
La
ur

en
t D

en
ia

u,
 C

E
R

N
 B

E
/A

B
P,

 1
21

1
G

en
ev

a
23

, l
au

re
nt

.d
en

ia
u@

ce
rn

.c
h

BE Beams
Department

Laurent Deniau
CERN-BE/ABP

1st December 2021

Methodical Accelerator Design
Overview of ‘Next Generation’
FCCIS WP2 - CERN.

mailto:laurent.deniau@cern.ch

BE Beams
Department

La
ur

en
t D

en
ia

u,
 C

E
R

N
 B

E
/A

B
P,

 1
21

1
G

en
ev

a,
 la

ur
en

t.d
en

ia
u@

ce
rn

.c
h

MAD-NG objectives

๏ Long term design: easy to use and extend.
➡Flexible language ➠ fast, simple, and general purpose scripting language.
‣ ~70% of the code is written in the scripting language, ~30% in C.

➡Flexible technologies ➠ self-contained, all-in-one and modular.
‣ single application, no dependencies (except Gnuplot for plotting).

➡Efficient & Portable technologies ➠ embeds a Just in Time compiler.
‣ same results everywhere (LNX, OSX, WIN), extensive unit tests (>8000).
‣ fast and extremely simple Foreign Function Interface to C, C++, Fortran, etc…

๏ 6D PTC physics using GTPSA (for DA) and symplectic integrators.
‣ slicing, combined physics, combined elements, support/development for extensions is easy…

๏ Development open source.
➡GitHub https://github.com/MethodicalAcceleratorDesign/MAD
➡ License GPL V3, User manual (~180p, covers <20%), Programmer Manual (29p).

2

mailto:laurent.deniau@cern.ch
https://github.com/MethodicalAcceleratorDesign/MAD

BE Beams
Department

La
ur

en
t D

en
ia

u,
 C

E
R

N
 B

E
/A

B
P,

 1
21

1
G

en
ev

a,
 la

ur
en

t.d
en

ia
u@

ce
rn

.c
h

MAD-NG objectives

๏ Long term design: easy to use and extend.
➡Flexible language ➠ fast, simple, and general purpose scripting language.
‣ ~70% of the code is written in the scripting language, ~30% in C.

➡Flexible technologies ➠ self-contained, all-in-one and modular.
‣ single application, no dependencies (except Gnuplot for plotting).

➡Efficient & Portable technologies ➠ embeds a Just in Time compiler.
‣ same results everywhere (LNX, OSX, WIN), extensive unit tests (>8000).
‣ fast and extremely simple Foreign Function Interface to C, C++, Fortran, etc…

๏ 6D PTC physics using GTPSA (for DA) and symplectic integrators.
‣ slicing, combined physics, combined elements, support/development for extensions is easy…

๏ Development open source.
➡GitHub https://github.com/MethodicalAcceleratorDesign/MAD
➡ License GPL V3, User manual (~180p, covers <20%), Programmer Manual (29p).

2

- intended objective -

provide a general platform to

develop tracking and optics codes

for accelerator beam physics.

mailto:laurent.deniau@cern.ch
https://github.com/MethodicalAcceleratorDesign/MAD

BE Beams
Department

La
ur

en
t D

en
ia

u,
 C

E
R

N
 B

E
/A

B
P,

 1
21

1
G

en
ev

a
23

, l
au

re
nt

.d
en

ia
u@

ce
rn

.c
h

MAD-NG schematic layout

๏ Built from the start as a platform to develop & benchmark physics.
➡Everything is accessible, modifiable and extensible by users from scripts

(e.g. even at runtime).

3

User scripts
Classes, Lattices, Studies

Components

Objects, Elements, Sequences, Tables, Maps
Survey, Tracking, Optics, Matching, Normal Forms

Plotting

Linear
Algebra
(ℝ & ℂ)

Generic
Math

(ℝ & ℂ)

Differential
Algebra
(ℝ & ℂ)

Toolboxes
help, tests
I/O, env, ...

Numerics
FFT, OPT
(ℝ & ℂ)

mailto:laurent.deniau@cern.ch

BE Beams
Department

La
ur

en
t D

en
ia

u,
 C

E
R

N
 B

E
/A

B
P,

 1
21

1
G

en
ev

a,
 la

ur
en

t.d
en

ia
u@

ce
rn

.c
h

MAD-NG ecosystem

4

MAD-NG
Core

(VM+JIT+FFI)

Linear ToolBox
Real & Complex
Vector & Matrix

Algorithms
Solvers, Eigen,

FFT, Optimisers

DA Toolbox
Real & Complex

GTPSA

MADX Env

Elements

Sequence

Beam

Object
Model

TablePlot

Commands

Survey

Track

COFind

Match

DA Map

Geometric
3D Maps

Symplectic
Integrators

Unit Tests

Dynamic
6D Maps

Correct

Spin

2022?

Radiation

Normal form
Optical Funs

Aperture

 A uses B
A B

A exposes B
A B

A is-a B
A B

Legend

TodoDone Dev

Twiss

mailto:laurent.deniau@cern.ch

BE Beams
Department

La
ur

en
t D

en
ia

u,
 C

E
R

N
 B

E
/A

B
P,

 1
21

1
G

en
ev

a,
 la

ur
en

t.d
en

ia
u@

ce
rn

.c
h

MAD-NG ecosystem

4

MAD-NG
Core

(VM+JIT+FFI)

Linear ToolBox
Real & Complex
Vector & Matrix

Algorithms
Solvers, Eigen,

FFT, Optimisers

DA Toolbox
Real & Complex

GTPSA

MADX Env

Elements

Sequence

Beam

Object
Model

TablePlot

Commands

Survey

Track

COFind

Match

DA Map

Geometric
3D Maps

Symplectic
Integrators

Unit Tests

Dynamic
6D Maps

Correct

Spin

2022?

