BE

Wethodical Accelerator Design

Overview of "Next Generation"
FCCIS WP2 - GERNE

Laurent Deniau
CERINBEE/ABP

1si December 2021

MAD-NG objectives

- Long term design: easy to use and extend.
\Rightarrow Flexible language \ln fast, simple, and general purpose scripting language.
- $\sim 70 \%$ of the code is written in the scripting language, $\sim 30 \%$ in C .
\Rightarrow Flexible technologies ${ }^{\|+\infty}$ self-contained, all-in-one and modular.
- single application, no dependencies (except Gnuplot for plotting).
\Rightarrow Efficient \& Portable technologies
- same results everywhere (LNX, OSX, WIN), extensive unit tests (>8000).
- fast and extremely simple Foreign Function Interface to C, C++, Fortran, etc...
- 6D PTC physics using GTPSA (for DA) and symplectic integrators.
- slicing, combined physics, combined elements, support/development for extensions is easy...
- Development open source.
\Rightarrow GitHub https://github.com/MethodicalAcceleratorDesign/MAD
\Rightarrow License GPL V3, User manual (~180p, covers <20\%), Programmer Manual (29p).

MAD-NG objectives

- Long term design: easy to use and extend.
\Rightarrow Flexible language \ln fast, simple, and general purpose scripting language.
- $\sim 70 \%$ of the code is written in the scripting language, $\sim 30 \%$ in C .
\Rightarrow Flexible technologies mm self-contained, all-in-one and modular.
- single application, no dependencies (except Gnuplot for plotting).
\Rightarrow Efficient \& Portable technologies
- same results everywhere (LNX, OSX, WIN), extensive unit tests (>8000).
- fast and extremely simple Foreign Function Interface to C, C++, Fortran, etc...
- 6D PTC physics using GTPSA (for DA) and symplectic integrators.
- slicing, combined physics, combined elements, support/development for extensions is easy...
o Development open source.
\Rightarrow GitHub https://github.com/MethodicalAcceleratorDesign/MAD
\Rightarrow License GPL V3, User manual (~180p, covers <20\%), Programmer Manual (29p).

MAD-NG schematic layout

- Built from the start as a platform to develop \& benchmark physics.
\Rightarrow Everything is accessible, modifiable and extensible by users from scripts (e.g. even at runtime).

MAD-NG ecosystem

Beams
Department

Legend			
A exposes B	A is- a	B	
A	A uses B		
		Done	Dev

MAD-NG ecosystem

Beams
Department

MAD-NG ecosystem

Beams
Department

Legend	exposes B	A is- a	B		
A	A uses B	Objects Commands	Done	Dev	Todo

MAD-NG ecosystem

$\mathrm{A} \stackrel{\text { exposes } B}{\longrightarrow}$	$\begin{gathered} A \text { is-a } B \\ A \cdots \cdots \end{gathered}$	$A \xrightarrow{A \text { uses } B} B$	Objects	Commands	Geo/LinAlg	Done	Dev	Todo

MAD-NG ecosystem

A	$\begin{gathered} A \text { is-a } B \\ A \cdots \cdots \end{gathered}$	$A \xrightarrow{A \text { uses } B} B$	Objects	Commands	Geo/LinAlg	Dyn/DiffAlg	Done	Dev	Todo

SPS: LINE = (6*SUPER);
SPS: LINE = (6*SUPER);
SUPER: LINE = (7*P44,INSERT,7*P44);
SUPER: LINE = (7*P44,INSERT,7*P44);
INSERT: LINE = (P24,2*P00,P42);
INSERT: LINE = (P24,2*P00,P42);
P00: LINE = (QF,DL,OD,DL);
P00: LINE = (QF,DL,OD,DL);
P24: LINE = (QF,DM,2*B2,DS,PD);
P24: LINE = (QF,DM,2*B2,DS,PD);
P42: LINE = (PF,QD,2*B2,DM,DS);
P42: LINE = (PF,QD,2*B2,DM,DS);
P44: LINE = (PF,PD);
P44: LINE = (PF,PD);
PD: LINE = (QD,2*B2,2*B1,DS);
PD: LINE = (QD,2*B2,2*B1,DS);
PF: LINE = (QF,2*B1,2*B2,DS);
PF: LINE = (QF,2*B1,2*B2,DS);

pf	bline \{qf, $2 * \mathrm{~b} 1,2 * \mathrm{~b} 2, \mathrm{ds}$ \}
pd	$=\mathrm{bline}\{\mathrm{qd,2*b2,2*b1,ds} \mathrm{\}}$
p24	$=\mathrm{bline}\{\mathrm{qf}, \mathrm{dm}, 2 * \mathrm{~b} 2, \mathrm{ds}, \mathrm{pd}\}$
p42	$=\mathrm{bline}\{\mathrm{pf}, \mathrm{qd}, 2 * \mathrm{~b} 2, \mathrm{dm}, \mathrm{ds}$ \}
p00	$=\mathrm{bline}$ \{qf,dl,qd,dl\}
p44	= bline $\{\mathrm{pf}, \mathrm{pd}\}$
insert	$=$ bline $\{\mathrm{p} 24,2 * p 00, \mathrm{p} 42\}$
super	$=$ bline \{7*p44,insert,7*p44\}
SPS	$=$ sequence 'SPS' \{6*super\}

SPS in MAD-NG

Sequences \& elements

- Lattices definition as in MAD-X (syntax is very close)
\Rightarrow sequences are both containers (e.g. access elements) and table (store arbitrary objects).
- e.g. to store their beam or their own list of knobs.
\Rightarrow elements are both containers (e.g. access attributes) and table (store arbitrary objects).
\Rightarrow sequence can include subsequences, beam lines and elements (and subelements).
\Rightarrow operator overloading (+, -, *) allows to mix lines and sequences descriptions arbitrarily.
\Rightarrow names are optional and can be non-unique with support for relative or absolute counts.
- positions 'AT' can be absolute or relative 'FROM' names with absolute or relative counts.

Sequences \& elements

- Lattices definition as in MAD-X (syntax is very close)
\Rightarrow sequences are both containers (e.g. access elements) and table - e.g. to store their beam or their own list of knobs.
\Rightarrow elements are both containers (e.g. access attributes) and table (store arbitrary objects).
\Rightarrow sequence can include subsequences, beam lines and elements (and subelements).
\Rightarrow operator overloading (+, -, *) allows to mix lines and sequences descriptions arbitrarily.
\Rightarrow names are optional and can be non-unique with support for relative or absolute counts.
- positions 'AT' can be absolute or relative 'FROM' names with absolute or relative counts.

Sequences \& elements

Beams Department

- Lattices definition as in MAD-X (syntax is very close)
\Rightarrow sequences are both containers (e.g. access elements) and table - e.g. to store their beam or their own list of knobs.
\Rightarrow elements are both containers (e.g. access attributes) and table (store arbitrary objects).
\Rightarrow sequence can include subsequences, beam lines and elements (and subelements).
\Rightarrow operator overloading (+, -, *) allows to mix lines and sequences descriptions arbitrarily.
\Rightarrow names are optional and can be non-unique with support for relative or absolute counts.
- positions 'AT' can be absolute or relative 'FROM' names with absolute or relative counts.
- Manage arbitrary number of sequences to allow simulation of entire accelerators complex.
\Rightarrow Shared sequences, e.g. LHCB1 and LHCB2.
- provides few sharing policies.
\Rightarrow Chained sequences, e.g. PSB, PS, SPS and BTL.

\Rightarrow Conditionally chained sequences (e.g. RaceTrack).
- e.g. Booster
- based on special s-link element
- connections and conditions are performed through an arbitrary user-defined function.

Sequences conversion (MAD-X to MAD)

- MAD-NG loads and convert MAD-X sequences, elements and variables, including deferred expressions, on-the-fly into the MADX environment (a MAD-NG context that emulates MAD-X global workspace) and/or save conversion to files.

```
! convert MAD-X files on need, save to MAD file (disk), load to MADX environment (memory)
MADX:load('lhc_as-built.seq' , 'lhc_as-built.mad')
MADX:load('opticsfile.22_ctpps2' , 'opticsfile.22_ctpps2.mad')
MADX:load("FCCee_z_213_nosol_18.seq", "FCCee_z_213_nosol_18.mad")
```


Sequences conversion (MAD-X to MAD)

- MAD-NG loads and convert MAD-X sequences, elements and variables, including deferred expressions, on-the-fly into the MADX environment (a MAD-NG context that emulates MAD-X global workspace) and/or save conversion to files.

```
! convert MAD-X files on need, save to MAD file (disk), load to MADX environment (memory)
MADX:load('lhc_as-built.seq' , 'lhc_as-built.mad')
MADX:load('opticsfile.22_ctpps2' , 'opticsfile.22_ctpps2.mad')
MADX:load("FCCee_z_213_nosol_18.seq", "FCCee_z_213_nosol_18.mad")
```

- MAD-NG embeds technologies to parse arbitrary language that can be described with PEG (parser expression grammar) to generate AST (abstract syntax tree), and apply transformations and/or evaluations.

(e.g. MAD-X dictionary \& tables columns)

Sequences conversion (MAD-X to MAD)

- MAD-NG loads and convert MAD-X sequences, elements and variables, including deferred expressions, on-the-fly into the MADX environment (a MAD-NG context that emulates MAD-X global workspace) and/or save conversion to files.

```
! convert MAD-X files on need, save to MAD file (disk), load to MADX environment (memory)
MADX:load('lhc_as-built.seq' , 'lhc_as-built.mad')
MADX:load('opticsfile.22_ctpps2' , 'opticsfile.22_ctpps2.mad')
MADX:load("FCCee_z_213_nosol_18.seq", "FCCee_z_213_nosol_18.mad")
```

- MAD-NG embeds technologies to parse arbitrary language that can be described with PEG (parser expression grammar) to generate AST (abstract syntax tree), and apply transformations and/or evaluations.

Sequences conversion (MAD-X to MAD)

- MAD-NG loads and convert MAD-X sequences, elements and variables, including deferred expressions, on-the-fly into the MADX environment (a MAD-NG context that emulates MAD-X global workspace) and/or save conversion to files.

```
! convert MAD-X files on need, save to MAD file (disk), load to MADX environment (memory)
MADX:load('lhc_as-built.seq' , 'lhc_as-built.mad')
MADX:load('opticsfile.22_ctpps2' , 'opticsfile.22_ctpps2.mad')
MADX:load("FCCee_z_213_nosol_18.seq", "FCCee_z_213_nosol_18.mad")
```

- MAD-NG embeds technologies to parse arbitrary language that can be described with PEG (parser expression grammar) to generate AST (abstract syntax tree), and apply transformations and/or evaluations.

- MAD-NG allows to run MAD-X as a module to convert sequences, elements and variables into MADX environment as with CpyMad. But this method does not propagate the deferred expressions, i.e. lattice logic is lost (fine for a "static" description). Could be propagated with some extra work.


```
plot {
    sequence = {lhcb1,lhcb2},
    laypos = "in",
    layonly = false,
    title = "Layout in plot",
    prolog = 'set size ratio -1',
    scrdump = "plotlhc.gp",
}
```

MAD-X loads the entire (2 beamlines, 30000 lines)

MAD-NG loads the entire LHC in MAD-X format and saved it in files in $\sim 1 \mathrm{~s}$.

MAD-NG loads the entire LHC from converted files (.mad files) in $\sim 0.2 \mathrm{~s}$.

Gnuplot script (.gp files) size is 5 MB \& $125000+$ lines and takes ~ 1 sec to display.

All items are tagged i.e. moving the mouse over show their name and kind


```
plot {
    sequence = { lhcb1, lhcb2, lhcb1, lhcb2 },
    range = {
        {"E.DS.L1.B1","S.DS.R1.B1"},{"E.DS.L1.B2","S.DS.R1.B2"},
            {"E.DS.L5.B1","S.DS.R5.B1"},{"E.DS.L5.B2","S.DS.R5.B2"},
    },
    laydisty = {
        lhcb2["E.DS.L1.B2"].mech_sep, ! second bline
        -0.4, ! third bline
        -0.4 + lhcb2['E.DS.L5.B2'].mech_sep ! fourth bline
    },
    title = "IP1-IP5 two angled beams",
}
```



```
plot {
    sequence = { lhcb1, lhcb2, lhcb1, lhcb2 },
    range = {
        {"E.DS.L1.B1","S.DS.R1.B1"},{"E.DS.L1.B2","S.DS.R1.B2"},
            {"E.DS.L5.B1","S.DS.R5.B1"},{"E.DS.L5.B2","S.DS.R5.B2"},
    },
    laydisty = {
        lhcb2["E.DS.L1.B2"].mech_sep, ! second bline
        -0.4, ! third bline
        -0.4 + lhcb2['E.DS.L5.B2'].mech_sep ! fourth bline
    },
    title = "IP1-IP5 two angled beams",
}
```

Department

Track plot (LHCB1 around IP5)

Layout in plot with β_{x}

Element tracking: slices, actions \& frames

Beams
Department

Backward tracking

Element tracking: slices, actions \& frames

Beams
Department

Forward tracking
Backward tracking

Element tracking: slices, actions \& frames

Beams
Department

Forward tracking
Backward tracking

Element tracking: slices, actions \& frames

Beams
Department

Forward tracking
Backward tracking

Element tracking: slices, actions \& frames

Beams
Department

Forward tracking
Backward tracking

Element tracking: slices, actions \& frames

Beams
Department

Element tracking: slices, actions \& frames


```
atentry(elm, m, sdir, -1)
mis (elm, m, sdir)
rot (tlt, m, sdir)
fringe (elm, m, sdir)
track (elm, m, 1 , thick, thin)
fringe (elm, m, -sdir)
rot (tlt, m, -sdir)
mis (elm, m, -sdir)
atexit (elm, m, -sdir, -2)
```


- Misalignments (element to sequence) restore the frame on exit.

Permanent misalignments (element property) don't (i.e. patches).
Survey can consider misalignments (user-policy) for superposition inside elements.

Survey: sbend tilted by $90^{\circ}-$ dphil 15° dy 0.1 m

Survey: sbend tilted by 90° - dphil 15° dy 0.1 m

x, y with misalignments, $x r, y r$ reference frame without misalignment

Survey: sbend tilted by 90° - dphil 15° dy 0.1 m

x, y with misalignments, $x r$, $y r$ reference frame without misalignment

$\mathrm{BE}^{\text {Beams }}$
Department

Tracking actions (Survey, Track, Coifid and Twiss)

- Actions are functions (or objects with function-like semantic).
\Rightarrow MAD-NG functions are first class lexical closures (fun \& env) and can do everything...
- i.e. high order functions that can receive and return multiple arguments.
\Rightarrow actions kinds: atentry, atslice, atexit, ataper, atsave.
\Rightarrow mechanism to customise or extend other commands (e.g. Twiss with Track and Cofind).

