Status of collimation tracking code development for FCC-ee

A. Abramov, R. Bruce, F. Carlier, M. Hofer, L. Nevay, S. Redaelli

FCCIS WP2 Workshop - 01/12/2021

Many thanks for discussions and input to:

M. Boscolo, H. Burkhard, T. Charles, M. Hofer, G. Iadarola, M. Migliorati, J. Molson, M. Moudgalya, T. Persson, T. Pieloni, G. Roy, L. Van Riesen-Haupt, S. White, F. Zimmermann

Simulation tools

- Tracking studies are essential for designing a collimation system
- Effects such as synchrotron radiation and optics tapering make the tracking studies more challenging for the FCC-ee
- The requirements for collimation simulation tools are:
 - Tracking of beam electrons (and positrons) in the magnetic lattice
 - Particle-matter interactions inside the collimators
 - Accurate and efficient tracking over many turns
 - Radiation damping and optics tapering
 - Beam-beam effects
- Studied several different simulation tools:
 - MAD-X, SixTrack-FLUKA coupling, BDSIM, Merlin++, pyAT, Xtrack
 - Alternatives not studied so far: SAD, BMAD, ELEGANT, MDISim, others...

Simulation tools

No framework that currently has the requirements for collimation

- There is an EPFL-CERN collaboration (F. Carlier, T. Pieloni) to develop a comprehensive beam dynamics simulation framework for the FCC-ee (talk F. Carlier, talk T. Pieloni)
- Collimation developments focus on a connection between a tracker and a physics engine

Code	6D symplectic tracking	Synchrotron radiation	Tapering (lattice)	Geant4 integration	FLUKA integration	Speed	Aperture modelling	
MAD-X								
SixTrack								
BDSIM								
Merlin++								
руАТ				*				
xTrack		*		*				
	Ν	ot available		Partial av	ailability		Available ★ =	in developn

• PyAT is a promising tracking tool for the FCC-ee

- First used for FCC-ee by M. Rakic at EPFL
- Demonstrated tracking with radiation and tapering and an acceptable computational efficiency
- Straightforward to work with

Latest developments

- An option for per-element quantum excitation (S. White)
- Loss map features enabled apertures and loss recording
- New features in MAD-X -> pyAT converter (F. Carlier)
 - Apertures translated
 - Collimator lattice element introduced
- Developments for collimation
 - Need to include scattering in the collimators
 - Currently working on a connection to Geant4 for collimators

Distribution of 10³ particles after 10³ turns, ideal Higgs lattice (120 GeV)

Xtrack

- New tracking tool, part of the Xsuite project (talk by G. ladarola) https://xsuite.readthedocs.io/en/latest/
 - Developed by R. De Maria and G. ladarola
 - Designed to consolidate multiple beam dynamics studies at CERN
 - Python on the top level, auto-generated C and extensions for performance-critical tasks
 - Multi-platform, compatible with CPU and GPU PyHEADTAIL
 - Rapid development
 - Documentation, tests
 - Working with G. ladarola on an interface to Geant4 for collimation
 - Planned to also interface with K2 and FLUKA

G. ladarola https://indico.cern.ch/event/1070294/contributions/4500628/attachments/2305233/3921762/021_Xsuite.pdf

FCCIS WP2 Workshop 2021

⁽⁵⁾ Porting K2 scattering and Fluka coupling

is under development (F. Van Der Veken, P. Hermes)

15

Collimation in Geant4 – general principle

- Only collimators in the Geant4 world, with particle transfer mechanisms (like the SixTrack-FLUKA coupling)
- Same general workflow, regardless of the tracking code connected:
 - 1. Define all collimators
 - 2. Select a collimator and add particles
 - 3. Run the physical interaction simulation
 - 4. Return eligible particles
- Need to define interfaces for communication between the codes involved

Steps 2 - 4 are repeated for every collimator pass

Python bindings for Geant4

- Existing general interface to Geant4 (BDSIM) for collimation (L. Nevay).
- Build upon the existing code and add a Python wrapper
 - Dedicated C++ classes for interfacing with tracking codes
 - Python bindings via pybind11
 - Direct and dynamic communication at runtime
- The result is collimasim a Python package running Geant4. https://gitlab.cern.ch/anabramo/collimasim

Integration with pyAT

Implemented a connection with pyAT

- Custom integrator (pass method) prepared for pyAT
- Workflow developed to prepare collimation studies

Current limitations

- Secondary particles are not tracked
- Only rectangular block jaw collimators supported