Radiation

Normal form
Optical Funs

Aperture

 A uses B
A B

A exposes B
A B

A is-a B
A B

Objects
Legend

TodoDone Dev

Twiss

mailto:laurent.deniau@cern.ch

BE Beams
Department

La
ur

en
t D

en
ia

u,
 C

E
R

N
 B

E
/A

B
P,

 1
21

1
G

en
ev

a,
 la

ur
en

t.d
en

ia
u@

ce
rn

.c
h

MAD-NG ecosystem

4

MAD-NG
Core

(VM+JIT+FFI)

Linear ToolBox
Real & Complex
Vector & Matrix

Algorithms
Solvers, Eigen,

FFT, Optimisers

DA Toolbox
Real & Complex

GTPSA

MADX Env

Elements

Sequence

Beam

Object
Model

TablePlot

Commands

Survey

Track

COFind

Match

DA Map

Geometric
3D Maps

Symplectic
Integrators

Unit Tests

Dynamic
6D Maps

Correct

Spin

2022?

Radiation

Normal form
Optical Funs

Aperture

 A uses B
A B

A exposes B
A B

A is-a B
A B

Objects
Legend

TodoDone DevCommands

Twiss

mailto:laurent.deniau@cern.ch

BE Beams
Department

La
ur

en
t D

en
ia

u,
 C

E
R

N
 B

E
/A

B
P,

 1
21

1
G

en
ev

a,
 la

ur
en

t.d
en

ia
u@

ce
rn

.c
h

MAD-NG ecosystem

4

MAD-NG
Core

(VM+JIT+FFI)

Linear ToolBox
Real & Complex
Vector & Matrix

Algorithms
Solvers, Eigen,

FFT, Optimisers

DA Toolbox
Real & Complex

GTPSA

MADX Env

Elements

Sequence

Beam

Object
Model

TablePlot

Commands

Survey

Track

COFind

Match

DA Map

Geometric
3D Maps

Symplectic
Integrators

Unit Tests

Dynamic
6D Maps

Correct

Spin

2022?

Radiation

Normal form
Optical Funs

Aperture

 A uses B
A B

A exposes B
A B

A is-a B
A B

Geo/LinAlgObjects
Legend

TodoDone DevCommands

Twiss

mailto:laurent.deniau@cern.ch

BE Beams
Department

La
ur

en
t D

en
ia

u,
 C

E
R

N
 B

E
/A

B
P,

 1
21

1
G

en
ev

a,
 la

ur
en

t.d
en

ia
u@

ce
rn

.c
h

MAD-NG ecosystem

4

MAD-NG
Core

(VM+JIT+FFI)

Linear ToolBox
Real & Complex
Vector & Matrix

Algorithms
Solvers, Eigen,

FFT, Optimisers

DA Toolbox
Real & Complex

GTPSA

MADX Env

Elements

Sequence

Beam

Object
Model

TablePlot

Commands

Survey

Track

COFind

Match

DA Map

Geometric
3D Maps

Symplectic
Integrators

Unit Tests

Dynamic
6D Maps

Correct

Spin

2022?

Radiation

Normal form
Optical Funs

Aperture

 A uses B
A B

A exposes B
A B

A is-a B
A B

Geo/LinAlg Dyn/DiffAlgObjects
Legend

TodoDone DevCommands

Twiss

mailto:laurent.deniau@cern.ch

BE Beams
Department

La
ur

en
t D

en
ia

u,
 C

E
R

N
 B

E
/A

B
P,

 1
21

1
G

en
ev

a
23

, l
au

re
nt

.d
en

ia
u@

ce
rn

.c
h

Sequences & elements

5

SPS: LINE = (6*SUPER);
SUPER: LINE = (7*P44,INSERT,7*P44);
INSERT: LINE = (P24,2*P00,P42);
P00: LINE = (QF,DL,QD,DL);
P24: LINE = (QF,DM,2*B2,DS,PD);
P42: LINE = (PF,QD,2*B2,DM,DS);
P44: LINE = (PF,PD);
PD: LINE = (QD,2*B2,2*B1,DS);
PF: LINE = (QF,2*B1,2*B2,DS);

pf = bline {qf,2*b1,2*b2,ds}
pd = bline {qd,2*b2,2*b1,ds}
p24 = bline {qf,dm,2*b2,ds,pd}
p42 = bline {pf,qd,2*b2,dm,ds}
p00 = bline {qf,dl,qd,dl}
p44 = bline {pf,pd}
insert = bline {p24,2*p00,p42}
super = bline {7*p44,insert,7*p44}
SPS = sequence 'SPS' {6*super}

SPS in MAD-X

SPS in MAD-NG

mailto:laurent.deniau@cern.ch

BE Beams
Department

La
ur

en
t D

en
ia

u,
 C

E
R

N
 B

E
/A

B
P,

 1
21

1
G

en
ev

a
23

, l
au

re
nt

.d
en

ia
u@

ce
rn

.c
h

Sequences & elements

5

๏ Lattices definition as in MAD-X (syntax is very close)

➡ sequences are both containers (e.g. access elements) and table (store arbitrary objects).
‣ e.g. to store their beam or their own list of knobs.

➡ elements are both containers (e.g. access attributes) and table (store arbitrary objects).
➡ sequence can include subsequences, beam lines and elements (and subelements).
➡ operator overloading (+, -, *) allows to mix lines and sequences descriptions arbitrarily.
➡ names are optional and can be non-unique with support for relative or absolute counts.
‣ positions ‘AT' can be absolute or relative ‘FROM’ names with absolute or relative counts.