Tracking actions (Survey, Track, Cofind and Twiss)

- Actions are functions (or objects with function-like semantic).
\Rightarrow MAD-NG functions are first class lexical closures (fun \& env) and can do everything...
- i.e. high order functions that can receive and return multiple arguments.
\Rightarrow actions kinds: atentry, atslice, atexit, ataper, atsave.
\Rightarrow mechanism to customise or extend other commands (e.g. Twiss with Track and Cofind).
- Actions can be combined with combinators (and selectors).
\Rightarrow chain $\left(f_{1}, f_{2}\right) \quad$ Int $f_{1}()$; return $f_{2}()$.
$\Rightarrow \operatorname{achain}\left(f_{1}, f_{2}\right)$ return $f_{1}()$ and $f_{2}()$.
\Rightarrow ochain($\left.f_{1}, f_{2}\right)$ "
\Rightarrow compose(f_{1}, f_{2}) mer return $f_{1}\left(f_{2}()\right)$.
\Rightarrow ftrue, ffalse, fnone.

Tracking actions (Surveys, Track, Cofind and Twiss)

- Actions are functions (or objects with function-like semantic).
\Rightarrow MAD-NG functions are first class lexical closures (fun \& env) and can do everything...
- i.e. high order functions that can receive and return multiple arguments.
\Rightarrow actions kinds: atentry, atslice, atexit, ataper, atsave.
\Rightarrow mechanism to customise or extend other commands (e.g. Twiss with Track and Cofind).
- Actions can be combined with combinators (and selectors).
$\Rightarrow \operatorname{chain}\left(\mathrm{f}_{1}, \mathrm{f}_{2}\right) \quad$ it* $\mathrm{f}_{1}()$; return $\mathrm{f}_{2}()$.
$\Rightarrow \operatorname{achain}\left(f_{1}, f_{2}\right)$ return $f_{1}()$ and $f_{2}()$.
\Rightarrow ochain($\left.f_{1}, f_{2}\right)$ IIt return $f_{1}()$ or $f_{2}()$.
\Rightarrow compose(f_{1}, f_{2}) mer return $f_{1}\left(f_{2}()\right)$.
\Rightarrow ftrue, ffalse, fnone.
- Actions can be selected by selectors:
- Selectors are functions to enable/disable actions based on some particular criteria e.g. slices number or any other user-defined criteria.
predefined selectors: atall, atentry, atbegin, atbody, atbound, atend, atexit, atmid, atins, atstd, actionat, action.
- Actions are functions (or objects with function-like semantic).
\Rightarrow MAD-NG functions are first class lexical closures (fun \& env) and can do everything...
- i.e. high order functions that can receive and return multiple arguments.
\Rightarrow actions kinds: atentry, atslice, atexit, ataper, atsave.
\Rightarrow mechanism to customise or extend other commands (e.g. Twiss with Track and Cofind).
- Actions can be combined with combinators (and selectors).
\Rightarrow chain $\left(f_{1}, f_{2}\right) \quad$ Int $f_{1}()$; return $f_{2}()$.
$\Rightarrow \operatorname{achain}\left(f_{1}, f_{2}\right)$ return $f_{1}()$ and $f_{2}()$.
\Rightarrow ochain $\left(f_{1}, f_{2}\right)$ return $f_{1}()$ or $f_{2}()$.
\Rightarrow compose(f_{1}, f_{2}) mer return $f_{1}\left(f_{2}()\right)$.
\Rightarrow ftrue, ffalse, fnone.
- Actions can be selected by selectors:
\Rightarrow Selectors are functions to enable/disable actions based on some particular criteria e.g. slices number or any other user-defined criteria.
predefined selectors: atall, atentry, atbegin, atbody, atbound, atend, atexit, atmid, atins, atstd, actionat, action.
- Actions are triggered by tracking codes (Survey and Track).
\Rightarrow actions are chained so they are independent from each other.
\Rightarrow default for ataper: check for aperture at slice 0 (titled frame).
\Rightarrow default for atsave: save data at exit (reference frame),
and at slices (titled frame) if atslice $=$ ftrue .
- Actions are functions (or objects with function-like semantic).
- MAD-NG functions are first class lexical closures (fun \& env) and can do everything...
- i.e. high order functions that can receive and return multiple arguments.
\Rightarrow actions kinds: atentry, atslice, atexit, ataper, atsave.
\Rightarrow mechanism to customise or extend other commands (e.g. Twiss with Track and Cofind).
- Actions can be combined with combinators (and selectors).
$\Rightarrow \operatorname{chain}\left(\mathrm{f}_{1}, \mathrm{f}_{2}\right) \quad$ u* $\mathrm{f}_{1}()$; return $\mathrm{f}_{2}()$.
$\Rightarrow \operatorname{achain}\left(f_{1}, f_{2}\right) \quad$ return $f_{1}()$ and $f_{2}()$.
\Rightarrow ochain $\left(f_{1}, f_{2}\right) \quad$ return $f_{1}()$ or $f_{2}()$.
\Rightarrow compose($\left.f_{1}, f_{2}\right)$ "
\Rightarrow ftrue, ffalse, fnone.
- Actions can be selected by selectors:
\Rightarrow Selectors are functions to enable/disable action

Actions are a powerful tool to extend tracking codes (survey and track). E.g. connect sequences (or beams) together; replace, extend or wrap computations; add extra physics between multi-particules or damaps, e.g. slices number or any other user-defined crit
atbound, atend, atexit,
predefined selectors: atall, atentry, atbegin, atbody, atbou
atmid, atins, atstd, actionat, action.

- Actions are triggered by tracking codes (Survey and Track).
\Rightarrow actions are chained so they are independent from each other.
\Rightarrow default for ataper: check for aperture at slice 0 (titled frame).
\Rightarrow default for atsave: save data at exit (reference frame),
Order of execution at each slice

atslice = ftrue
atbegin and ataper
and ataper (user)
atsave (track)
and atsave (twiss)
and atsave (user)

and at slices (titled frame) if atslice $=$ ftrue.

Track in "depth" : user-defined possible extensions

BE

Sequence
Element
Integrator
Maps

Track in "depth" : user-defined possible extensions

Track in "depth" : user-defined possible extensions

Track in "depth" : user-defined possible extensions

Integrator

Track in "depth" : user-defined possible extensions

Sequence

Maps

Track in "depth" : user-defined possible extensions

BE

Sequence
build mflow
and mtable
run track
main loop

Track in "depth" : user-defined possible extensions

Sequence

Track in "depth" : user-defined possible extensions

Sequence
Track
build mflow
and mtable

Track in "depth" : user-defined possible extensions

Sequence

Track in "depth" : user-defined possible extensions

Sequence

Track in "depth" : user-defined possible extensions

Physics can be parametrised and/or configured by element attributes and commands attributes

Track in "depth" : user-defined possible extensions

Physics can be parametrised and/or configured by element attributes and commands attributes

Physics can be extended by creating new element or modifying existing element or subelements track method (object oriented approach)

Track in "depth" : user-defined possible extensions

Physics can be parametrised and/or configured by element attributes and commands attributes

Physics can be extended by creating new element or modifying existing element or subelements track method (object oriented approach)

> Physics can be extended by providing extra integration methods e.g. 3D field maps.

Track in "depth" : user-defined possible extensions

Physics can be parametrised and/or

 configured by element attributes and commands attributesPhysics can be extended by creating new element or modifying existing element or subelements track method (object oriented approach)

Physics can be extended by providing new maps or actions e.g. strong beam-beam (functional approach)

> Physics can be extended by providing extra integration methods e.g. 3D field maps.

Track in "depth" : user-defined possible extensions

Sequence

Maps

Physics can be extended by providing new maps or actions e.g. strong beam-beam (functional approach)

Physics can be extended by creating new element or modifying existing element or subelements track method (object oriented approach)

> Physics can be extended by providing extra integration methods
> e.g. 3D field maps.

MAD-NG physics I

MAD-NG physics I

- 6D PTC physics using GTPSA (for DA) and symplectic integrators.
- slicing, combined physics \& elements, easy support for extensions, etc...
- x4-10 faster than PTC for TPSA tracking, x1-2 slower than MAD-X for most cases.

MAD-NG physics I

- 6D PTC physics using GTPSA (for DA) and symplectic integrators.
- slicing, combined physics \& elements, easy support for extensions, etc...
- x4-10 faster than PTC for TPSA tracking, x1-2 slower than MAD-X for most cases.
- Survey: geometrical tracking
- Survey supports multi-turns, ranged and step-by-step backtracking and reverse tracking. Return a Survey table and a Survey map flow (tracked context).
- fully compatible with Track for superposition and observable points (e.g. table output, smooth plots, slicing, actions, sub-elements, etc...)
- support exact misalignments and permanent misalignments, and patches.

MAD-NG physics I

- 6D PTC physics using GTPSA (for DA) and symplectic integrators.
- slicing, combined physics \& elements, easy support for extensions, etc...
- x4-10 faster than PTC for TPSA tracking, x1-2 slower than MAD-X for most cases.
- Survey: geometrical tracking
- Survey supports multi-turns, ranged and step-by-step backtracking and reverse tracking. Return a Survey table and a Survey map flow (tracked context).
- fully compatible with Track for superposition and observable points (e.g. table output, smooth plots, slicing, actions, sub-elements, etc...)
- support exact misalignments and permanent misalignments, and patches.
- Track: dynamical tracking
- Track supports multi-particles or multi-damaps, multi-turns, ranged and step-bystep backtracking and reverse tracking of charged particles to arbitrary DA order and arbitrary number of parameters (few thousands). Return a Track table and a Track map flow (tracked context).
- fully compatible with Survey for superposition and observable points (same tracking engine).
- support exact misalignments, permanent misalignments, multipoles \& field errors for all elements. Can be combined freely with patches.
- symplectic tracking up to 8th order on 5D (delta-p) and 6D (delta-rf) phase space (exact=true, time=true, totalpath e.g. for thick RF).
- provides true thick lens and thin lens tracking model, radiation with photons tracking (disabled in twiss), fringe fields (hard edge for all elements, including solenoid), mutable particles (multiple beams), exact patches (translations, rotations \& time-energy), 4D weak-strong beam-beam (sixtracklib), apertures (all kinds).
- may search for the closed orbit to support relative initial coordinates.

MAD-NG physics II

- Cofind: fix point search
- Newton-based optimiser running Track with 1st order DA map or 7 particles.
- support final coordinates translation.
- extend Track with actions.

MAD-NG physics II

- Cofind: fix point search
- Newton-based optimiser running Track with 1st order DA map or 7 particles.
- support final coordinates translation.
- extend Track with actions.
- Twiss: optics tracking
- runs Cofind (closed orbit) - Track (one-turn map) - Normal - Track (optics) - post processing.
- extend Track with actions to compute on-the-fly optics and fill twiss table (extended track table).
- support coupled optics, dispersions, tunes, chromaticities, synchrotron integrals, momentum compaction factor, phase slip factor, energy gamma transition, etc... support chrom option to compute chromatic derivatives of previous quantities (e.g. Montaigue functions).

MAD-NG physics II

- Cofind: fix point search
- Newton-based optimiser running Track with 1st order DA map or 7 particles.
- support final coordinates translation.
- extend Track with actions.
- Twiss: optics tracking
- runs Cofind (closed orbit) - Track (one-turn map) - Normal - Track (optics) - post processing.
- extend Track with actions to compute on-the-fly optics and fill twiss table (extended track table).
- support coupled optics, dispersions, tunes, chromaticities, synchrotron integrals, momentum compaction factor, phase slip factor, energy gamma transition, etc... support chrom option to compute chromatic derivatives of previous quantities (e.g. Montaigue functions).
- Match: highly configurable optimiser
- on the model of MAD-X use_macro approach, i.e. arbitrary user's setups \& runs.
- provides all kinds of local \& global, linear \& non-linear, optimiser (~ 20 algorithms).
- very flexible, highly configurable with many physics-oriented setups (not just a penalty-function to minimise).

MAD-NG physics II

Beams Department

- Cofind: fix point search
- Newton-based optimiser running Track with 1st order DA map or 7 particles.
- support final coordinates translation.
- extend Track with actions.
- Twiss: optics tracking
- runs Cofind (closed orbit) - Track (one-turn map) - Normal - Track (optics) - post processing.
- extend Track with actions to compute on-the-fly optics and fill twiss table (extended track table).
- support coupled optics, dispersions, tunes, chromaticities, synchrotron integrals, momentum compaction factor, phase slip factor, energy gamma transition, etc... support chrom option to compute chromatic derivatives of previous quantities (e.g. Montaigue functions).
- Match: highly configurable optimiser
- on the model of MAD-X use_macro approach, i.e. arbitrary user's setups \& runs.
- provides all kinds of local \& global, linear \& non-linear, optimiser (~ 20 algorithms).
- very flexible, highly configurable with many physics-oriented setups (not just a penalty-function to minimise).
- Correct: orbit correction
- provides few algorithms (e.g. SVD, Micado) to correct orbit using BPMs and Kickers. Supports many options.

MAD-NG physics II

Beams Department

- Cofind: fix point search
- Newton-based optimiser running Track with 1st order DA map or 7 particles.
- support final coordinates translation.
- extend Track with actions.
- Twiss: optics tracking
- runs Cofind (closed orbit) - Track (one-turn map) - Normal - Track (optics) - post processing.
- extend Track with actions to compute on-the-fly optics and fill twiss table (extended track table).
- support coupled optics, dispersions, tunes, chromaticities, synchrotron integrals, momentum compaction factor, phase slip factor, energy gamma transition, etc... support chrom option to compute chromatic derivatives of previous quantities (e.g. Montaigue functions).
- Match: highly configurable optimiser
- on the model of MAD-X use_macro approach, i.e. arbitrary user's setups \& runs.
- provides all kinds of local \& global, linear \& non-linear, optimiser (~ 20 algorithms).
- very flexible, highly configurable with many physics-oriented setups (not just a penalty-function to minimise).
- Correct: orbit correction
- provides few algorithms (e.g. SVD, Micado) to correct orbit using BPMs and Kickers. Supports many options.
- Normal: normal forms analysis (under validation)
- provides linear and non-linear parametric normal forms on DA map (used by twiss) to extract RDTs. Can be applied at observable points in Track to track RDTs, either on-the-fly with actions or through post processing of DA maps saved in Track table.

MAD-NG review

- Performed from Oct. 2020 to Mar. 2021.

MAD-NG review

- Performed from Oct. 2020 to Mar. 2021.
- Run simple studies on CERN machines and compare results vs MAD-X and MADX-PTC (listed in reverse time order, from last to first).
\Rightarrow Clic 380 GeV BDS optimisation (Andrii Pastushenko, 2 presentations)
- twiss, high order maps generation, beam size comparison.
\Rightarrow MAD-NG outlook for LHC and HL-LHC (Riccardo De Maria)
\Rightarrow MAD-NG in Gantries (Cedric Hernalsteens, not presented)
\Rightarrow Experience with FCC-ee Lattice in MAD-NG (Leon van Riesen-Haupt)
- linear optics, momentum detuning, amplitude detuning, radiation integrals.
\Rightarrow Experience for LHC coupling with MAD-NG (Tobias Persson).
- example in the next slide
\Rightarrow Experience of MAD-NG with the PS (Alexander Huschauer).
- linear optics, dispersions, tunes, chromaticities.
- exploration of model and integration methods.
\Rightarrow Translating MAD-X scripts to MAD-NG (Laurent Deniau).