Testing the pyAT-Geant4 coupling

- Use the collimation setup from FCC week 2021:
 - ttbar mode (182.5 GeV), beam 1 (positron)
 - Two-stage collimation system in IRF
 - 1 µm impact parameter pencil beam
 - 1 sigma beam in the vertical, nominal vertical emittance
 - 30 GeV energy cut
 - No radiation and tapering
 - Not the latest optics and aperture model

• Compare against the SixTrack-FLUKA coupling

- The same beam distribution is used for both cases
- 5e6 particles in SixTrack and 1e6 particles in pyAT

Halo collimation system in IRF

Collimator	Type	Plane	Opening $[\sigma]$
TCP.A.B1	Prim.	Н	10
TCP.B.B1	Prim.	V	80
TCS.B1.B1	Sec.	V	89.5
TCS.A1.B1	Sec.	Н	11.5
TCS.A2.B1	Sec.	Н	11.5
TCS.B2.B1	Sec.	V	89.5

Collimator settings

FCC week talk:

https://indico.cern.ch/event/995850/contributions/4410113/

Aperture definition

- Aperture model:
 - FCC week (older) aperture model (M. Moudgalya)
 - 35 mm circular aperture in the arcs
 - 15 mm experimental beampipe, no SR masks
- pyAT aperture
 - Translated from MAD-X by F. Carlier's converter.
 - Nearest neighbour interpolation for all elements.
- SixTrack aperture:
 - Exported from MAD-X.
 - Linear interpolation in 10 cm intervals.

Aperture definition caveats

- pyAT
 - Thick elements in lattice splitting only during integration
 - The aperture is defined as an element attribute and checked at entrance and exit
 - Only element id where the loss occurred is recoded

- SixTrack
 - Thin lenses and dedicated aperture markers in the lattice
 - Aperture can be interpolated additional markers (usually every 10 cm)
 - Drift back-tracking for an improved loss precision

New pyAT aperture definition

- New method for splitting the lattice elements proposed by S. White
- After a few manipulations, the aperture model is closer to SixTrack
- Only nearest neighbour interpolation and no backtracking

New pyAT aperture definition

- The new aperture definition gives a much better resolution of the losses
- The loss maps are directly comparable with ones from SixTrack
- The tracking speed is severly impacted (factor 10 slower), but it is not a showstopper

Transverse loss coordinates along the whole ring for 10,000 particles

Collimator leakage comparison

- Spectra of primary e+ and secondary e+/ecompared (<u>no other secondary particles</u>)
- The leakage from BDSIM has no secondary e+/e- as pyAT can't track them
- Found good agreement between FLUKA and BDSIM for the 30 GeV cut used

Loss map comparison

Loss map comparison

- The agreement between pyAT-Geant4 and SixTrack-FLUKA is significantly improved after the latest developments
- Discrepancies still remain
 - Large losses are observed in pyAT around IPG, which are not seen in SixTrack
 - The losses around the ring are slightly higher in pyAT
- To check:
 - Investigate the effects of the different aperture interpolation
 - Compare tracking and optical functions for the current model
 - Check the loss map normalization in pyAT
- Tracking studies with radiation and tapering to follow

Summary

Development of collimation simulations

- pyAT and Xtrack were selected as the most promising tracking codes
- Status of pyAT collimation developments
 - A Python interface to BDSIM (Geant4) for particle-matter interactions inside the collimators was developed, to enable multi-turn tracking studies
 - Testing and validation with comparisons to SixTrack-FLUKA
- Status of Xtrack collimation developments:
 - Interface to Geant4 implemented, similar to pyAT
 - Benchmarks being set up now
 - Other developments in ABP, such as synchrotron radiation

Future work for the simulations

- Discussions between ABP collimation team and FLUKA team to develop a FLUKA integration with Xtrack and pyAT for collimation
- Integrate the collimation models with other studies, such as MDI-related activities
- Include errors, imperfections, and misalignments into the collimation models
- Investigate the options for including beam-beam effects, including Beamstrahlung (discussions ABP, EPFL, MDI team)

Thank you!

Collimator leakage comparison

- Spectra of primary e+ and secondary e+/e- compared (no other particles)
- Secondary e+/e- now included in BDSIM for comparison, although not tracked in pyAT

⊳ 10-

7 10-4 Double Long

 10^{-6}

10⁻¹

₿ 10⁻³

-12.0

BDSIM 30.00 GeV cut (with secondaries)

-11.5

-11.0

2.0

2.0

*second jaw in overflow bin to improve visibility

-9.5

-9.0

-8.5

-8.0

-10.5

-10.0

x [mm]