SPS: LINE = (6*SUPER);
SUPER: LINE = (7*P44,INSERT,7*P44);
INSERT: LINE = (P24,2*P00,P42);
P00: LINE = (QF,DL,QD,DL);
P24: LINE = (QF,DM,2*B2,DS,PD);
P42: LINE = (PF,QD,2*B2,DM,DS);
P44: LINE = (PF,PD);
PD: LINE = (QD,2*B2,2*B1,DS);
PF: LINE = (QF,2*B1,2*B2,DS);

pf = bline {qf,2*b1,2*b2,ds}
pd = bline {qd,2*b2,2*b1,ds}
p24 = bline {qf,dm,2*b2,ds,pd}
p42 = bline {pf,qd,2*b2,dm,ds}
p00 = bline {qf,dl,qd,dl}
p44 = bline {pf,pd}
insert = bline {p24,2*p00,p42}
super = bline {7*p44,insert,7*p44}
SPS = sequence 'SPS' {6*super}

SPS in MAD-X

SPS in MAD-NG

mailto:laurent.deniau@cern.ch

BE Beams
Department

La
ur

en
t D

en
ia

u,
 C

E
R

N
 B

E
/A

B
P,

 1
21

1
G

en
ev

a
23

, l
au

re
nt

.d
en

ia
u@

ce
rn

.c
h

Sequences & elements

5

๏ Lattices definition as in MAD-X (syntax is very close)

➡ sequences are both containers (e.g. access elements) and table (store arbitrary objects).
‣ e.g. to store their beam or their own list of knobs.

➡ elements are both containers (e.g. access attributes) and table (store arbitrary objects).
➡ sequence can include subsequences, beam lines and elements (and subelements).
➡ operator overloading (+, -, *) allows to mix lines and sequences descriptions arbitrarily.
➡ names are optional and can be non-unique with support for relative or absolute counts.
‣ positions ‘AT' can be absolute or relative ‘FROM’ names with absolute or relative counts.

SPS: LINE = (6*SUPER);
SUPER: LINE = (7*P44,INSERT,7*P44);
INSERT: LINE = (P24,2*P00,P42);
P00: LINE = (QF,DL,QD,DL);
P24: LINE = (QF,DM,2*B2,DS,PD);
P42: LINE = (PF,QD,2*B2,DM,DS);
P44: LINE = (PF,PD);
PD: LINE = (QD,2*B2,2*B1,DS);
PF: LINE = (QF,2*B1,2*B2,DS);

pf = bline {qf,2*b1,2*b2,ds}
pd = bline {qd,2*b2,2*b1,ds}
p24 = bline {qf,dm,2*b2,ds,pd}
p42 = bline {pf,qd,2*b2,dm,ds}
p00 = bline {qf,dl,qd,dl}
p44 = bline {pf,pd}
insert = bline {p24,2*p00,p42}
super = bline {7*p44,insert,7*p44}
SPS = sequence 'SPS' {6*super}

SPS in MAD-X

SPS in MAD-NG

unified definitions of

lines and sequences

plus extensions

mailto:laurent.deniau@cern.ch

BE Beams
Department

La
ur

en
t D

en
ia

u,
 C

E
R

N
 B

E
/A

B
P,

 1
21

1
G

en
ev

a
23

, l
au

re
nt

.d
en

ia
u@

ce
rn

.c
h

Sequences & elements

5

๏ Lattices definition as in MAD-X (syntax is very close)

➡ sequences are both containers (e.g. access elements) and table (store arbitrary objects).
‣ e.g. to store their beam or their own list of knobs.

➡ elements are both containers (e.g. access attributes) and table (store arbitrary objects).
➡ sequence can include subsequences, beam lines and elements (and subelements).
➡ operator overloading (+, -, *) allows to mix lines and sequences descriptions arbitrarily.
➡ names are optional and can be non-unique with support for relative or absolute counts.
‣ positions ‘AT' can be absolute or relative ‘FROM’ names with absolute or relative counts.

๏ Manage arbitrary number of sequences to allow
simulation of entire accelerators complex.

➡Shared sequences, e.g. LHCB1 and LHCB2.
‣ provides few sharing policies.

➡Chained sequences, e.g. PSB, PS, SPS and BTL.
➡Conditionally chained sequences (e.g. RaceTrack).
‣ e.g. Booster ➠ Ring1 if energy > 175 GeV
‣ based on special s-link element
‣ connections and conditions are performed

through an arbitrary user-defined function.

SPS: LINE = (6*SUPER);
SUPER: LINE = (7*P44,INSERT,7*P44);
INSERT: LINE = (P24,2*P00,P42);
P00: LINE = (QF,DL,QD,DL);
P24: LINE = (QF,DM,2*B2,DS,PD);
P42: LINE = (PF,QD,2*B2,DM,DS);
P44: LINE = (PF,PD);
PD: LINE = (QD,2*B2,2*B1,DS);
PF: LINE = (QF,2*B1,2*B2,DS);

pf = bline {qf,2*b1,2*b2,ds}
pd = bline {qd,2*b2,2*b1,ds}
p24 = bline {qf,dm,2*b2,ds,pd}
p42 = bline {pf,qd,2*b2,dm,ds}
p00 = bline {qf,dl,qd,dl}
p44 = bline {pf,pd}
insert = bline {p24,2*p00,p42}
super = bline {7*p44,insert,7*p44}
SPS = sequence 'SPS' {6*super}

SPS in MAD-X

SPS in MAD-NG

unified definitions of

lines and sequences

plus extensions

mailto:laurent.deniau@cern.ch

BE Beams
Department

La
ur

en
t D

en
ia

u,
 C

E
R

N
 B

E
/A

B
P,

 1
21

1
G

en
ev

a
23

, l
au

re
nt

.d
en

ia
u@

ce
rn

.c
h

Sequences conversion (MAD-X to MAD)

6

mailto:laurent.deniau@cern.ch

BE Beams
Department

La
ur

en
t D

en
ia

u,
 C

E
R

N
 B

E
/A

B
P,

 1
21

1
G

en
ev

a
23

, l
au

re
nt

.d
en

ia
u@

ce
rn

.c
h

Sequences conversion (MAD-X to MAD)

6

๏ MAD-NG loads and convert MAD-X sequences, elements and variables, including
deferred expressions, on-the-fly into the MADX environment (a MAD-NG context
that emulates MAD-X global workspace) and/or save conversion to files.