MAD-NG studies - LHC coupling with param. maps

```
print("strengths before matching coupling correctors:")
print("sk1r=", MADX.sk1r)
print("sk2r=", MADX.sk2r)
print("sk3r=", MADX.sk3r)
print("sk4r=", MADX.sk4r)
local }\textrm{XO}=\mathrm{ damap {mo=2, nv=6, nk=4, ko=1,
    vn={'x','px','y','py','t','pt',
    'sk1r','sk2r','sk3r','sk4r'}}
-- set knobs: scalar + TPSA -> TPSA
MADX.sk1r = MADX.sk1r + X0.sk1r
MADX.sk2r = MADX.sk2r + X0.sk2r
MADX.sk3r = MADX.sk3r + X0.sk3r
MADX.sk4r = MADX.sk4r + X0.sk4r
local mjac = { ---> variables & knobs
    { var='x' ,'0010001','00100001','001000001','0010000001' }, --
    { var='x' ,'0001001','00010001','000100001','0001000001' }, --
    { var='px','0010001','00100001','001000001','0010000001' }, -- v
    { var='px','0001001','00010001','000100001','0001000001' }, -- constraints
}
status, fmin, ncall = match {
    command := track {sequence=lhcb1, X0=X0, observe=1, savemap=true},
```

Beams
print("strengths before matching coupling correctors:")
print("sk1r=", MADX.sk1r)
print("sk2r=", MADX.sk2r)
print("sk3r=", MADX.sk3r)
print("sk4r=", MADX.sk4r)
local $\mathrm{XO}=$ damap $\{\mathrm{mo}=2, \mathrm{nv}=6, \mathrm{nk}=4, \mathrm{ko}=1$,

$$
\begin{array}{r}
\text { vn=\{'x','px','y','py','t','pt', } \\
\text { 'sk1r','sk2r', 'sk3r','sk4r'\}\} }
\end{array}
$$

-- set knobs: scalar + TPSA -> TPSA
MADX.sk1r $=$ MADX.sk1r + X0.sk1r
MADX.sk2r $=$ MADX.sk $2 r+$ X0.sk2r
MADX.sk3r $=$ MADX.sk $3 r+$ X0.sk $3 r$
MADX.sk4r $=$ MADX.sk $4 r+$ X0.sk $4 r$
status, fmin, ncall = match \{
command := track \{sequence=lhcb1, $x 0=x 0$, observe=1, savemap=true\},
jacobian = \t,grd,jac => -- gradient not used, fill only jacobian jac:setrow(1..8, t['S.DS.L2.B1'].__map:getm(mjac)) jac:setrow(9..16, t['E.DS.L2.B1'].__map:getm(mjac)) end,
variables $=$ \{ rtol=1e-6, -- 1 ppm \{ name='sk1r', get $:=$ MADX.sk1r:get0(), set $=\backslash x$-> MADX.sk1r:set0(x) \}, \{ name='sk2r', get $:=$ MADX.sk2r:get0(), set $=\backslash x \rightarrow$ MADX.sk2r:set0(x) \},
\{ name='sk3r', get $:=$ MADX.sk3r:get0(), set $=\backslash x->$ MADX.sk3r:set0(x) \},
\{ name='sk4r', get := MADX.sk4r:getO(), set = \x -> MADX.sk4r:setO(x) \},
\},
equalities $=\{$
$\{$ expr $=\backslash t$
\{ expr $=$ \t \rightarrow t['S.DS.L2.B1'].__map.x : get'0010', name='S.R11.x' \},
\{ expr = \t \rightarrow t['S.DS.L2.B1'].__map.x :get'0001', name='S.R12.x' \},
\{ expr = \t \rightarrow t['S.DS.L2.B1'].__map.px:get'0010', name='S.R21.x' \},
\{ expr = \t \rightarrow t['S.DS.L2.B1'].__map.px:get'0001', name='S.R22.x' \},
\{ expr = \t -> t['E.DS.L2.B1'].__map.x :get'0010', name='E.R11.x' \},
\{ expr = \t \rightarrow t['E.DS.L2.B1'].__map.x :get'0001', name='E.R12.x' \},
\{ expr $=$ lt \rightarrow t['E.DS.L2.B1'].__map.px:get'0010', name='E.R21.x' \},
\{ expr = \t \rightarrow t['E.DS.L2.B1'].__map.px:get'0001', name='E.R22.x' \},
\},
objective $=\{$ fmin=1e-12 \},
maxcall=100, info=2
\}
-- reset knobs: extract scalar values from TPSA
MADX.sk1r = MADX.sk1r:getO()
MADX.sk2r = MADX.sk2r:getO()
MADX.sk3r = MADX.sk3r:get0()
MADX.sk4r = MADX.sk4r:get0()
print("status=", status, "fmin=", fmin, "ncall=", ncall)
print("strengths after matching coupling correctors:")
print("sk1r=" , MADX.sk1r)
print("sk2r=" , MADX.sk2r)
print("sk3r=", MADX.sk3r)
print("sk4r=" , MADX.sk4r)

Beams
print("strengths before matching coupling correctors:")
print("sk1r=", MADX.sk1r)
print("sk2r=", MADX.sk2r)
print("sk3r=", MADX.sk3r)
print("sk4r=", MADX.sk4r)
local $\mathrm{X0}=$ damap $\{\mathrm{mo}=2, \mathrm{nv}=6, \mathrm{nk}=4, \mathrm{ko}=1$,

$$
\begin{array}{r}
\text { vn=\{'x', 'px','y','py','t','pt', } \\
\text { 'sk1r','sk2r','sk3r','sk4r'\} }
\end{array}
$$

-- set knobs: scalar + TPSA -> TPSA
MADX.sk1r $=$ MADX.sk1r + XO.sk1r
MADX.sk2r $=$ MADX.sk2r + X0.sk2r
MADX.sk3r $=$ MADX.sk $3 r+X 0 . s k 3 r$
MADX.sk4r $=$ MADX.sk4r + X0.sk4r
local mjac $=\{--->$ variables \& knobs
\{ var='x' ,'0010001','00100001','001000001', '001000
\{ var='x' ,'0001001','00010001','000100001', '000100
\{ var='px','0010001','00100001','001000001',' 001000
\{ var='px','0001001','00010001','000100001','000100
status, fmin, ncall = match \{
command $:=$ track \{sequence=lhcb1, $x 0=\mathrm{x} 0$, observe=1,

Timing summary and links to codes:

MAD-X using matrix 1 m 55
MAD-NG using matrix 55 s (15s)
MAD-NG using matrix \& knobs 40s (4.5s)
MADX-PTC using alphas-betas $>40 \mathrm{~m}$

Beams
print("strengths before matching coupling correctors:")
print("sk1r=", MADX.sk1r)
print("sk2r=", MADX.sk2r)
print("sk3r=", MADX.sk3r)
print("sk4r=", MADX.sk4r)
local $\mathrm{xO}=$ damap $\{\mathrm{mo}=2, \mathrm{nv}=6, \mathrm{nk}=4, \mathrm{ko}=1$,

$$
\begin{aligned}
& \text { vn=\{'x','px','y','py','t','pt', } \\
& \text { 'sk1r','sk2r','sk3r','sk4r'\}\} }
\end{aligned}
$$

status, fmin, ncall $=$ match $\{$

command := track \{sequence=lhcb1, $x 0=x 0$, observe=1, savemap=true\},
jacobian $=$ \t,grd,jac => -- gradient not used, fill only jacobian jac:setrow(1.. 8, t['S.DS.L2.B1'].__map:getm(mjac)) jac:setrow(9..16, t['E.DS.L2.B1'].__map:getm(mjac))
end,
MADX.sk1r = MADX.sk1r + XO.sk1r
MADX.sk2r $=$ MADX.sk2r + X0.sk2r
MADX.sk3r = MADX.sk3r + X0.sk3r
variables $=$ \{ rtol=1e-6, -- 1 ppm
\{ name='sk1r', get $:=$ MADX.sk1r:get0(), set $=\backslash x$-> MADX.sk1r:set0(x) \},
MADX.sk4r = MADX.sk4r + X0.sk4r
\{ name='sk2r', get $:=$ MADX.sk2r:get0(), set $=\backslash x->$ MADX.sk2r:set0(x) \},
\{ name='sk3r', get $:=$ MADX.sk3r:get0(), set $=\backslash x \rightarrow$ MADX.sk3r:set0(x) \},
\{ name='sk4r', get := MADX.sk4r:get0(), set = \x -> MADX.sk4r:set0(x) \},
local mjac $=$ \{ ---> variables \& knobs
\{ var='x' , '0010001','00100001','001000001', '001000 \{ var='x' ,'0001001','00010001','000100001','000100 \{ var='px','0010001','00100001','001000001','001000 \{ var='px','0001001','00010001','000100001','000100
\}
status, fmin, ncall = match \{
command := track \{sequence $=1 \mathrm{hcb} 1, \mathrm{x} 0=\mathrm{x} 0$, observe=1,

Timing summary and links to codes:

MAD-X using matrix 1 m 55

MAD-NG using matrix 55 s (15s) MADX-PTC uciemmand performs a Jacobian Match commanalysis on the And
eset knobs: extract scalar values from TPSA
.sk1r = MADX.sk1r:get0()
sk2r = MADX.sk2r:get0()
sk3r = MADX.sk3r:get0()
sk4r = MADX.sk4r:get0() and tags useless con with oversized variables, i.e. starting wins does not set of knobs or con parametric maps! "strengths after matching coupling correctors:") harm when USIIN $\quad \begin{aligned} & \text { print ("sk2r=", MADX.sk2r }) \\ & \text { print("sk3r=", MADX.sk3r })\end{aligned}$
print("sk2r=" , MADX.sk2r)
print("sk3r=", MADX.sk3r)
print("sk4r=", MADX.sk4r)

Conclusions

- MAD-NG is reaching the end of its development process.

Conclusions

- MAD-NG is reaching the end of its development process.
- 2022 will focus on participation to real studies and consolidation.
- bottom-top validation for the physics of real case studies.
- add missing physics on demand (e.g. tapering, spin, generalised multipoles).
- complete unit tests \& manual.
- improve performance (room for x3-x5 in speed).
- simplify some aspects, "simpler is better" (e.g. object model).
- MAD-NG is reaching the end of its development process.
- 2022 will focus on participation to real studies and consolidation.
- bottom-top validation for the physics of real case studies.
- add missing physics on demand (e.g. tapering, spin, generalised multipoles).
- complete unit tests \& manual.
- improve performance (room for x3-x5 in speed).
- simplify some aspects, "simpler is better" (e.g. object model).
- On some aspects, MAD-NG is more mature than MAD-X
- better code architecture and structure.
- more flexible and extensible for the physics (new features require day(s)).
- less surprises when combining features (e.g. misalignments and slicing).
- main stream programming language for scripting (save user time!) \& many toolboxes.
- mature technologies, syntax error, backtrace, debugger, profiler, JIT (save user time!).
- some features have been back ported to MAD-X (e.g. permanent misalignment, patches) or will be (fringe fields, combined/overlapping elements).
- support backtracking, charged particles, parallel sequences, useful for e.g. matching IPs, no need for reverse sequence, etc...

Conclusions

Beams

- MAD-NG is reaching the end of its development process.
- 2022 will focus on participation to real studies and consolidation.
- bottom-top validation for the physics of real case studies.
- add missing physics on demand (e.g. tapering, spin, generalised multipoles).
- complete unit tests \& manual.
- improve performance (room for x3-x5 in speed).
- simplify some aspects, "simpler is better" (e.g. object model).
- On some aspects, MAD-NG is more mature than MAD-X
- better code architecture and structure.
- more flexible and extensible for the physics (new features require day(s)).
- less surprises when combining features (e.g. misalignments and slicing).
- main stream programming language for scripting (save user time!) \& many toolboxes.
- mature technologies, syntax error, backtrace, debugger, profiler, JIT (save user time!).
- some features have been back ported to MAD-X (e.g. permanent misalignment, patches) or will be (fringe fields, combined/overlapping elements).
- support backtracking, charged particles, parallel sequences, useful for e.g. matching IPs, no need for reverse sequence, etc...

THANK YOU FOR YOUR ATTENTION

Lua overview (httip://wwwwiluanorg)

MAD scripting language is based on Lua $5.1+$ (it is a superset of)

about
news
get started
download documentation community contact site map português

Lua 5.3.3
released
Programando em Lua published

Lua Workshop 2016
to be held in San Francisco

Lua overview (http:i//wwwwiluanorg)

MAD scripting language is based on Lua $5.1+$ (it is a superset of)

MAD scripting language is based on Lua 5.1+ (it is a superset of)

Lua is a powerful, fast, lightweight, embeddable scripting language.

Lua combines simple procedural syntax with powerful data description constructs based on associative arrays and extensible semantics. Lua is dynamically typed, runs by interpreting bytecode for a register-based virtual machine, and has automatic memory management with incremental garbage collection, making it ideal for configuration, scripting, and rapid prototyping.

Lua has been used in many industrial applications (e.g., Adobe's Photoshop Lightroom), with an emphasis on embedded systems (e.g., the Ginga middleware for digital TV in Brazil) and games (e.g., World of Warcraft and Angry Birds). Lua is currently the leading scripting language in games. Lua has a solid reference manual and there are several books about it. Several versions of Lua have been released and used in real applications since its creation in 1993. Lua featured in HOPL III, the Third ACM SIGPLAN History of Programming Languages Conference, in June 2007. Lua won the Front Line Award 2011 from the Game Developers Magazine.

MAD scripting language is based on Lua 5.1+ (it is a superset of)

Reference manual is 29 pages!

Lua is a powerful, fast, lightweight, embeddable scripting language.

Lua combines simple procedural syntax with powerful data description constructs based on associative arrays and extensible semantics. Lua is dynamically typed, runs by interpreting bytecode for a register-based virtual machine, and has automatic memory management with incremental garbage collection, making it ideal for configuration, scripting, and rapid prototyping.

Lua has been used in many industrial applications (e.g., Adobe's Photoshop Lightroom), with an emphasis on embedded systems (e.g., the Ginga middleware for digital TV in Brazil) and games (e.g., World of Warcraft and Angry Birds). Lua is currently the leading scripting language in games. Lua has a solid reference manual and there are several books about it. Several versions of Lua have been released and used in real applications since its creation in 1993. Lua featured in HOPL III, the Third ACM SIGPLAN History of Programming Languages Conference, in June 2007. Lua won the Front Line Award 2011 from the Game Developers Magazine.

Beams Department

LuaJIT is a Just-In-Time Compiler (JIT) for the Lua programming language. Lua is a powertul, d'ynamie-and lightwoight programming language. It may De embedded or used as a general-purpose, stand-alone language.

LuaJIT is Copyright © 2005-2015 Mike Pall, released under the MIT open source license.

Compatibility

Overview

$\begin{aligned} & 3 x \\ - & 100 x \end{aligned}$	$115 \text { Vв }$	$\begin{gathered} 90 \text { кв } \\ \text { JIT } \end{gathered}$	${ }^{63 \text { кıoc }}$	$\begin{gathered} 24 \text { кıoc } \\ \text { ASM } \end{gathered}$	11 кцос Lua

LuaJIT has been successfully used as a scripting middleware in games, appliances, network and graphics apps, numerical simulations, trading platforms and many other specialty applications. It scales from embedded devices, smartphones, desktops up to server farms. It combines high flexibility with high performance and an unmatched low memory footprint.

