctx.kernels.myprod(ob=obj, nelem=len(obj.a))
obj.c contains [12., 20., 30.]

(Comments in red are Xobjects annotation, defining how to parallelize the code on GPU)

/*gpukern*/ void myprod(DataStructure ob, int nelem){

for (int ii=0; ii<nelem; ii++){ //vectorize_over ii nelem

double a_ii = DataStructure_get_a(ob, ii);
double b_ii = DataStructure_get_b(ob, ii);
double c_ii = a_ii * b_ii;
DataStructure_set_c(ob, ii, c_ii);

}//end_vectorize
}

void myprod(DataStructure ob, int nelem){

for (int ii=0; ii<nelem; ii++){ //autovectorized

double a_ii = DataStructure_get_a(ob, ii);
double b_ii = DataStructure_get_b(ob, ii);
double c_ii = a_ii * b_ii;
DataStructure_set_c(ob, ii, c_ii);

}//end autovectorized
}

__kernel void myprod(DataStructure ob, int nelem){

int ii; //autovectorized
ii=get_global_id(0); //autovectorized

double a_ii = DataStructure_get_a(ob, ii);
double b_ii = DataStructure_get_b(ob, ii);
double c_ii = a_ii * b_ii;
DataStructure_set_c(ob, ii, c_ii);

//end autovectorized
}

Xobjects – code specialization

Before compiling, Xobjects specializes the code for the chosen computing platform.

• Specialization and compilation of the C code are done at runtime through Python,
right before starting the simulation→ gives a lot of flexibility

Code written by the user

Code specialized for CPU Code specialized for GPU (OpenCL)

/*gpukern*/ void myprod(DataStructure ob, int nelem){

for (int ii=0; ii<nelem; ii++){ //vectorize_over ii nelem

double a_ii = DataStructure_get_a(ob, ii);
double b_ii = DataStructure_get_b(ob, ii);
double c_ii = a_ii * b_ii;
DataStructure_set_c(ob, ii, c_ii);

}//end_vectorize
}

void myprod(DataStructure ob, int nelem){

for (int ii=0; ii<nelem; ii++){ //autovectorized

double a_ii = DataStructure_get_a(ob, ii);
double b_ii = DataStructure_get_b(ob, ii);
double c_ii = a_ii * b_ii;
DataStructure_set_c(ob, ii, c_ii);

}//end autovectorized
}

__global__ void myprod(DataStructure ob, int nelem){
int ii; //autovectorized
ii=blockDim.x * blockIdx.x + threadIdx.x; //au
if (ii<nelem){

double a_ii = DataStructure_get_a(ob, ii);
double b_ii = DataStructure_get_b(ob, ii);
double c_ii = a_ii * b_ii;
DataStructure_set_c(ob, ii, c_ii);

}//end autovectorized
}

Xobjects – code specialization

Before compiling, Xobjects specializes the code for the chosen computing platform.

• Specialization and compilation of the C code are done at runtime through Python,
right before starting the simulation→ gives a lot of flexibility

Code written by the user

Code specialized for CPU Code specialized for GPU (Cuda)

Outline

• Introduction to Xsuite

o Motivation

o Requirements

o Design choices

o Architecture

o Development status

o Documentation and developer's resources

• Usage examples

o Single-particle tracking

o Import an existing lattice

o Collective elements

o PyHEADTAIL interface

• Checks and first applications

• A look under the hood (optional)

o Multiplatform programming with Xobjects

o Summary