! convert MAD-X files on need, save to MAD file (disk), load to MADX environment (memory)
 MADX:load('lhc_as-built.seq' , 'lhc_as-built.mad')
 MADX:load(‘opticsfile.22_ctpps2' , ‘opticsfile.22_ctpps2.mad')
 MADX:load("FCCee_z_213_nosol_18.seq", "FCCee_z_213_nosol_18.mad")

mailto:laurent.deniau@cern.ch

BE Beams
Department

La
ur

en
t D

en
ia

u,
 C

E
R

N
 B

E
/A

B
P,

 1
21

1
G

en
ev

a
23

, l
au

re
nt

.d
en

ia
u@

ce
rn

.c
h

Sequences conversion (MAD-X to MAD)

6

๏ MAD-NG loads and convert MAD-X sequences, elements and variables, including
deferred expressions, on-the-fly into the MADX environment (a MAD-NG context
that emulates MAD-X global workspace) and/or save conversion to files.

! convert MAD-X files on need, save to MAD file (disk), load to MADX environment (memory)
 MADX:load('lhc_as-built.seq' , 'lhc_as-built.mad')
 MADX:load(‘opticsfile.22_ctpps2' , ‘opticsfile.22_ctpps2.mad')
 MADX:load("FCCee_z_213_nosol_18.seq", "FCCee_z_213_nosol_18.mad")

๏ MAD-NG embeds technologies to parse arbitrary language that can be described
with PEG (parser expression grammar) to generate AST (abstract syntax tree), and
apply transformations and/or evaluations.

user
script

select
grammar

generate
parser

parse
(build AST)

transform
(AST ➠ AST’)

generate
(AST’ ➠ MAD)

execute
(MAD-NG)

.madx

.xxx
parser
code

MAD
script

context
(e.g. MAD-X dictionary &

tables columns)

mailto:laurent.deniau@cern.ch

BE Beams
Department

La
ur

en
t D

en
ia

u,
 C

E
R

N
 B

E
/A

B
P,

 1
21

1
G

en
ev

a
23

, l
au

re
nt

.d
en

ia
u@

ce
rn

.c
h

Sequences conversion (MAD-X to MAD)

6

๏ MAD-NG loads and convert MAD-X sequences, elements and variables, including
deferred expressions, on-the-fly into the MADX environment (a MAD-NG context
that emulates MAD-X global workspace) and/or save conversion to files.

! convert MAD-X files on need, save to MAD file (disk), load to MADX environment (memory)
 MADX:load('lhc_as-built.seq' , 'lhc_as-built.mad')
 MADX:load(‘opticsfile.22_ctpps2' , ‘opticsfile.22_ctpps2.mad')
 MADX:load("FCCee_z_213_nosol_18.seq", "FCCee_z_213_nosol_18.mad")

๏ MAD-NG embeds technologies to parse arbitrary language that can be described
with PEG (parser expression grammar) to generate AST (abstract syntax tree), and
apply transformations and/or evaluations.

user
script

select
grammar

generate
parser

parse
(build AST)

transform
(AST ➠ AST’)

generate
(AST’ ➠ MAD)

execute
(MAD-NG)

.madx

.xxx
parser
code

MAD
script

context
(e.g. MAD-X dictionary &

tables columns)

These technologies allow

reading new formats with

medium efforts, but it does

not mean that physics will

be the same!!

mailto:laurent.deniau@cern.ch

BE Beams
Department

La
ur

en
t D

en
ia

u,
 C

E
R

N
 B

E
/A

B
P,

 1
21

1
G

en
ev

a
23

, l
au

re
nt

.d
en

ia
u@

ce
rn

.c
h

Sequences conversion (MAD-X to MAD)

6

๏ MAD-NG loads and convert MAD-X sequences, elements and variables, including
deferred expressions, on-the-fly into the MADX environment (a MAD-NG context
that emulates MAD-X global workspace) and/or save conversion to files.

! convert MAD-X files on need, save to MAD file (disk), load to MADX environment (memory)
 MADX:load('lhc_as-built.seq' , 'lhc_as-built.mad')
 MADX:load(‘opticsfile.22_ctpps2' , ‘opticsfile.22_ctpps2.mad')
 MADX:load("FCCee_z_213_nosol_18.seq", "FCCee_z_213_nosol_18.mad")

๏ MAD-NG embeds technologies to parse arbitrary language that can be described
with PEG (parser expression grammar) to generate AST (abstract syntax tree), and
apply transformations and/or evaluations.

user
script

select
grammar

generate
parser

parse
(build AST)

transform
(AST ➠ AST’)

generate
(AST’ ➠ MAD)

execute
(MAD-NG)

.madx

.xxx
parser
code

MAD
script

context
(e.g. MAD-X dictionary &

tables columns)

๏ MAD-NG allows to run MAD-X as a module to convert sequences, elements and
variables into MADX environment as with CpyMad. But this method does not
propagate the deferred expressions, i.e. lattice logic is lost (fine for a “static”
description). Could be propagated with some extra work.