LuaJIT has been in continuous development since 2005. It's widely considered to be one of the fastest dynamic language implementations. It has outperformed other dynamic languages on many crosslanguage benchmarks since its first release - often by a substantial margin.

For LuaJIT 2.0, the whole VM has been rewritten from the ground up and relentlessly optimised for performance. It combines a high-speed interpreter, written in assembler, with a state-of-theart JIT compiler.

An innovative trace compiler is integrated with advanced, SSA-based optimisations and highly tuned code generation backends. A substantial reduction of the overhead associated with dynamic languages allows it to break into the performance range traditionally reserved for offline, static language compilers.

Beams Department

LuaJIT is a Just-In-Time Compiler (JIT) for the Lua programming language. Lua is a powertul, d'ynamie-and lightwoight programming language. It may De embedded or used as a general-purpose, stand-alone language.

LuaJIT is Copyright © 2005-2015 Mike Pall, released under the MIT open source license.

Compatibility

LuaJIT has been successfully used as a scripting middleware in games, appliances, network and graphics apps, numerical simulations, trading platforms and many other specialty applications. It scales from embedded devices, smartphones, desktops up to server farms. It combines high flexibility with high performance and an unmatched low memory footprint.

LuaJIT has been in continuous development since 2005. It's widely considered to be one of the fastest dynamic language implementations. It has outperformed other dynamic languages on many crosslanguage benchmarks since its first release - often by a substantial margin.

For LuaJIT 2.0, the whole VM has been rewritten from the ground up and relentlessly optimised for performance. It combines a high-speed interpreter, written in assembler, with a state-of-theart JIT compiler.

An innovative trace compiler is integrated with advanced, SSA-based optimisations and highly tuned code generation backends. A substantial reduction of the overhead associated with dynamic languages allows it to break into the performance range traditionally reserved for offline, static language compilers.

From M. Pall website, author of LuaJIT

Beams Department

LuaJIT is a Just-In-Time Compiler (JIT) for the Lua programming language. Lua is a powertul, d'ynamie-and lightwoight programming language. It may De embedded or used as a general-purpose, stand-alone language.

LuaJIT is Copyright © 2005-2015 Mike Pall, released under the MIT open source license.

Compatibility

From M. Pall website, author of LuaJIT

LuaJIT has been successfully used as a scripting middleware in games, appliances, network and graphics apps, numerical simulations, trading platforms and many other specialty applications. It scales from embedded devices, smartphones, desktops up to server farms. It combines high flexibility with high performance and an unmatched low memory footprint.

LuaJIT has been in continuous development since 2005. It's widely considered to be one of the fastest dynamic language implementations. It has outperformed other dynamic languages on many crosslanguage benchmarks since its first release - often by a substantial margin.

For LuaJIT 2.0, the whole VM has been rewritten from the ground up and relentlessly optimised for performance. It combines a high-speed interpreter, written in assembler, with a state-of-theart JIT compiler.

An innovative trace compiler is integrated with advanced, SSA-based optimisations and highly tuned code generation backends. A substantial reduction of the overhead associated with dynamic languages allows it to break into the performance range traditionally reserved for offline, static language compilers.

As old as PyPy (~10 years) Community is ~PyPy

LuaJIT is a Just-In-Time Compiler (JIT) for the Lua programming language. Lua is a powertul, d'ynamie-and lightwoight programming language. It may De embedded or used as a general-purpose, stand-alone language.

LuaJIT is Copyright © 2005-2015 Mike Pall, released under the MIT open source license.

Compatibility

$\begin{array}{ll} & 3 x \\ - & 100 x \end{array}$	$115 \mathrm{kB}$ VM	$90 \text { кв }$ JIT	$63 \text { кıос }$ C	24 као ASM	11 кıoc Lıa

From M. Pall website, author of LuaJIT

LuaJIT has been successfully used as a scripting middleware in games, appliances, network and graphics apps, numerical simulations, trading platforms and many other specialty applications. It scales from embedded devices, smartphones, desktops up to server farms. It combines high flexibility with high performance and an unmatched low memory footprint.

LuaJIT has been in continuous development since 2005. It's widely considered to be one of the fastest dynamic language implementations. It has outperformed other dynamic languages on many crosslanguage benchmarks since its first release - often by a substantial margin.

For LuaJIT 2.0, the whole VM has been rewritten from the ground up and relentlessly optimised for performance. It combines a high-speed interpreter, written in assembler, with a state-of-theart JIT compiler.

An innovative trace compiler is integrated with advanced, SSA-based optimisations and highly tuned code generation backends. A substantial reduction of the overhead associated with dynamic languages allows it to break into the performance range traditionally reserved for offline, static language compilers.

$$
\begin{aligned}
& \text { As old as PyPy (} 10 \text { years) } \\
& \text { Community is } \sim P y P y
\end{aligned}
$$

GTPSA in a nutshell

- Generalised Truncated Power Series Algebra

GTPSA in a nutshell

- Generalised Truncated Power Series Algebra
\Rightarrow Multivariate Taylor polynomials of order n in $\mathbb{R} \& \mathbb{C}$.

GTPSA in a nutshell

- Generalised Truncated Power Series Algebra
\Rightarrow Multivariate Taylor polynomials of order n in $\mathbb{R} \& \mathbb{C}$.
\Rightarrow Powerful tool for solving differential equations (e.g. motion equations).

GTPSA in a nutshell

- Generalised Truncated Power Series Algebra
\Rightarrow Multivariate Taylor polynomials of order n in $\mathbb{R} \& \mathbb{C}$.
\Rightarrow Powerful tool for solving differential equations (e.g. motion equations).
1 variable x at order n in the neighbourhood of the point a in the domain of the function f :

$$
T_{f}^{n}(x ; a)=f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\ldots+\frac{f^{(n)}(a)}{n!}(x-a)^{n}=\sum_{k=0}^{n} \frac{f_{a}^{(k)}}{k!}(x-a)^{k}
$$

GTPSA in a nutshell

Department

- Generalised Truncated Power Series Algebra
\Rightarrow Multivariate Taylor polynomials of order n in $\mathbb{R} \& \mathbb{C}$.
\Rightarrow Powerful tool for solving differential equations (e.g. motion equations).
1 variable x at order n in the neighbourhood of the point a in the domain of the function f :

$$
T_{f}^{n}(x ; a)=f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\ldots+\frac{f^{(n)}(a)}{n!}(x-a)^{n}=\sum_{k=0}^{n} \frac{f_{a}^{(k)}}{k!}(x-a)^{k}
$$

GTPSA in a nutshell

- Generalised Truncated Power Series Algebra
\Rightarrow Multivariate Taylor polynomials of order n in $\mathbb{R} \& \mathbb{C}$.
\Rightarrow Powerful tool for solving differential equations (e.g. motion equations).
1 variable x at order n in the neighbourhood of the point a in the domain of the function f :

$$
\begin{aligned}
& \quad T_{f}^{n}(x ; a)=f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\ldots+\frac{f^{(n)}(a)}{n!}(x-a)^{n}=\sum_{k=0}^{n} \frac{f_{a}^{(k)}}{k!}(x-a)^{k} \\
& \text { convergence of the remainder (i.e. truncation error): }
\end{aligned}
$$

$$
\lim _{n \rightarrow \infty} R_{f}^{n}(x ; a)=\lim _{n \rightarrow \infty} f(x)-T_{f}^{n}(x ; a)=0
$$

GTPSA in a nutshell

Department

- Generalised Truncated Power Series Algebra
\Rightarrow Multivariate Taylor polynomials of order n in $\mathbb{R} \& \mathbb{C}$.
\Rightarrow Powerful tool for solving differential equations (e.g. motion equations).
1 variable x at order n in the neighbourhood of the point a in the domain of the function f :

> convergence of the remainder (i.e. truncation error):

$$
\lim _{n \rightarrow \infty} R_{f}^{n}(x ; a)=\lim _{n \rightarrow \infty} f(x)-T_{f}^{n}(x ; a)=0 \quad \begin{aligned}
& f(x) \text { is an analytic function, } T_{f}^{n}(x ; a) \text { is a polynomial approximation } \\
& \text { nearby a with radius of convergence } h: \min _{h \rightarrow 0} \lim _{n \rightarrow \infty} R_{f}^{n}(a \pm h ; a) \neq 0 .
\end{aligned}
$$

GTPSA in a nutshell

Beams
Department

- Generalised Truncated Power Series Algebra
\Rightarrow Multivariate Taylor polynomials of order n in $\mathbb{R} \& \mathbb{C}$.
\Rightarrow Powerful tool for solving differential equations (e.g. motion equations).
1 variable x at order n in the neighbourhood of the point a in the domain of the function f :

$$
\begin{aligned}
& \quad T_{f}^{n}(x ; a)=f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\ldots+\frac{f^{(n)}(a)}{n!}(x-a)^{n}=\sum_{k=0}^{n} \frac{f_{a}^{(k)}}{k!}(x-a)^{k} \\
& \text { convergence of the remainder (i.e. truncation error): }
\end{aligned}
$$

$$
\lim _{n \rightarrow \infty} R_{f}^{n}(x ; a)=\lim _{n \rightarrow \infty} f(x)-T_{f}^{n}(x ; a)=0 \quad \begin{aligned}
& f(x) \text { is an analytic function, } T_{f}^{n}(x ; a) \text { is a polynomial approximation } \\
& \text { nearby a with radius of convergence } h: \min _{h>0} \lim _{n \rightarrow \infty} R_{f}^{n}(a \pm h ; a) \neq 0 .
\end{aligned}
$$

2 variables (x, y) at order 2 nearby (a, b) :

$$
T_{f}^{2}(x, y ; a, b)=f(a, b)+\left.\frac{\partial f}{\partial x}\right|_{(a, b)}(x-a)+\left.\frac{\partial f}{\partial y}\right|_{(a, b)}(y-b)+\ldots
$$

GTPSA in a nutshell

Beams
Department

- Generalised Truncated Power Series Algebra
\Rightarrow Multivariate Taylor polynomials of order n in $\mathbb{R} \& \mathbb{C}$.
\Rightarrow Powerful tool for solving differential equations (e.g. motion equations).
1 variable x at order n in the neighbourhood of the point a in the domain of the function f :

$$
\begin{aligned}
& T_{f}^{n}(x ; a)=f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\ldots+\frac{f^{(n)}(a)}{n!}(x-a)^{n}=\sum_{k=0}^{n} \frac{f_{a}^{(k)}}{k!}(x-a)^{k} \\
& \text { convergence of the remainder (i.e. truncation error): }
\end{aligned}
$$

$$
\lim _{n \rightarrow \infty} R_{f}^{n}(x ; a)=\lim _{n \rightarrow \infty} f(x)-T_{f}^{n}(x ; a)=0 \quad \begin{aligned}
& f(x) \text { is an analytic function, } T_{f}^{n}(x ; a) \text { is a polynomial approximation } \\
& \text { nearby a with radius of convergence } h: \min _{h>0} \lim _{n \rightarrow \infty} R_{f}^{n}(a \pm h ; a) \neq 0 .
\end{aligned}
$$

2 variables (x, y) at order 2 nearby (a, b) :

$$
T_{f}^{2}(x, y ; a, b)=f(a, b)+\left[\frac{\partial f}{\left.\left.\frac{\partial x}{}\right|_{(a, b)} ^{(x-a)+\left.\frac{\partial f}{\partial y}\right|_{(a, b)}}{ }^{(y-b)}\right)_{(a, b)}^{(x-a, y-b)}+\ldots}+f^{(x-a, y)}\right.
$$

- Generalised Truncated Power Series Algebra
\Rightarrow Multivariate Taylor polynomials of order n in $\mathbb{R} \& \mathbb{C}$.
\Rightarrow Powerful tool for solving differential equations (e.g. motion equations). 1 variable x at order n in the neighbourhood of the point a in the domain of the function f :

$$
\begin{aligned}
& \quad T_{f}^{n}(x ; a)=f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\ldots+\frac{f^{(n)}(a)}{n!}(x-a)^{n}=\sum_{k=0}^{n} \frac{f_{a}^{(k)}}{k!}(x-a)^{k} \\
& \text { convergence of the remainder (i.e. truncation error): }
\end{aligned}
$$

$$
\lim _{n \rightarrow \infty} R_{f}^{n}(x ; a)=\lim _{n \rightarrow \infty} f(x)-T_{f}^{n}(x ; a)=0 \quad \begin{aligned}
& f(x) \text { is an analytic function, } T_{f}^{n}(x ; a) \text { is a polynomial approximation } \\
& \text { nearby a with radius of convergence } h: \min _{h>0} \lim _{n \rightarrow \infty} R_{f}^{n}(a \pm h ; a) \neq 0 .
\end{aligned}
$$

2 variables (x, y) at order 2 nearby (a, b) :

$$
\begin{aligned}
T_{f}^{2}(x, y ; a, b)=f(a, b)+\left(\left.\frac{\partial f}{\partial x}\right|_{(a, b)} ^{\left.(x-a)+\left.\frac{\partial f}{\partial y}\right|_{(a, b)}(y-b)\right)_{(a, b)}}+\ldots\right. \\
+\frac{1}{2!}\left(\left.\left.\frac{\partial^{2} f}{\partial x^{2}}\right|_{(a, b)} ^{(x-a)^{2}+2} \frac{\partial^{2} f}{\partial x \partial y}\right|_{(a, b)} ^{(x-a)}(y-b)+\left.\frac{\partial^{2} f}{\partial y^{2}}\right|_{(a, b)}(y-b)^{2}\right)
\end{aligned}
$$

- Generalised Truncated Power Series Algebra
\Rightarrow Multivariate Taylor polynomials of order n in $\mathbb{R} \& \mathbb{C}$.
\Rightarrow Powerful tool for solving differential equations (e.g. motion equations).
1 variable x at order n in the neighbourhood of the point a in the domain of the function f :

$$
\begin{aligned}
& \quad T_{f}^{n}(x ; a)=f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\ldots+\frac{f^{(n)}(a)}{n!}(x-a)^{n}=\sum_{k=0}^{n} \frac{f_{a}^{(k)}}{k!}(x-a)^{k} \\
& \text { convergence of the remainder (i.e. truncation error): }
\end{aligned}
$$

$$
\lim _{n \rightarrow \infty} R_{f}^{n}(x ; a)=\lim _{n \rightarrow \infty} f(x)-T_{f}^{n}(x ; a)=0 \quad \begin{aligned}
& f(x) \text { is an analytic function, } T_{f}^{n}(x ; a) \text { is a polynomial approximation } \\
& \text { nearby a with radius of convergence } h: \min _{h>0} \lim _{n \rightarrow \infty} R_{f}^{n}(a \pm h ; a) \neq 0 .
\end{aligned}
$$

2 variables (x, y) at order 2 nearby (a, b) :

$$
\begin{aligned}
& \begin{aligned}
T_{f}^{2}(x, y ; a, b)=f(a, b) & +\left(\left.\frac{\partial f}{\partial x}\right|_{(a, b)} ^{(x-a)+\left.\frac{\partial f}{\partial y}\right|_{(a, b)}(y-b)}\right)^{=f_{(a, b)}^{(x-a, y-b)}}+ \\
+ & \frac{1}{2!}\left(\left.\frac{\partial^{2} f}{\partial x^{2}}\right|_{(a, b)} ^{(x-a)^{2}+\left.2 \frac{\partial^{2} f}{\partial x \partial y}\right|_{(a, b)}(x-a)(y-b)+\left.\frac{\partial^{2} f}{\partial y^{2}}\right|_{(a, b)},}\right)
\end{aligned} \\
& =f_{(a, b)}^{(2)}(x-a, y-b)
\end{aligned}
$$