These technologies allow

reading new formats with

medium efforts, but it does

not mean that physics will

be the same!!

mailto:laurent.deniau@cern.ch

BE Beams
Department

La
ur

en
t D

en
ia

u,
 C

E
R

N
 B

E
/A

B
P,

 1
21

1
G

en
ev

a
23

, l
au

re
nt

.d
en

ia
u@

ce
rn

.c
h

Sequence plot (LHC 1 & 2 survey)

7

mailto:laurent.deniau@cern.ch

BE Beams
Department

La
ur

en
t D

en
ia

u,
 C

E
R

N
 B

E
/A

B
P,

 1
21

1
G

en
ev

a
23

, l
au

re
nt

.d
en

ia
u@

ce
rn

.c
h

Sequence plot (LHC 1 & 2 survey)

7

mailto:laurent.deniau@cern.ch

BE Beams
Department

La
ur

en
t D

en
ia

u,
 C

E
R

N
 B

E
/A

B
P,

 1
21

1
G

en
ev

a
23

, l
au

re
nt

.d
en

ia
u@

ce
rn

.c
h

Sequence plot (LHC 1 & 2 survey)

7

plot {
 sequence = {lhcb1,lhcb2},
 laypos = "in",
 layonly = false,
 title = "Layout in plot",
 prolog = 'set size ratio -1',
 scrdump = "plotlhc.gp",
}

mailto:laurent.deniau@cern.ch

BE Beams
Department

La
ur

en
t D

en
ia

u,
 C

E
R

N
 B

E
/A

B
P,

 1
21

1
G

en
ev

a
23

, l
au

re
nt

.d
en

ia
u@

ce
rn

.c
h

Sequence plot (LHC 1 & 2 survey)

7

plot {
 sequence = {lhcb1,lhcb2},
 laypos = "in",
 layonly = false,
 title = "Layout in plot",
 prolog = 'set size ratio -1',
 scrdump = "plotlhc.gp",
}

Gnuplot script (.gp files)

size is 5 MB & 125000+ lines

and takes ~1 sec to display.

All items are tagged

i.e. moving the mouse over

show their name and kind

MAD-NG loads the entire

LHC from converted files

(.mad files) in ~0.2 s.

MAD-NG loads the entire

LHC in MAD-X format and

saved it in files in ~1 s.

MAD-X loads the entire

LHC definition in ~1 s.

(2 beamlines, ~30000 lines)

mailto:laurent.deniau@cern.ch

BE Beams
Department

La
ur

en
t D

en
ia

u,
 C

E
R

N
 B

E
/A

B
P,

 1
21

1
G

en
ev

a
23

, l
au

re
nt

.d
en

ia
u@

ce
rn

.c
h

Sequence plot (LHC 1 & 2 at IP1 & IP5 layout)

8

0

5

10

15

20

25

0 100 200 300 400 500

TestPlotScript.testIP1IP51

y1

mailto:laurent.deniau@cern.ch

BE Beams
Department

La
ur

en
t D

en
ia

u,
 C

E
R

N
 B

E
/A

B
P,

 1
21

1
G

en
ev

a
23

, l
au

re
nt

.d
en

ia
u@

ce
rn

.c
h

Sequence plot (LHC 1 & 2 at IP1 & IP5 layout)

8

plot {
 sequence = { lhcb1, lhcb2, lhcb1, lhcb2 },
 range = {
 {“E.DS.L1.B1","S.DS.R1.B1"},{"E.DS.L1.B2","S.DS.R1.B2"},
 {"E.DS.L5.B1","S.DS.R5.B1"},{"E.DS.L5.B2","S.DS.R5.B2"},
 },
 laydisty = {
 lhcb2[“E.DS.L1.B2"].mech_sep, ! second bline
 -0.4, ! third bline
 -0.4 + lhcb2[‘E.DS.L5.B2'].mech_sep ! fourth bline
 },
 title = "IP1-IP5 two angled beams",
}

0

5

10

15

20

25

0 100 200 300 400 500

TestPlotScript.testIP1IP51

y1

mailto:laurent.deniau@cern.ch

BE Beams
Department

La
ur

en
t D

en
ia

u,
 C

E
R

N
 B

E
/A

B
P,

 1
21

1
G

en
ev

a
23

, l
au

re
nt

.d
en

ia
u@

ce
rn

.c
h

Sequence plot (LHC 1 & 2 at IP1 & IP5 layout)

8

Layout can be at

top, bottom, middle, inside

plot {
 sequence = { lhcb1, lhcb2, lhcb1, lhcb2 },
 range = {
 {“E.DS.L1.B1","S.DS.R1.B1"},{"E.DS.L1.B2","S.DS.R1.B2"},
 {"E.DS.L5.B1","S.DS.R5.B1"},{"E.DS.L5.B2","S.DS.R5.B2"},
 },
 laydisty = {
 lhcb2[“E.DS.L1.B2"].mech_sep, ! second bline
 -0.4, ! third bline
 -0.4 + lhcb2[‘E.DS.L5.B2'].mech_sep ! fourth bline
 },
 title = "IP1-IP5 two angled beams",
}

0

5

10

15

20

25

0 100 200 300 400 500

TestPlotScript.testIP1IP51

y1

mailto:laurent.deniau@cern.ch

BE Beams
Department

La
ur

en
t D

en
ia

u,
 C

E
R

N
 B

E
/A

B
P,

 1
21

1
G

en
ev

a
23

, l
au

re
nt

.d
en

ia
u@

ce
rn

.c
h

Track plot (LHCB1 around IP5)

9

mailto:laurent.deniau@cern.ch

BE Beams
Department

La
ur

en
t D

en
ia

u,
 C

E
R

N
 B

E
/A

B
P,

 1
21

1
G

en
ev

a
23

, l
au

re
nt

.d
en

ia
u@

ce
rn

.c
h

Track plot (LHCB1 around IP5)

9

-0.008
-0.006
-0.004
-0.002

0
0.002
0.004
0.006
0.008

0 100 200 300 400 500 600 700 800
-3

-2

-1

0

1

2

3

x,
y
[m
]

R
16
,R
36

s [m]

LHCB1 around IP5

x
y

R16
R36

mailto:laurent.deniau@cern.ch

BE Beams
Department

La
ur

en
t D

en
ia

u,
 C

E
R

N
 B

E
/A

B
P,

 1
21

1
G

en
ev

a
23

, l
au

re
nt

.d
en

ia
u@

ce
rn

.c
h

Track plot (LHCB1 around IP5)

9

-0.008
-0.006
-0.004
-0.002

0
0.002
0.004
0.006
0.008

0 100 200 300 400 500 600 700 800
-3

-2

-1

0

1

2

3

x,
y
[m
]

R
16
,R
36

s [m]

LHCB1 around IP5

x
y

R16
R36

local e1, e2 = "E.ARC.45.B1","S.ARC.56.B1"
mtbl:addcol('s5', \i -> mtbl.s[i]-mtbl[e1].s)
plot { -- plot with extracted data around IP5
 title = "LHCB1 around IP5",
 sequence = lhcb1,
 range = {e1,e2},
 table = mtbl,
 tablerange = {e1,e2},
 x1y1 = {s5={'x','y'}},
 x1y2 = {s5={'R16','R36'}},
 styles = "lines",
 xlabel = "s [m]",
 ylabel = "x,y [m]",
 y2label = "R16,R36",
 fontsize = 14,
 output = “plots/orbit_lhcb1_ip5_da.pdf",
--scrdump = "plots/orbit_lhcb1_ip5.gp",
}

mailto:laurent.deniau@cern.ch

BE Beams
Department

La
ur

en
t D

en
ia

u,
 C

E
R

N
 B

E
/A

B
P,

 1
21

1
G

en
ev

a,
 la

ur
en

t.d
en

ia
u@

ce
rn

.c
h

Plot survey & twiss (two rings with 𝜷x)

10

-40

-20

0

20

40

-80 -60 -40 -20 0

z
[m
]

x [m]

Layout in plot with �x

�x/3

mailto:laurent.deniau@cern.ch

BE Beams
Department

La
ur

en
t D

en
ia

u,
 C

E
R

N
 B

E
/A

B
P,

 1
21

1
G

en
ev

a,
 la

ur
en

t.d
en

ia
u@

ce
rn

.c
h

Plot survey & twiss (two rings with 𝜷x)

10

-40

-20

0

20

40

-80 -60 -40 -20 0

z
[m
]

x [m]

Layout in plot with �x

�x/3
local ncell = 25
local mb = sbend { l=2 }
local mq = quadrupole { l=1 }
local cell = sequence { l=10, refer='entry',
 mq 'mq1' { at=0, k1=0.29601 },
 mb 'mb1' { at=2, angle := pi/ncell },
 mq 'mq2' { at=5, k1=-0.30242 },
 mb 'mb2' { at=7, angle := pi/ncell },
 }
local seq = sequence 'seq' { ncell*cell, beam=beam }
local sv = survey { sequence=seq, nslice=5, atslice=ftrue, mapsave=true }
local tw = twiss { sequence=seq, nslice=5, atslice=ftrue }
! compute betx in global frame
local bet11 = { x=vector(#sv), z=vector(#sv) }
local v, scl = vector(3), round(tw.beta11:max()/5)
for i=1,#sv do
 v = sv.W[i] * v:fill{3+tw.beta11[i]/scl, 0, 0}
 bet11.x[i], bet11.z[i] = v[1], v[3]
end
bet11.x = bet11.x+sv.x
bet11.z = bet11.z+sv.z
! plot layout of the ring and the betx
plot {
 sequence = seq,
 laypos = "in",
 layonly = false,
 title = "Layout in plot with \u{03b2}_x",
 data = { x=bet11.x, z=bet11.z },
 x1y1 = { x = 'z' },
 styles = 'lines',
 xlabel = "x [m]",
 ylabel = "z [m]",
 legend = { z = '\u{03b2}_x/'..scl },
}

mailto:laurent.deniau@cern.ch

BE Beams
Department

La
ur

en
t D

en
ia

u,
 C

E
R

N
 B

E
/A

B
P,

 1
21

1
G

en
ev

a,
 la

ur
en

t.d
en

ia
u@

ce
rn

.c
h

Plot survey & twiss (two rings with 𝜷x)

10

-40

-20

0

20

40

-80 -60 -40 -20 0

z
[m
]

x [m]