GTPSA in a nutshell

Beams
Department

- Generalised Truncated Power Series Algebra
\Rightarrow Multivariate Taylor polynomials of order n in $\mathbb{R} \& \mathbb{C}$.
\Rightarrow Powerful tool for solving differential equations (e.g. motion equations).
1 variable x at order n in the neighbourhood of the point a in the domain of the function f :

$$
\begin{aligned}
& \quad T_{f}^{n}(x ; a)=f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\ldots+\frac{f^{(n)}(a)}{n!}(x-a)^{n}=\sum_{k=0}^{n} \frac{f_{a}^{(k)}}{k!}(x-a)^{k} \\
& \text { convergence of the remainder (i.e. truncation error): }
\end{aligned}
$$

$$
\lim _{n \rightarrow \infty} R_{f}^{n}(x ; a)=\lim _{n \rightarrow \infty} f(x)-T_{f}^{n}(x ; a)=0 \quad \begin{aligned}
& f(x) \text { is an analytic function, } T_{f}^{n}(x ; a) \text { is a polynomial approximation } \\
& \text { nearby a with radius of convergence } h: \min _{h>0} \lim _{n \rightarrow \infty} R_{f}^{n}(a \pm h ; a) \neq 0 .
\end{aligned}
$$

2 variables (x, y) at order 2 nearby (a, b) :

$$
\begin{aligned}
& =f_{(a, b)}^{(2)}(x-a, y-b)
\end{aligned}
$$

GTPSA in a nutshell

Beams
Department

- Generalised Truncated Power Series Algebra
\Rightarrow Multivariate Taylor polynomials of order n in $\mathbb{R} \& \mathbb{C}$.
\Rightarrow Powerful tool for solving differential equations (e.g. motion equations).
1 variable x at order n in the neighbourhood of the point a in the domain of the function f :

$$
\begin{aligned}
& \quad T_{f}^{n}(x ; a)=f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\ldots+\frac{f^{(n)}(a)}{n!}(x-a)^{n}=\sum_{k=0}^{n} \frac{f_{a}^{(k)}}{k!}(x-a)^{k} \\
& \text { convergence of the remainder (i.e. truncation error): }
\end{aligned}
$$

$$
\lim _{n \rightarrow \infty} R_{f}^{n}(x ; a)=\lim _{n \rightarrow \infty} f(x)-T_{f}^{n}(x ; a)=0 \quad \begin{aligned}
& f(x) \text { is an analytic function, } T_{f}^{n}(x ; a) \text { is a polynomial approximation } \\
& \text { nearby a with radius of convergence } h: \min _{h>0} \lim _{n \rightarrow \infty} R_{f}^{n}(a \pm h ; a) \neq 0 .
\end{aligned}
$$

2 variables (x, y) at order 2 nearby (a, b) :

$$
=f_{(a, b)}^{(1)}(x-a, y-b)
$$

- Generalised Truncated Power Series Algebra
\Rightarrow Multivariate Taylor polynomials of order n in $\mathbb{R} \& \mathbb{C}$.
\Rightarrow Powerful tool for solving differential equations (e.g. motion equations).
1 variable x at order n in the neighbourhood of the point a in the domain of the function f :

$$
\begin{aligned}
& \quad T_{f}^{n}(x ; a)=f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\ldots+\frac{f^{(n)}(a)}{n!}(x-a)^{n}=\sum_{k=0}^{n} \frac{f_{a}^{(k)}}{k!}(x-a)^{k} \\
& \text { convergence of the remainder (i.e. truncation error): }
\end{aligned}
$$

$$
\lim _{n \rightarrow \infty} R_{f}^{n}(x ; a)=\lim _{n \rightarrow \infty} f(x)-T_{f}^{n}(x ; a)=0 \quad \begin{aligned}
& f(x) \text { is an analytic function, } T_{f}^{n}(x ; a) \text { is a polynomial approximation } \\
& \text { nearby a with radius of convergence } h: \min _{h>0} \lim _{n \rightarrow \infty} R_{f}^{n}(a \pm h ; a) \neq 0 .
\end{aligned}
$$

2 variables (x, y) at order 2 nearby (a, b) :

$$
=f_{(a, b)}^{(1)}(x-a, y-b)
$$

v variables X at order n nearby A :

$$
=f_{(a, b)}^{(2)}(x-a, y-b)
$$

$$
T_{f}^{n}(X ; A)=\sum_{k=0}^{n} \frac{f_{A}^{(k)}}{k!}(X ; A)^{k}=\left.\sum_{k=0}^{n} \frac{1}{k!} \sum_{|\vec{m}|=k}\binom{k}{\vec{m}} \frac{\partial^{k} f}{\partial X^{\vec{m}}}\right|_{A}(X ; A)^{\vec{m}} \text { with }\binom{k}{\vec{m}}=\frac{k!}{c_{1}!c_{2}!\ldots c_{v}!}
$$

Beams

- Generalised Truncated Power Series Algebra
\Rightarrow Multivariate Taylor polynomials of order n in $\mathbb{R} \& \mathbb{C}$.
\Rightarrow Powerful tool for solving differential equations (e.g. motion equations).
1 variable x at order n in the neighbourhood of the point a in the domain of the function f :

$$
\begin{aligned}
& \quad T_{f}^{n}(x ; a)=f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\ldots+\frac{f^{(n)}(a)}{n!}(x-a)^{n}=\sum_{k=0}^{n} \frac{f_{a}^{(k)}}{k!}(x-a)^{k} \\
& \text { convergence of the remainder (i.e. truncation error): }
\end{aligned}
$$

$$
\lim _{n \rightarrow \infty} R_{f}^{n}(x ; a)=\lim _{n \rightarrow \infty} f(x)-T_{f}^{n}(x ; a)=0 \quad \begin{aligned}
& f(x) \text { is an analytic function, } T_{f}^{n}(x ; a) \text { is a polynomial approximation } \\
& \text { nearby a with radius of convergence } h: \min _{h>0} \lim _{n \rightarrow \infty} R_{f}^{n}(a \pm h ; a) \neq 0 .
\end{aligned}
$$

2 variables (x, y) at order 2 nearby (a, b) :

$$
=f_{(a, b)}^{(1)}(x-a, y-b)
$$

v variables X at order n nearby A :

$$
=f_{(a, b)}^{(2)}(x-a, y-b)
$$

$$
T_{f}^{n}(X ; A)=\sum_{k=0}^{n} \frac{f_{A}^{(k)}}{k!}(X ; A)^{k}=\left.\sum_{k=0}^{n} \frac{1}{k!} \sum_{\mid \overrightarrow{\vec{m} \mid=k}}\binom{k}{\vec{m}} \frac{\partial^{k} f}{\partial X^{\vec{m}}}\right|_{A}(X ; A)^{\vec{m}} \text { with } \quad\binom{k}{\vec{m}}=\frac{k!}{c_{1}!c_{2}!\ldots c_{v}!}
$$

Beams

- Generalised Truncated Power Series Algebra
\Rightarrow Multivariate Taylor polynomials of order n in $\mathbb{R} \& \mathbb{C}$.
\Rightarrow Powerful tool for solving differential equations (e.g. motion equations).
1 variable x at order n in the neighbourhood of the point a in the domain of the function f :

$$
\begin{aligned}
& \quad T_{f}^{n}(x ; a)=f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\ldots+\frac{f^{(n)}(a)}{n!}(x-a)^{n}=\sum_{k=0}^{n} \frac{f_{a}^{(k)}}{k!}(x-a)^{k} \\
& \text { convergence of the remainder (i.e. truncation error): }
\end{aligned}
$$

$$
\lim _{n \rightarrow \infty} R_{f}^{n}(x ; a)=\lim _{n \rightarrow \infty} f(x)-T_{f}^{n}(x ; a)=0 \quad \begin{aligned}
& f(x) \text { is an analytic function, } T_{f}^{n}(x ; a) \text { is a polynomial approximation } \\
& \text { nearby a with radius of convergence } h: \min _{h>0} \lim _{n \rightarrow \infty} R_{f}^{n}(a \pm h ; a) \neq 0 .
\end{aligned}
$$

2 variables (x, y) at order 2 nearby (a, b) :

$$
=f_{(a, b)}^{(1)}(x-a, y-b)
$$

v variables X at order n nearby A :

$$
=f_{(a, b)}^{(2)}(x-a, y-b)
$$

$$
\begin{aligned}
T_{f}^{n}(X ; A)=\sum_{k=0}^{n} \frac{f_{A}^{(k)}}{k!}(X ; A)^{k}=\left.\sum_{k=0}^{n} \frac{1}{k!} \sum_{(\mid \overrightarrow{\vec{m} \mid=k}}\binom{k}{\vec{m}} \frac{\partial^{k} f}{\partial X^{\vec{m}}}\right|_{A}(X ; A)^{\vec{m}} \text { with }\binom{k}{m}=\frac{k!}{c_{1}!c_{2}!\ldots c_{v}!} \\
\text { monomials of order } k
\end{aligned}
$$

Beams

- Generalised Truncated Power Series Algebra
\Rightarrow Multivariate Taylor polynomials of order n in $\mathbb{R} \& \mathbb{C}$.
\Rightarrow Powerful tool for solving differential equations (e.g. motion equations).
1 variable x at order n in the neighbourhood of the point a in the domain of the function f :

> convergence of the remainder (i.e. truncation error):

$$
\lim _{n \rightarrow \infty} R_{f}^{n}(x ; a)=\lim _{n \rightarrow \infty} f(x)-T_{f}^{n}(x ; a)=0 \quad \begin{aligned}
& f(x) \text { is an analytic function, } T_{f}^{n}(x ; a) \text { is a polynomial approximation } \\
& \text { nearby a with radius of convergence } h: \min _{h>0} \lim _{n \rightarrow \infty} R_{f}^{n}(a \pm h ; a) \neq 0 .
\end{aligned}
$$

2 variables (x, y) at order 2 nearby (a, b) :

$$
=f_{(a, b)}^{(1)}(x-a, y-b)
$$

v variables X at order n nearby A : TPSA coefficients $=f_{(a, b)}^{(2)}(x-a, y-b)$

$$
\begin{aligned}
T_{f}^{n}(X ; A)=\sum_{k=0}^{n} \frac{f_{A}^{(k)}}{k!}(X ; A)^{k}=\left.\sum_{k=0}^{n} \frac{1}{k!} \sum_{\overline{\vec{m} \mid=k})}\binom{k}{\vec{m}} \frac{\partial^{k} f}{\partial X^{\vec{m}}}\right|_{A}(X ; A)^{\vec{m}} \text { with }\binom{k}{m}=\frac{k!}{c_{1}!c_{2}!\ldots c_{v}!} \\
\text { monomials of order } k
\end{aligned}
$$

Beams

- Generalised Truncated Power Series Algebra
\Rightarrow Multivariate Taylor polynomials of order n in $\mathbb{R} \& \mathbb{C}$.
\Rightarrow Powerful tool for solving differential equations (e.g. motion equations). 1 variable x at order n in the neighbourhood of the point a in the domain of the function f :

$$
\begin{aligned}
& T_{f}^{n}(x ; a)=f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\ldots+\frac{f^{(n)}(a)}{n!}(x-a)^{n}=\sum_{k=0}^{n} \frac{f_{a}^{(k)}}{k!}(x-a)^{k} \\
& \text { convergence of the remainder (i.e. truncation error): }
\end{aligned}
$$

$$
\lim _{n \rightarrow \infty} R_{f}^{n}(x ; a)=\lim _{n \rightarrow \infty} f(x)-T_{f}^{n}(x ; a)=0 \quad \begin{aligned}
& f(x) \text { is an analytic function, } T_{f}^{n}(x ; a) \text { is a polynomial approximation } \\
& \text { nearby a with radius of convergence } h: \min _{h>0} \lim _{n \rightarrow \infty} R_{f}^{n}(a \pm h ; a) \neq 0 .
\end{aligned}
$$

2 variables (x, y) at order 2 nearby (a, b) :

$$
=f_{(a, b)}^{(1)}(x-a, y-b)
$$

v variables X at order n nearby A : TPSA coefficients $=f_{(a, b)}^{(2)}(x-a, y-b)$

$$
\begin{aligned}
T_{f}^{n}(X ; A)=\sum_{k=0}^{n} \frac{f_{A}^{(k)}}{k!}(X ; A)^{k}=\left.\sum_{k=0}^{n} \frac{1}{k!} \sum_{\overline{\vec{m} \mid=k})}\binom{k}{\vec{m}} \frac{\partial^{k} f}{\partial X^{\vec{m}}}\right|_{A}(X ; A)^{\vec{m}} \text { with }\binom{k}{\vec{m}}=\frac{k!}{c_{1}!c_{2}!\ldots c_{v}!} \\
\text { monomials of order } k
\end{aligned}
$$

- Generalised Truncated Power Series Algebra
\Rightarrow Multivariate Taylor polynomials of order n in $\mathbb{R} \& \mathbb{C}$.
\Rightarrow Powerful tool for solving differential equations (e.g. motion equations). 1 variable x at order n in the neighbourhood of the point a in the domain of the function f :

$$
\begin{aligned}
& T_{f}^{n}(x ; a)=f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\ldots+\frac{f^{(n)}(a)}{n!}(x-a)^{n}=\sum_{k=0}^{n} \frac{f_{a}^{(k)}}{k!}(x-a)^{k} \\
& \text { convergence of the remainder (i.e. truncation error): }
\end{aligned}
$$

$$
\lim _{n \rightarrow \infty} R_{f}^{n}(x ; a)=\lim _{n \rightarrow \infty} f(x)-T_{f}^{n}(x ; a)=0 \quad \begin{aligned}
& f(x) \text { is an analytic function, } T_{f}^{n}(x ; a) \text { is a polynomial approximation } \\
& \text { nearby a with radius of convergence } h: \min _{h>0} \lim _{n \rightarrow \infty} R_{f}^{n}(a \pm h ; a) \neq 0 .
\end{aligned}
$$

2 variables (x, y) at order 2 nearby (a, b) :

$$
=f_{(a, b)}^{(1)}(x-a, y-b)
$$

v variables X at order n nearby A : TPSA coefficients

$$
=f_{(a, b)}^{(2)}(x-a, y-b)
$$

$$
\begin{aligned}
T_{f}^{n}(X ; A)=\sum_{k=0}^{n} \frac{f_{A}^{(k)}}{k!}(X ; A)^{k}=\left.\sum_{k=0}^{n} \frac{1}{k!} \sum_{\overline{\vec{m} \mid=k} \mid}\binom{k}{\vec{m}} \frac{\partial^{k} f}{\partial X^{\vec{m}}}\right|_{A}(X ; A)^{\vec{m}} \text { with }\binom{k}{\vec{m}}=\frac{k!}{c_{1}!c_{2}!\ldots c_{v}!} \\
\text { monomials of order } \mathrm{k}
\end{aligned}
$$

- Generalised Truncated Power Series Algebra IPAC 2015
\Rightarrow Multivariate Taylor polynomials of order n in $\mathbb{R} \& \mathbb{C}$.
\Rightarrow Powerful tool for solving differential equations (e.g. motion equations). 1 variable x at order n in the neighbourhood of the point a in the domain of the function f :

> convergence of the remainder (i.e. truncation error):

$$
\lim _{n \rightarrow \infty} R_{f}^{n}(x ; a)=\lim _{n \rightarrow \infty} f(x)-T_{f}^{n}(x ; a)=0 \quad \begin{aligned}
& f(x) \text { is an analytic function, } T_{f}^{n}(x ; a) \text { is a polynomial approximation } \\
& \text { nearby a with radius of convergence } h: \min _{h>0} \lim _{n \rightarrow \infty} R_{f}^{n}(a \pm h ; a) \neq 0 .
\end{aligned}
$$

2 variables (x, y) at order 2 nearby (a, b) :

$$
=f_{(a, b)}^{(1)}(x-a, y-b)
$$

v variables X at order n nearby A : TPSA coefficients

$$
=f_{(a, b)}^{(2)}(x-a, y-b)
$$

$$
\begin{aligned}
T_{f}^{n}(X ; A)=\sum_{k=0}^{n} \frac{f_{A}^{(k)}}{k!}(X ; A)^{k}=\left.\sum_{k=0}^{n} \frac{1}{k!} \sum_{\overline{\vec{m} \mid=k} \mid}\binom{k}{\vec{m}} \frac{\partial^{k} f}{\partial X^{\vec{m}}}\right|_{A}(X ; A)^{\vec{m}} \text { with }\binom{k}{\vec{m}}=\frac{k!}{c_{1}!c_{2}!\ldots c_{v}!} \\
\text { monomials of order } \mathrm{k}
\end{aligned}
$$

Accuracy of TPSA (myith and legends)

Accuracy of TPSA (myths and legends)

© GTPSA are exact to machine precision, no approximation for orders 0..n

Accuracy of TPSA (myths and legends)

- GTPSA are exact to machine precision, no approximation for orders 0..n
\Rightarrow derivatives are computed using automatic differentiation (AD).