Layout in plot with �x

�x/3
local ncell = 25
local mb = sbend { l=2 }
local mq = quadrupole { l=1 }
local cell = sequence { l=10, refer='entry',
 mq 'mq1' { at=0, k1=0.29601 },
 mb 'mb1' { at=2, angle := pi/ncell },
 mq 'mq2' { at=5, k1=-0.30242 },
 mb 'mb2' { at=7, angle := pi/ncell },
 }
local seq = sequence 'seq' { ncell*cell, beam=beam }
local sv = survey { sequence=seq, nslice=5, atslice=ftrue, mapsave=true }
local tw = twiss { sequence=seq, nslice=5, atslice=ftrue }
! compute betx in global frame
local bet11 = { x=vector(#sv), z=vector(#sv) }
local v, scl = vector(3), round(tw.beta11:max()/5)
for i=1,#sv do
 v = sv.W[i] * v:fill{3+tw.beta11[i]/scl, 0, 0}
 bet11.x[i], bet11.z[i] = v[1], v[3]
end
bet11.x = bet11.x+sv.x
bet11.z = bet11.z+sv.z
! plot layout of the ring and the betx
plot {
 sequence = seq,
 laypos = "in",
 layonly = false,
 title = "Layout in plot with \u{03b2}_x",
 data = { x=bet11.x, z=bet11.z },
 x1y1 = { x = 'z' },
 styles = 'lines',
 xlabel = "x [m]",
 ylabel = "z [m]",
 legend = { z = '\u{03b2}_x/'..scl },
}

mailto:laurent.deniau@cern.ch

BE Beams
Department

La
ur

en
t D

en
ia

u,
 C

E
R

N
 B

E
/A

B
P,

 1
21

1
G

en
ev

a,
 la

ur
en

t.d
en

ia
u@

ce
rn

.c
h

Element tracking: slices, actions & frames

11

atsliceatslice atslice atslice atslice

reference frame reference frame
{ }

atentry atexit0 1 2 3 4 -2

Forward tracking

Backward tracking

-1

mailto:laurent.deniau@cern.ch

BE Beams
Department

La
ur

en
t D

en
ia

u,
 C

E
R

N
 B

E
/A

B
P,

 1
21

1
G

en
ev

a,
 la

ur
en

t.d
en

ia
u@

ce
rn

.c
h

Element tracking: slices, actions & frames

11

misalign 2misalign 1 magnet frame
atsliceatslice atslice atslice atslice

reference frame reference frame
{ }

atentry atexit0 1 2 3 4 -2

Forward tracking

Backward tracking

-1

mailto:laurent.deniau@cern.ch

BE Beams
Department

La
ur

en
t D

en
ia

u,
 C

E
R

N
 B

E
/A

B
P,

 1
21

1
G

en
ev

a,
 la

ur
en

t.d
en

ia
u@

ce
rn

.c
h

Element tracking: slices, actions & frames

11

tilt-1tilt tilted frame

misalign 2misalign 1 magnet frame
atsliceatslice atslice atslice atslice

reference frame reference frame
{ }

atentry atexit0 1 2 3 4 -2

Forward tracking

Backward tracking

-1

mailto:laurent.deniau@cern.ch

BE Beams
Department

La
ur

en
t D

en
ia

u,
 C

E
R

N
 B

E
/A

B
P,

 1
21

1
G

en
ev

a,
 la

ur
en

t.d
en

ia
u@

ce
rn

.c
h

[fringe]

Element tracking: slices, actions & frames

11

 [radiation] [radiation]

[fringe]
tilt-1tilt tilted frame

misalign 2misalign 1 magnet frame
atsliceatslice atslice atslice atslice

reference frame reference frame
{ }

atentry atexit0 1 2 3 4 -2

Forward tracking

Backward tracking

-1

mailto:laurent.deniau@cern.ch

BE Beams
Department

La
ur

en
t D

en
ia

u,
 C

E
R

N
 B

E
/A

B
P,

 1
21

1
G

en
ev

a,
 la

ur
en

t.d
en

ia
u@

ce
rn

.c
h

[fringe]

Element tracking: slices, actions & frames

11

aperture
 [radiation] [radiation]

[fringe]
tilt-1tilt tilted frame

misalign 2misalign 1 magnet frame
atsliceatslice atslice atslice atslice

reference frame reference frame
{ }

atentry atexit0 1 2 3 4 -2

Forward tracking

Backward tracking

-1

mailto:laurent.deniau@cern.ch

BE Beams
Department

La
ur

en
t D

en
ia

u,
 C

E
R

N
 B

E
/A

B
P,

 1
21

1
G

en
ev

a,
 la

ur
en

t.d
en

ia
u@

ce
rn

.c
h

[fringe]

Element tracking: slices, actions & frames

11

aperture

tilt-1(k,ks)tilt(k,ks) map frame
 [radiation] [radiation]

[fringe]
tilt-1tilt tilted frame

misalign 2misalign 1 magnet frame
atsliceatslice atslice atslice atslice

reference frame reference frame
{ }

atentry atexit0 1 2 3 4 -2

Forward tracking

Backward tracking

-1

mailto:laurent.deniau@cern.ch

BE Beams
Department

La
ur

en
t D

en
ia

u,
 C

E
R

N
 B

E
/A

B
P,

 1
21

1
G

en
ev

a,
 la

ur
en

t.d
en

ia
u@

ce
rn

.c
h

[fringe]

Element tracking: slices, actions & frames

11

aperture

tilt-1(k,ks)tilt(k,ks) map frame
 [radiation] [radiation]

[fringe]
tilt-1tilt tilted frame

misalign 2misalign 1 magnet frame
atsliceatslice atslice atslice atslice

reference frame reference frame
{ }

atentry atexit0 1 2 3 4 -2

Forward tracking

Backward tracking

 atentry(elm, m, sdir, -1)
 mis (elm, m, sdir)
 rot (tlt, m, sdir)
 fringe (elm, m, sdir)
 track (elm, m, 1 , thick, thin)
 fringe (elm, m, -sdir)
 rot (tlt, m, -sdir)
 mis (elm, m, -sdir)
 atexit (elm, m, -sdir, -2)