Accuracy of TPSA (myths and legends)

- GTPSA are exact to machine precision, no approximation for orders $0 .$. n
\Rightarrow derivatives are computed using automatic differentiation (AD).
AD exploits the fact that every computer program, no matter how complicated, executes a sequence of elementary arithmetic operations (addition, subtraction, multiplication, division, etc.) and elementary functions (exp, log, sin, cos, etc.). By applying the chain rule repeatedly to these operations, derivatives of arbitrary order can be computed automatically, accurately to working precision, and using at most a small constant factor more arithmetic operations than the original program.

Symbolic differentiation can lead to inefficient code and faces the difficulty of converting a computer program into a single expression, while numerical differentiation can introduce round-off errors in the discretization process and cancellation. Both classical methods have problems with calculating higher derivatives, where complexity and errors increase.

Accuracy of TPSA (myths and legends)

- GTPSA are exact to machine precision, no approximation for orders 0..n
\Rightarrow derivatives are computed using automatic differentiation (AD).
AD exploits the fact that every computer program, no matter how complicated, executes a sequence of elementary arithmetic operations (addition, subtraction, multiplication, division, etc.) and elementary functions (exp, log, sin, cos, etc.). By applying the chain rule repeatedly to these operations, derivatives of arbitrary order can be computed automatically, accurately to working precision, and using at most a small constant factor more arithmetic operations than the original program.

Symbolic differentiation can lead to inefficient code and faces the difficulty of converting a computer program into a single expression, while numerical differentiation can introduce round-off errors in the discretization process and cancellation. Both classical methods have problems with calculating higher derivatives, where complexity and errors increase.

- MAD-NG includes a complete toolbox (i.e. module) to handle DA using AD...
\Rightarrow users have full access to GTPSA and DAmaps from the scripting language.

Accuracy of TPSA (myths and legends)

- GTPSA are exact to machine precision, no approximation for orders 0..n
\Rightarrow derivatives are computed using automatic differentiation (AD).
AD exploits the fact that every computer program, no matter how complicated, executes a sequence of elementary arithmetic operations (addition, subtraction, multiplication, division, etc.) and elementary functions (exp, log, sin, cos, etc.). By applying the chain rule repeatedly to these operations, derivatives of arbitrary order can be computed automatically, accurately to working precision, and using at most a small constant factor more arithmetic operations than the original program.

Symbolic differentiation can lead to inefficient code and faces the difficulty of converting a computer program into a single expression, while numerical differentiation can introduce round-off errors in the discretization process and cancellation. Both classical methods have problems with calculating higher derivatives, where complexity and errors increase.

- MAD-NG includes a complete toolbox (i.e. module) to handle DA using AD...
\Rightarrow users have full access to GTPSA and DAmaps from the scripting language.
\Rightarrow users can manipulate DAmaps stored in the MTable or the MFlow returned by Track.

Accuracy of TPSA (myths and legends)

- GTPSA are exact to machine precision, no approximation for orders 0..n
\Rightarrow derivatives are computed using automatic differentiation (AD).
AD exploits the fact that every computer program, no matter how complicated, executes a sequence of elementary arithmetic operations (addition, subtraction, multiplication, division, etc.) and elementary functions (exp, log, sin, cos, etc.). By applying the chain rule repeatedly to these operations, derivatives of arbitrary order can be computed automatically, accurately to working precision, and using at most a small constant factor more arithmetic operations than the original program.

Symbolic differentiation can lead to inefficient code and faces the difficulty of converting a computer program into a single expression, while numerical differentiation can introduce round-off errors in the discretization process and cancellation. Both classical methods have problems with calculating higher derivatives, where complexity and errors increase.

- MAD-NG includes a complete toolbox (i.e. module) to handle DA using AD...
\Rightarrow users have full access to GTPSA and DAmaps from the scripting language.
\Rightarrow users can manipulate DAmaps stored in the MTable or the MFlow returned by Track.
- So when DAmap/TPSA introduce errors?

Accuracy of TPSA (myths and legends)

- GTPSA are exact to machine precision, no approximation for orders 0..n
\Rightarrow derivatives are computed using automatic differentiation (AD).
AD exploits the fact that every computer program, no matter how complicated, executes a sequence of elementary arithmetic operations (addition, subtraction, multiplication, division, etc.) and elementary functions (exp, log, sin, cos, etc.). By applying the chain rule repeatedly to these operations, derivatives of arbitrary order can be computed automatically, accurately to working precision, and using at most a small constant factor more arithmetic operations than the original program.

Symbolic differentiation can lead to inefficient code and faces the difficulty of converting a computer program into a single expression, while numerical differentiation can introduce round-off errors in the discretization process and cancellation. Both classical methods have problems with calculating higher derivatives, where complexity and errors increase.

- MAD-NG includes a complete toolbox (i.e. module) to handle DA using AD...
\Rightarrow users have full access to GTPSA and DAmaps from the scripting language.
\Rightarrow users can manipulate DAmaps stored in the MTable or the MFlow returned by Track.
- So when DAmap/TPSA introduce errors?
\Rightarrow If they are used as functions (e.g. evaluated), instead of $D A$ (e.g. track, twiss).

Accuracy of TPSA (myths and legends)

- GTPSA are exact to machine precision, no approximation for orders 0..n
\Rightarrow derivatives are computed using automatic differentiation (AD).
AD exploits the fact that every computer program, no matter how complicated, executes a sequence of elementary arithmetic operations (addition, subtraction, multiplication, division, etc.) and elementary functions (exp, log, sin, cos, etc.). By applying the chain rule repeatedly to these operations, derivatives of arbitrary order can be computed automatically, accurately to working precision, and using at most a small constant factor more arithmetic operations than the original program.

Symbolic differentiation can lead to inefficient code and faces the difficulty of converting a computer program into a single expression, while numerical differentiation can introduce round-off errors in the discretization process and cancellation. Both classical methods have problems with calculating higher derivatives, where complexity and errors increase.

- MAD-NG includes a complete toolbox (i.e. module) to handle DA using AD...
\Rightarrow users have full access to GTPSA and DAmaps from the scripting language.
\Rightarrow users can manipulate DAmaps stored in the MTable or the MFlow returned by Track.
- So when DAmap/TPSA introduce errors?
\Rightarrow If they are used as functions (e.g. evaluated), instead of $D A$ (e.g. track, twiss).
\Rightarrow High orders of $T_{f}^{n}(x ; a)$ are used to interpolate at the new position by substitution.

Accuracy of TPSA (myths and legends)

- GTPSA are exact to machine precision, no approximation for orders 0..n
\Rightarrow derivatives are computed using automatic differentiation (AD).
AD exploits the fact that every computer program, no matter how complicated, executes a sequence of elementary arithmetic operations (addition, subtraction, multiplication, division, etc.) and elementary functions (exp, log, sin, cos, etc.). By applying the chain rule repeatedly to these operations, derivatives of arbitrary order can be computed automatically, accurately to working precision, and using at most a small constant factor more arithmetic operations than the original program.

Symbolic differentiation can lead to inefficient code and faces the difficulty of converting a computer program into a single expression, while numerical differentiation can introduce round-off errors in the discretization process and cancellation. Both classical methods have problems with calculating higher derivatives, where complexity and errors increase.

- MAD-NG includes a complete toolbox (i.e. module) to handle DA using AD...
\Rightarrow users have full access to GTPSA and DAmaps from the scripting language.
\Rightarrow users can manipulate DAmaps stored in the MTable or the MFlow returned by Track.
- So when DAmap/TPSA introduce errors?
\Rightarrow If they are used as functions (e.g. evaluated), instead of $D A$ (e.g. track, twiss).
\Rightarrow High orders of $T_{f}^{n}(x ; a)$ are used to interpolate at the new position by substitution.

$$
T_{f}^{n}(x ; a+h)=\sum_{k=0}^{n} \frac{f_{a+h}^{(k)}}{k!}(x-a-h)^{k}
$$

- GTPSA are exact to machine precision, no approximation for orders 0..n
\Rightarrow derivatives are computed using automatic differentiation (AD).
AD exploits the fact that every computer program, no matter how complicated, executes a sequence of elementary arithmetic operations (addition, subtraction, multiplication, division, etc.) and elementary functions (exp, log, sin, cos, etc.). By applying the chain rule repeatedly to these operations, derivatives of arbitrary order can be computed automatically, accurately to working precision, and using at most a small constant factor more arithmetic operations than the original program.

Symbolic differentiation can lead to inefficient code and faces the difficulty of converting a computer program into a single expression, while numerical differentiation can introduce round-off errors in the discretization process and cancellation. Both classical methods have problems with calculating higher derivatives, where complexity and errors increase.

- MAD-NG includes a complete toolbox (i.e. module) to handle DA using AD...
\Rightarrow users have full access to GTPSA and DAmaps from the scripting language.
\Rightarrow users can manipulate DAmaps stored in the MTable or the MFlow returned by Track.
- So when DAmap/TPSA introduce errors?
\Rightarrow If they are used as functions (e.g. evaluated), instead of $D A$ (e.g. track, twiss).
\Rightarrow High orders of $T_{f}^{n}(x ; a)$ are used to interpolate at the new position by substitution.

$$
T_{f}^{n}(x ; a+h)=\sum_{k=0}^{n} \frac{f_{a+h}^{(k)}}{k!}(x-a-h)^{k} ; \quad f(a+h) \approx \sum_{k=0}^{n} \frac{f_{a}^{(k)}}{k!} h^{k}
$$

- GTPSA are exact to machine precision, no approximation for orders 0..n
\Rightarrow derivatives are computed using automatic differentiation (AD).
AD exploits the fact that every computer program, no matter how complicated, executes a sequence of elementary arithmetic operations (addition, subtraction, multiplication, division, etc.) and elementary functions (exp, log, sin, cos, etc.). By applying the chain rule repeatedly to these operations, derivatives of arbitrary order can be computed automatically, accurately to working precision, and using at most a small constant factor more arithmetic operations than the original program.

Symbolic differentiation can lead to inefficient code and faces the difficulty of converting a computer program into a single expression, while numerical differentiation can introduce round-off errors in the discretization process and cancellation. Both classical methods have problems with calculating higher derivatives, where complexity and errors increase.

- MAD-NG includes a complete toolbox (i.e. module) to handle DA using AD...
\Rightarrow users have full access to GTPSA and DAmaps from the scripting language.
\Rightarrow users can manipulate DAmaps stored in the MTable or the MFlow returned by Track.
- So when DAmap/TPSA introduce errors?
\Rightarrow If they are used as functions (e.g. evaluated), instead of $D A$ (e.g. track, twiss).
\Rightarrow High orders of $T_{f}^{n}(x ; a)$ are used to interpolate at the new position by substitution.

$$
T_{f}^{n}(x ; a+h)=\sum_{k=0}^{n} \frac{f_{a+h}^{(k)}}{k!}(x-a-h)^{k} ; \quad f(a+h) \approx \sum_{k=0}^{n} \frac{f_{a}^{(k)}}{k!} h^{k}
$$

- GTPSA are exact to machine precision, no approximation for orders 0..n
\Rightarrow derivatives are computed using automatic differentiation (AD).
AD exploits the fact that every computer program, no matter how complicated, executes a sequence of elementary arithmetic operations (addition, subtraction, multiplication, division, etc.) and elementary functions (exp, log, sin, cos, etc.). By applying the chain rule repeatedly to these operations, derivatives of arbitrary order can be computed automatically, accurately to working precision, and using at most a small constant factor more arithmetic operations than the original program.

Symbolic differentiation can lead to inefficient code and faces the difficulty of converting a computer program into a single expression, while numerical differentiation can introduce round-off errors in the discretization process and cancellation. Both classical methods have problems with calculating higher derivatives, where complexity and errors increase.

- MAD-NG includes a complete toolbox (i.e. module) to handle DA using AD...
\Rightarrow users have full access to GTPSA and DAmaps from the scripting language.
\Rightarrow users can manipulate DAmaps stored in the MTable or the MFlow returned by Track.
- So when DAmap/TPSA introduce errors?
\Rightarrow If they are used as functions (e.g. evaluated), instead of $D A$ (e.g. track, twiss).
\Rightarrow High orders of $T_{f}^{n}(x ; a)$ are used to interpolate at the new position by substitution.

$$
T_{f}^{n}(x ; a+h)=\sum_{k=0}^{n} \frac{f_{a+h}^{(k)}}{k!}(x-a-h)^{k} ; \quad f(a+h) \approx \sum_{k=0}^{n} \frac{f_{a}^{(k)}}{k!} h^{k}
$$

- GTPSA are exact to machine precision, no approximation for orders 0..n
\Rightarrow derivatives are computed using automatic differentiation (AD).
AD exploits the fact that every computer program, no matter how complicated, executes a sequence of elementary arithmetic operations (addition, subtraction, multiplication, division, etc.) and elementary functions (exp, log, sin, cos, etc.). By applying the chain rule repeatedly to these operations, derivatives of arbitrary order can be computed automatically, accurately to working precision, and using at most a small constant factor more arithmetic operations than the original program.

Symbolic differentiation can lead to inefficient code and faces the difficulty of converting a computer program into a single expression, while numerical differentiation can introduce round-off errors in the discretization process and cancellation. Both classical methods have problems with calculating higher derivatives, where complexity and errors increase.

- MAD-NG includes a complete toolbox (i.e. module) to handle DA using AD...
\Rightarrow users have full access to GTPSA and DAmaps from the scripting language.
\Rightarrow users can manipulate DAmaps stored in the MTable or the MFlow returned by Track.
- So when DAmap/TPSA introduce errors?
\Rightarrow If they are used as functions (e.g. evaluated), instead of $D A$ (e.g. track, twiss).
\Rightarrow High orders of $T_{f}^{n}(x ; a)$ are used to interpolate at the new position by substitution.

$$
T_{f}^{n}(x ; a+h)=\sum_{k=0}^{n} \frac{f_{a+h}^{(k)}}{k!}(x-a-h)^{k} ; \quad f(a+h) \approx \sum_{k=0}^{n} \frac{f_{a}^{(k)}}{\frac{k!}{T_{f}^{n}(a+h ; a)}} h^{k} ; \quad f_{a+h}^{(k)} \approx \frac{\mathrm{d}^{k} T_{f}^{n}(x ; a)}{\mathrm{d} x^{k}}(a+h)
$$

- GTPSA are exact to machine precision, no approximation for orders 0..n
\Rightarrow derivatives are computed using automatic differentiation (AD).
AD exploits the fact that every computer program, no matter how complicated, executes a sequence of elementary arithmetic operations (addition, subtraction, multiplication, division, etc.) and elementary functions (exp, log, sin, cos, etc.). By applying the chain rule repeatedly to these operations, derivatives of arbitrary order can be computed automatically, accurately to working precision, and using at most a small constant factor more arithmetic operations than the original program.

Symbolic differentiation can lead to inefficient code and faces the difficulty of converting a computer program into a single expression, while numerical differentiation can introduce round-off errors in the discretization process and cancellation. Both classical methods have problems with calculating higher derivatives, where complexity and errors increase.

- MAD-NG includes a complete toolbox (i.e. module) to handle DA using AD...
\Rightarrow users have full access to GTPSA and DAmaps from the scripting language.
\Rightarrow users can manipulate DAmaps stored in the MTable or the MFlow returned by Track.
- So when DAmap/TPSA introduce errors?
\Rightarrow If they are used as functions (e.g. evaluated), instead of $D A$ (e.g. track, twiss).
\Rightarrow High orders of $T_{f}^{n}(x ; a)$ are used to interpolate at the new position by substitution.

$$
T_{f}^{n}(x ; a+h)=\sum_{k=0}^{n} \frac{f_{a+h}^{(k)}}{k!}(x-a-h)^{k} ; \quad f(a+h) \approx \sum_{\frac{\sum_{k=0}^{n}}{n} \frac{f_{a}^{(k)}}{k!} h^{k} ; \quad f_{a+h}^{(k)} \approx \frac{\mathrm{d}^{k} T_{f}^{n}(x ; a)}{\mathrm{d}^{k}}(a+h)}^{T_{f}^{n}(a+h ; a)}
$$

- GTPSA are exact to machine precision, no approximation for orders 0..n
\Rightarrow derivatives are computed using automatic differentiation (AD).
AD exploits the fact that every computer program, no matter how complicated, executes a sequence of elementary arithmetic operations (addition, subtraction, multiplication, division, etc.) and elementary functions (exp, log, sin, cos, etc.). By applying the chain rule repeatedly to these operations, derivatives of arbitrary order can be computed automatically, accurately to working precision, and using at most a small constant factor more arithmetic operations than the original program.

Symbolic differentiation can lead to inefficient code and faces the difficulty of converting a computer program into a single expression, while numerical differentiation can introduce round-off errors in the discretization process and cancellation. Both classical methods have problems with calculating higher derivatives, where complexity and errors increase.

- MAD-NG includes a complete toolbox (i.e. module) to handle DA using AD...
\Rightarrow users have full access to GTPSA and DAmaps from the scripting language.
\Rightarrow users can manipulate DAmaps stored in the MTable or the MFlow returned by Track.
- So when DAmap/TPSA introduce errors?
\Rightarrow If they are used as functions (e.g. evaluated), instead of $D A$ (e.g. track, twiss).
\Rightarrow High orders of $T_{f}^{n}(x ; a)$ are used to interpolate at the new position by substitution.
- GTPSA are exact to machine precision, no approximation for orders 0..n
\Rightarrow derivatives are computed using automatic differentiation (AD).
AD exploits the fact that every computer program, no matter how complicated, executes a sequence of elementary arithmetic operations (addition, subtraction, multiplication, division, etc.) and elementary functions (exp, log, sin, cos, etc.). By applying the chain rule repeatedly to these operations, derivatives of arbitrary order can be computed automatically, accurately to working precision, and using at most a small constant factor more arithmetic operations than the original program.

Symbolic differentiation can lead to inefficient code and faces the difficulty of converting a computer program into a single expression, while numerical differentiation can introduce round-off errors in the discretization process and cancellation. Both classical methods have problems with calculating higher derivatives, where complexity and errors increase.

- MAD-NG includes a complete toolbox (i.e. module) to handle DA using AD...
\Rightarrow users have full access to GTPSA and DAmaps from the scripting language.
\Rightarrow users can manipulate DAmaps stored in the MTable or the MFlow returned by Track.
- So when DAmap/TPSA introduce errors?
\Rightarrow If they are used as functions (e.g. evaluated), instead of $D A$ (e.g. track, twiss).
\Rightarrow High orders of $T_{f}^{n}(x ; a)$ are used to interpolate at the new position by substitution.

Accuracy of TPSA (myths and legends)

- GTPSA are exact to machine precision, no approximation for orders 0..n
\Rightarrow derivatives are computed using automatic differentiation (AD).
AD exploits the fact that every computer program, no matter how elementary arithmetic operations (addition, subtraction, multiplica functions (exp, log, sin, cos, etc.). By applying the chain rule repe of arbitrary order can be computed automatically, accurately most a small constant factor more arithmetic operations than the

Symbolic differentiation can lead to inefficient code and faces th program into a single expression, while numerical differentiation o discretization process and cancellation. Both classical methods higher derivatives, where complexity and errors increase.

- MAD-NG includes a complete toolbox (i.e. module) to r
\Rightarrow users have full access to GTPSA and DAmaps from
\Rightarrow users can manipulate DAmaps stored in the MTable
- So when DAmap/TPSA introduce errors?
\Rightarrow If they are used as functions (e.g. evaluated), instea

$\sin x$ and its Taylor approximations nearby 0 by polynomials of degree 1, 3, 5, 7, 9, 11 and 13.
\Rightarrow High orders of $T_{f}^{n}(x ; a)$ are used to interpolate at the new position by substitution.

Accuracy of TPSA (myths and legends)

- GTPSA are exact to machine precision, no approximation for orders 0..n
\Rightarrow derivatives are computed using automatic differentiation (AD).

- MAD-NG includes a complete toolbox (i.e. module) to r
\Rightarrow users have full access to GTPSA and DAmaps from
\Rightarrow users can manipulate DAmaps stored in the MTable
- So when DAmap/TPSA introduce errors?
\Rightarrow If they are used as functions (e.g. evaluated), instea

$\sin x$ and its Taylor approximations nearby 0 by polynomials of degree 1, 3, 5, 7, 9, 11 and 13.
\Rightarrow High orders of $T_{f}^{n}(x ; a)$ are used to interpolate at the new position by substitution.
- Differential Algebra maps
- Differential Algebra maps
\Rightarrow Tuple of GTPSA, e.g. 6D phase space uses 6 GTPSA.
- Differential Algebra maps
\Rightarrow Tuple of GTPSA, e.g. 6D phase space uses 6 GTPSA.
\Rightarrow Handles user defined parameters.
- Differential Algebra maps
\Rightarrow Tuple of GTPSA, e.g. 6D phase space uses 6 GTPSA.
\Rightarrow Handles user defined parameters.
\Rightarrow Behaves like particles for the scalar part (orbit).
- Differential Algebra maps
\Rightarrow Tuple of GTPSA, e.g. 6D phase space uses 6 GTPSA.
\Rightarrow Handles user defined parameters.
\Rightarrow Behaves like particles for the scalar part (orbit).
DA map of 6 variables at order 2 (e.g. MAD-X twiss)

- Differential Algebra maps
\Rightarrow Tuple of GTPSA, e.g. 6D phase space uses 6 GTPSA.
- Handles user defined parameters.
\Rightarrow Behaves like particles for the scalar part (orbit).
DA map of 6 variables at order 2 (e.g. MAD-X twiss)

GTPSA

- Differential Algebra maps
\Rightarrow Tuple of GTPSA, e.g. 6D phase space uses 6 GTPSA.
- Handles user defined parameters.
\Rightarrow Behaves like particles for the scalar part (orbit).
DA map of 6 variables at order 2 (e.g. MAD-X twiss)

GTPSA

- Differential Algebra maps
\Rightarrow Tuple of GTPSA, e.g. 6D phase space uses 6 GTPSA.
- Handles user defined parameters.
\Rightarrow Behaves like particles for the scalar part (orbit).
DA map of 6 variables at order 2 (e.g. MAD-X twiss)

- Differential Algebra maps
\Rightarrow Tuple of GTPSA, e.g. 6D phase space uses 6 GTPSA.
- Handles user defined parameters.
\Rightarrow Behaves like particles for the scalar part (orbit).
DA map of 6 variables at order 2 (e.g. MAD-X twiss)

- Differential Algebra maps
\Rightarrow Tuple of GTPSA, e.g. 6D phase space uses 6 GTPSA.
- Handles user defined parameters.
\Rightarrow Behaves like particles for the scalar part (orbit).
DA map of 6 variables at order 2 (e.g. MAD-X twiss)

- Differential Algebra maps
\Rightarrow Tuple of GTPSA, e.g. 6D phase space uses 6 GTPSA.
- Handles user defined parameters.
\Rightarrow Behaves like particles for the scalar part (orbit).
DA map of 6 variables at order 2 (e.g. MAD-X twiss)

- Differential Algebra maps
\Rightarrow Tuple of GTPSA, e.g. 6D phase space uses 6 GTPSA.
- Handles user defined parameters.
\Rightarrow Behaves like particles for the scalar part (orbit).
DA map of 6 variables at order 2 (e.g. MAD-X twiss)

DA map

- Differential Algebra maps
\Rightarrow Tuple of GTPSA, e.g. 6D phase space uses 6 GTPSA.
\Rightarrow Handles user defined parameters.
\Rightarrow Behaves like particles for the scalar part (orbit).
DA map of 6 variables at order 2 (e.g. MAD-X twiss)

DA map

- Differential Algebra maps
\Rightarrow Tuple of GTPSA, e.g. 6D phase space uses 6 GTPSA.
\Rightarrow Handles user defined parameters.
\Rightarrow Behaves like particles for the scalar part (orbit).
DA map of 6 variables at order 2 (e.g. MAD-X twiss)

DA map

- Differential Algebra maps
\Rightarrow Tuple of GTPSA, e.g. 6D phase space uses 6 GTPSA.
\Rightarrow Handles user defined parameters.
\Rightarrow Behaves like particles for the scalar part (orbit).
DA map of 6 variables at order 2 (e.g. MAD-X twiss)

DA map

- Differential Algebra maps
\Rightarrow Tuple of GTPSA, e.g. 6D phase space uses 6 GTPSA.
- Handles user defined parameters.
\Rightarrow Behaves like particles for the scalar part (orbit).
DA map of 6 variables at order 2 (e.g. MAD-X twiss)

DAmap vs. Matrix sizes

TPSA: homogeneous polynomials are dense with $\binom{n+v}{v}=\frac{(n+v)!}{n!v!}$ coefficients

DAmap vs. Matrix sizes

TPSA: homogeneous polynomials are dense with $\binom{n+v}{v}=\frac{(n+v)!}{n!v!}$ coefficients
GTPSA: homogeneous polynomials are NOT dense (no direct formula, only upper bound)

DAmap vs. Matrix sizes

TPSA: homogeneous polynomials are dense with $\binom{n+v}{v}=\frac{(n+v)!}{n!v!}$ coefficients GTPSA: homogeneous polynomials are NOT dense (no direct formula, only upper bound)

| $\mathbf{v} \backslash \mathbf{n}$ | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ | $\mathbf{7}$ | $\mathbf{8}$ | $\mathbf{9}$ | $\mathbf{1 0}$ | $\mathbf{1 1}$ | $\mathbf{1 2}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{1}$ | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
| $\mathbf{2}$ | 6 | 12 | 20 | 30 | 42 | 56 | 72 | 90 | 110 | 132 | 156 | 182 |
| $\mathbf{3}$ | 12 | 30 | 60 | 105 | 168 | 252 | 360 | 495 | 660 | 858 | 1092 | 1365 |
| $\mathbf{4}$ | 20 | 60 | 140 | 280 | 504 | 840 | 1320 | 1980 | 2860 | 4004 | 5460 | 7280 |
| $\mathbf{5}$ | 30 | 105 | 280 | 630 | 1260 | 2310 | 3960 | 6435 | 10010 | 15015 | 21840 | 30940 |
| $\mathbf{6}$ | 42 | 168 | 504 | 1260 | 2772 | 5544 | 10296 | 18018 | 30030 | 48048 | 74256 | 111384 |
| $\mathbf{7}$ | 56 | 252 | 840 | 2310 | 5544 | 12012 | 24024 | 45045 | 80080 | 136136 | 222768 | 352716 |
| $\mathbf{8}$ | 72 | 360 | 1320 | 3960 | 10296 | 24024 | 51480 | 102960 | 194480 | 350064 | 604656 | 1007760 |

DAmap vs. Matrix sizes

TPSA: homogeneous polynomials are dense with $\binom{n+v}{v}=\frac{(n+v)!}{n!v!}$ coefficients GTPSA: homogeneous polynomials are NOT dense (no direct formula, only upper bound)

$\mathbf{v} \backslash \mathbf{n}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1 2}$
$\mathbf{1}$	2	3	4	5	6	7	8	9	10	11	12	13
$\mathbf{2}$	6	12	20	30	42	56	72	90	110	132	156	182
$\mathbf{3}$	12	30	60	105	168	252	360	495	660	858	1092	1365
$\mathbf{4}$	20	60	140	280	504	840	1320	1980	2860	4004	5460	7280
$\mathbf{5}$	30	105	280	630	1260	2310	3960	6435	10010	15015	21840	30940
$\mathbf{6}$	42	168	504	1260	2772	5544	10296	18018	30030	48048	74256	111384
$\mathbf{7}$	56	252	840	2310	5544	12012	24024	45045	80080	136136	222768	352716
$\mathbf{8}$	72	360	1320	3960	10296	24024	51480	102960	194480	350064	604656	1007760

DA map: $v\binom{n+v}{v}$

DAmap vs. Matrix sizes

TPSA: homogeneous polynomials are dense with $\binom{n+v}{v}=\frac{(n+v)!}{n!v!}$ coefficients GTPSA: homogeneous polynomials are NOT dense (no direct formula, only upper bound)

| $\mathbf{v} \backslash \mathbf{n}$ | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ | $\mathbf{7}$ | $\mathbf{8}$ | $\mathbf{9}$ | $\mathbf{1 0}$ | $\mathbf{1 1}$ | $\mathbf{1 2}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{1}$ | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
| $\mathbf{2}$ | 6 | 12 | 20 | 30 | 42 | 56 | 72 | 90 | 110 | 132 | 156 | 182 |
| $\mathbf{3}$ | 12 | 30 | 60 | 105 | 168 | 252 | 360 | 495 | 660 | 858 | 1092 | 1365 |
| $\mathbf{4}$ | 20 | 60 | 140 | 280 | 504 | 840 | 1320 | 1980 | 2860 | 4004 | 5460 | 7280 |
| $\mathbf{5}$ | 30 | 105 | 280 | 630 | 1260 | 2310 | 3960 | 6435 | 10010 | 15015 | 21840 | 30940 |
| $\mathbf{6}$ | 42 | 168 | 504 | 1260 | 2772 | 5544 | 10296 | 18018 | 30030 | 48048 | 74256 | 111384 |
| $\mathbf{7}$ | 56 | 252 | 840 | 2310 | 5544 | 12012 | 24024 | 45045 | 80080 | 136136 | 222768 | 352716 |
| $\mathbf{8}$ | 72 | 360 | 1320 | 3960 | 10296 | 24024 | 51480 | 102960 | 194480 | 350064 | 604656 | 1007760 |

| $\mathbf{v} \backslash \mathbf{n}$ | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ | $\mathbf{7}$ | $\mathbf{8}$ | $\mathbf{9}$ | $\mathbf{1 0}$ | $\mathbf{1 1}$ | $\mathbf{1 2}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{1}$ | $\mathbf{2}$ | 3 | 4 | 5 | 6 | 7 | $\mathbf{8}$ | $\mathbf{9}$ | 10 | 11 | 12 | 13 |
| $\mathbf{2}$ | 6 | 14 | 30 | 62 | 126 | 254 | 510 | 1022 | 2046 | 4094 | 8190 | 16382 |
| $\mathbf{3}$ | 12 | 39 | 120 | 363 | 1092 | 3279 | 9840 | 29523 | 88572 | 265719 | 797160 | 2391483 |
| $\mathbf{4}$ | 20 | 84 | 340 | 1364 | 5460 | 21844 | 87380 | 349524 | 1398100 | 5592404 | 22369620 | 89478484 |
| $\mathbf{5}$ | 30 | 155 | 780 | 3905 | 19530 | 97655 | 488280 | 2441405 | 12207030 | 61035155 | 305175780 | 1525878905 |
| $\mathbf{6}$ | 42 | 258 | 1554 | 9330 | 55986 | 335922 | 2015538 | 12093234 | 72559410 | 435356466 | 2612138802 | 15672832818 |
| $\mathbf{7}$ | 56 | 399 | 2800 | 19607 | 137256 | 960799 | 6725600 | 47079207 | 329554456 | 2306881199 | 16148168400 | 113037178807 |
| $\mathbf{8}$ | 72 | 584 | 4680 | 37448 | 299592 | 2396744 | 19173960 | 153391688 | 1227133512 | 9817068104 | 78536544840 | 628292358728 |

DAmap vs. Matrix sizes

TPSA: homogeneous polynomials are dense with $\binom{n+v}{v}=\frac{(n+v)!}{n!v!}$ coefficients GTPSA: homogeneous polynomials are NOT dense (no direct formula, only upper bound)

$\mathbf{v} \backslash \mathbf{n}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1 2}$
$\mathbf{1}$	2	3	4	5	6	7	8	9	10	11	12	13
$\mathbf{2}$	6	12	20	30	42	56	72	90	110	132	156	182
$\mathbf{3}$	12	30	60	105	168	252	360	495	660	858	1092	1365
$\mathbf{4}$	20	60	140	280	504	840	1320	1980	2860	4004	5460	7280
$\mathbf{5}$	30	105	280	630	1260	2310	3960	6435	10010	15015	21840	30940
$\mathbf{6}$	42	168	504	1260	2772	5544	10296	18018	30030	48048	74256	111384
$\mathbf{7}$	56	252	840	2310	5544	12012	24024	45045	80080	136136	222768	352716
$\mathbf{8}$	72	360	1320	3960	10296	24024	51480	102960	194480	350064	604656	1007760

DA map: $v\binom{n+v}{v}$

v \n	1	2	3	4	5	6	7	8	9	10	11	12
1	2	3	4	5	6	7	8	9	10	11	12	13
2	6	14	30	62	126	254	510	1022	2046	4094	8190	16382
3	12	39	120	363	1092	3279	9840	29523	88572	265719	797160	2391483
4	20	84	340	1364	5460	21844	87380	349524	1398100	5592404	22369620	89478484
5	30	155	780	3905	19530	97655	488280	2441405	12207030	61035155	305175780	1525878905
6	42	258	1554	9330	55986	335922	2015538	12093234	72559410	435356466	2612138802	15672832818
7	56	399	2800	19607	137256	960799	6725600	47079207	329554456	2306881199	16148168400	113037178807
8	72	584	4680	37448	299592	2396744	19173960	153391688	1227133512	9817068104	78536544840	628292358728

DAmap vs. Matrix sizes

TPSA: homogeneous polynomials are dense with $\binom{n+v}{v}=\frac{(n+v)!}{n!v!}$ coefficients GTPSA: homogeneous polynomials are NOT dense (no direct formula, only upper bound)

| $\mathbf{v} \backslash \mathbf{n}$ | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ | $\mathbf{7}$ | $\mathbf{8}$ | $\mathbf{9}$ | $\mathbf{1 0}$ | $\mathbf{1 1}$ | $\mathbf{1 2}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{1}$ | $\mathbf{2}$ | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
| $\mathbf{2}$ | 6 | 12 | 20 | 30 | 42 | 56 | 72 | 90 | 110 | 132 | 156 | 182 |
| $\mathbf{3}$ | 12 | 30 | 60 | 105 | 168 | 252 | 360 | 495 | 660 | 858 | 1092 | 1365 |
| $\mathbf{4}$ | 20 | 60 | 140 | 280 | 504 | 840 | 1320 | 1980 | 2860 | 4004 | 5460 | 7280 |
| $\mathbf{5}$ | 30 | 105 | 280 | 630 | 1260 | 2310 | 3960 | 6435 | 10010 | 15015 | 21840 | 30940 |
| $\mathbf{6}$ | 42 | 168 | 504 | 1260 | 2772 | 5544 | 10296 | 18018 | 30030 | 48048 | 74256 | 111384 |
| $\mathbf{7}$ | 56 | 252 | 840 | 2310 | 5544 | 12012 | 24024 | 45045 | 80080 | 136136 | 222768 | 352716 |
| $\mathbf{8}$ | 72 | 360 | 1320 | 3960 | 10296 | 24024 | 51480 | 102960 | 194480 | 350064 | 604656 | 1007760 |

DA map: $v\binom{n+v}{v}$

v \n	1	2	3	4	5	6	7	8	9	10	11	12
1	2	3	4	5	6	7	8	9	10	11	12	13
2	6	14	30	62	126	254	510	1022	2046	4094	8190	16382
3	12	39	120	363	1092	3279	9840	29523	88572	265719	797160	2391483
4	20	84	340	1364	5460	21844	87380	349524	1398100	5592404	22369620	89478484
5	30	155	780	3905	19530	97655	488280	2441405	12207030	61035155	305175780	1525878905
6	42	258	1554	9330	55986	335922	2015538	12093234	72559410	435356466	2612138802	15672832818
7	56	399	2800	19607	137256	960799	6725600	47079207	329554456	2306881199	16148168400	113037178807
8	72	584	4680	37448	299592	2396744	19173960	153391688	1227133512	9817068104	78536544840	628292358728

DAmap vs. Matrix sizes

TPSA: homogeneous polynomials are dense with $\binom{n+v}{v}=\frac{(n+v)!}{n!v!}$ coefficients GTPSA: homogeneous polynomials are NOT dense (no direct formula, only upper bound)

| $\mathbf{v} \backslash \mathbf{n}$ | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ | $\mathbf{7}$ | $\mathbf{8}$ | $\mathbf{9}$ | $\mathbf{1 0}$ | $\mathbf{1 1}$ | $\mathbf{1 2}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{1}$ | $\mathbf{2}$ | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
| $\mathbf{2}$ | 6 | 12 | 20 | 30 | 42 | 56 | 72 | 90 | 110 | 132 | 156 | 182 |
| $\mathbf{3}$ | 12 | 30 | 60 | 105 | 168 | 252 | 360 | 495 | 660 | 858 | 1092 | 1365 |
| $\mathbf{4}$ | 20 | 60 | 140 | 280 | 504 | 840 | 1320 | 1980 | 2860 | 4004 | 5460 | 7280 |
| $\mathbf{5}$ | 30 | 105 | 280 | 630 | 1260 | 2310 | 3960 | 6435 | 10010 | 15015 | 21840 | 30940 |
| $\mathbf{6}$ | 42 | 168 | 504 | 1260 | 2772 | 5544 | 10296 | 18018 | 30030 | 48048 | 74256 | 111384 |
| $\mathbf{7}$ | 56 | 252 | 840 | 2310 | 5544 | 12012 | 24024 | 45045 | 80080 | 136136 | 222768 | 352716 |
| $\mathbf{8}$ | 72 | 360 | 1320 | 3960 | 10296 | 24024 | 51480 | 102960 | 194480 | 350064 | 604656 | 1007760 |

DA map: $v\binom{n+v}{v}$

v \n	1	2	3	4	5	6	7	8	9	10	11	12
1	2	3	4	5	6	7	$8{ }^{\circ}$	9	10	11	12	13
2	6	14	30	62	126	254	- 510	1022	2046	4094	8190	16382
3	12	39	120	363	1092	3279 ${ }^{\circ}$	9840	29523	88572	265719	797160	2391483
4	20	84	340	1364	5460	2 *844	87380	349524	1398100	5592404	22369620	89478484
5	30	155	780	3905	19530.	97655	488280	2441405	12207030	61035155	305175780	1525878905
6	42	258	1554	9330	55986	335922	2015538	12093234	72559410	435356466	2612138802	15672832818
7	56	399	2800	19607	137256	960799	6725600	47079207	329554456	2306881199	16148168400	113037178807
8	72	584	4680	37448	299592	2396744	19173960	153391688	1227133512	9817068104	78536544840	628292358728

DAmap vs. Matrix sizes

TPSA: homogeneous polynomials are dense with $\binom{n+v}{v}=\frac{(n+v)!}{n!v!}$ coefficients
GTPSA: homogeneous polynomials are NOT dense (no direct formula, only upper bound)

$\mathbf{v} \backslash \mathbf{n}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1 2}$
$\mathbf{1}$	2	3	4	5	6	7	$\mathbf{8}$	9	10	11	12	13
$\mathbf{2}$	6	12	20	30	42	56	72	90	110	132	156	182
$\mathbf{3}$	12	30	60	105	168	252	360	495	660	858	1092	1365
$\mathbf{4}$	20	60	140	280	504	840	1320	1980	2860	4004	5460	7280
$\mathbf{5}$	30	105	280	630	1260	2310	3960	6435	10010	15015	21840	30940
$\mathbf{6}$	42	168	504	1260	2772	5544	10296	18018	30030	48048	74256	111384
$\mathbf{7}$	56	252	840	2310	5544	12012	24024	45045	80080	136136	222768	352716
$\mathbf{8}$	72	360	1320	3960	10296	24024	51480	102960	194480	350064	604656	1007760

DA map: $v\binom{n+v}{v}$

Matrix: $\sum_{k=0}^{n} v^{k+1}=\frac{v\left(v^{n+1}-1\right)}{v-1}$

$v \backslash n$	1	2	3	4	5	6	7	8	9	10	11	12
1	2	3	4	5	6	7	$8{ }^{\circ}$	9	10	11	12	13
2	6	14	30	62	126^{\prime}	254	- 510	1022	2046	4094	8190	16382
3	12	39	120	363	1092	3279 ${ }^{\circ}$	9840	29523	88572	265719	797160	2391483
4	20	84	340	1364	5460	2 +8844	87380	349524	1398100	5592404	22369620	89478484
5	30	155	780	390,	19530.	97655	488280	2441405	12207030	61035155	305175780	1525878905
6	42	258	1554	9330	55986	335922	2015538	12093234	72559410	435356466	2612138802	15672832818
7	56	399	2800	19607	137256	960799	6725600	47079207	329554456	2306881199	16148168400	113037178807
8	72	584	4680	37448	299592	2396744	19173960	153391688	1227133512	9817068104	78536544840	628292358728

DAmap vs. Matrix sizes

TPSA: homogeneous polynomials are dense with $\binom{n+v}{v}=\frac{(n+v)!}{n!v!}$ coefficients
GTPSA: homogeneous polynomials are NOT dense (no direct formula, only upper bound)

$\mathbf{v} \backslash \mathbf{n}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1 2}$
$\mathbf{1}$	2	3	4	5	6	7	$\mathbf{8}$	9	10	11	12	13
$\mathbf{2}$	6	12	20	30	42	56	72	90	110	132	156	182
$\mathbf{3}$	12	30	60	105	168	252	360	495	660	858	1092	1365
$\mathbf{4}$	20	60	140	280	504	840	1320	1980	2860	4004	5460	7280
$\mathbf{5}$	30	105	280	630	1260	2310	3960	6435	10010	15015	21840	30940
$\mathbf{6}$	42	168	504	1260	2772	5544	10296	18018	30030	48048	74256	111384
$\mathbf{7}$	56	252	840	2310	5544	12012	24024	45045	80080	136136	222768	352716
$\mathbf{8}$	72	360	1320	3960	10296	24024	51480	102960	194480	350064	604656	1007760

DA map: $v\binom{n+v}{v}$

$v \backslash n$	1	2	3	4	5	6	7	8	9	10	11	12
1	2	3	4	5	6	7	$8{ }^{\circ}$	9	10	11	12	13
2	6	14	30	62	126	254	- 510	1022	2046	4094	8190	16382
3	12	39	120	363	1092	3279*	9840	29523	88572	265719	797160	2391483
4	20	84	340	1364	5460	27844	87380	349524	1398100	5592404	22369620	89478484
5	30	155	780	3905	19530.	97655	488280	2441405	12207030	61035155	305175780	1525878905
6	42	258	1554	9330	55986	335922	2015538	12093234	72559410	435356466	2612138802	15672832818
7	56	399	2800	19607	137256	960799	6725600	47079207	329554456	2306881199	16148168400	113037178807
8	72	584	4680	37448	299592	2396744	19173960	153391688	1227133512	9817068104	78536544840	628292358728

GTPSA performance (vst Berz and Yang))

Fig. 5: Relative performance of multiplications.

Fig. 2: Relative performance of indexing furnctions.

Fig. 6: Relative performance of the compositions.

Fig. 4: Relative performance of multiplication at order 2 when using GTPSA with 6 variables and many knobs v. homogeneous TPSA.

GTPSA performance (vs, Berz and Yang))

Fig. 5: Relative performance of multiplications.

Fig. 6: Relative performance of the compositions.

Fig. 2: Relative performance of indexing fünctions.

Fig. 4: Relative performance of multiplication at order 2 when using GTPSA with 6 variables and many knobs v. homogeneous TPSA.