-1

mailto:laurent.deniau@cern.ch

BE Beams
Department

La
ur

en
t D

en
ia

u,
 C

E
R

N
 B

E
/A

B
P,

 1
21

1
G

en
ev

a,
 la

ur
en

t.d
en

ia
u@

ce
rn

.c
h

[fringe]

Element tracking: slices, actions & frames

11

aperture

tilt-1(k,ks)tilt(k,ks) map frame
 [radiation] [radiation]

[fringe]
tilt-1tilt tilted frame

misalign 2misalign 1 magnet frame
atsliceatslice atslice atslice atslice

reference frame reference frame
{ }

atentry atexit0 1 2 3 4 -2

Forward tracking

Backward tracking

 atentry(elm, m, sdir, -1)
 mis (elm, m, sdir)
 rot (tlt, m, sdir)
 fringe (elm, m, sdir)
 track (elm, m, 1 , thick, thin)
 fringe (elm, m, -sdir)
 rot (tlt, m, -sdir)
 mis (elm, m, -sdir)
 atexit (elm, m, -sdir, -2)

๏ Slicing can be uniform or arbitrary.
๏ Subelements thick or thin can be inserted at

arbitrary relative (to parent length) or absolute (from
parent entry) positions. Subelements define slices.

๏ Installing elements in sequence automatically
(user-policy) insert them as subelement upon collision.

๏ Misalignments (element to sequence) restore the frame on exit.
Permanent misalignments (element property) don’t (i.e. patches).
Survey can consider misalignments (user-policy) for superposition inside elements.

-1

mailto:laurent.deniau@cern.ch

BE Beams
Department

La
ur

en
t D

en
ia

u,
 C

E
R

N
 B

E
/A

B
P,

 1
21

1
G

en
ev

a,
 la

ur
en

t.d
en

ia
u@

ce
rn

.c
h

Survey: sbend tilted by 90º — dphi 15º dy 0.1m

12

mailto:laurent.deniau@cern.ch

BE Beams
Department

La
ur

en
t D

en
ia

u,
 C

E
R

N
 B

E
/A

B
P,

 1
21

1
G

en
ev

a,
 la

ur
en

t.d
en

ia
u@

ce
rn

.c
h

Survey: sbend tilted by 90º — dphi 15º dy 0.1m

12

x, y with misalignments, xr, yr reference frame without misalignment

nslice = 3

reference
frame

W
s

y

x x1

x2

x′ 1

x′ 2

R
T

V
T̄

mailto:laurent.deniau@cern.ch

BE Beams
Department

La
ur

en
t D

en
ia

u,
 C

E
R

N
 B

E
/A

B
P,

 1
21

1
G

en
ev

a,
 la

ur
en

t.d
en

ia
u@

ce
rn

.c
h

Survey: sbend tilted by 90º — dphi 15º dy 0.1m

12

x, y with misalignments, xr, yr reference frame without misalignment

nslice = 3

reference
frame

W
s

y

x x1

x2

x′ 1

x′ 2

R
T

V
T̄

mailto:laurent.deniau@cern.ch

BE Beams
Department

La
ur

en
t D

en
ia

u,
 C

E
R

N
 B

E
/A

B
P,

 1
21

1
G

en
ev

a,
 la

ur
en

t.d
en

ia
u@

ce
rn

.c
h

Tracking actions (Survey, Track, Cofind and Twiss)

13

mailto:laurent.deniau@cern.ch

BE Beams
Department

La
ur

en
t D

en
ia

u,
 C

E
R

N
 B

E
/A

B
P,

 1
21

1
G

en
ev

a,
 la

ur
en

t.d
en

ia
u@

ce
rn

.c
h

Tracking actions (Survey, Track, Cofind and Twiss)

๏ Actions are functions (or objects with function-like semantic).
➡ MAD-NG functions are first class lexical closures (fun & env) and can do everything…
‣ i.e. high order functions that can receive and return multiple arguments.

➡ actions kinds: atentry, atslice, atexit, ataper, atsave.
➡ mechanism to customise or extend other commands (e.g. Twiss with Track and Cofind).

13

mailto:laurent.deniau@cern.ch

BE Beams
Department

La
ur

en
t D

en
ia

u,
 C

E
R

N
 B

E
/A

B
P,

 1
21

1
G

en
ev

a,
 la

ur
en

t.d
en

ia
u@

ce
rn

.c
h

Tracking actions (Survey, Track, Cofind and Twiss)

๏ Actions are functions (or objects with function-like semantic).
➡ MAD-NG functions are first class lexical closures (fun & env) and can do everything…
‣ i.e. high order functions that can receive and return multiple arguments.

➡ actions kinds: atentry, atslice, atexit, ataper, atsave.
➡ mechanism to customise or extend other commands (e.g. Twiss with Track and Cofind).

๏ Actions can be combined with combinators (and selectors).
➡ chain(f1,f2) ➠ f1() ; return f2().
➡ achain(f1,f2) ➠ return f1() and f2().
➡ ochain(f1,f2) ➠ return f1() or f2().
➡ compose(f1,f2) ➠ return f1(f2()).
➡ ftrue, ffalse, fnone.

13

mailto:laurent.deniau@cern.ch

BE Beams
Department

La
ur

en
t D

en
ia

u,
 C

E
R

N
 B

E
/A

B
P,

 1
21

1
G

en
ev

a,
 la

ur
en

t.d
en

ia
u@

ce
rn

.c
h

Tracking actions (Survey, Track, Cofind and Twiss)

๏ Actions are functions (or objects with function-like semantic).
➡ MAD-NG functions are first class lexical closures (fun & env) and can do everything…
‣ i.e. high order functions that can receive and return multiple arguments.

➡ actions kinds: atentry, atslice, atexit, ataper, atsave.
➡ mechanism to customise or extend other commands (e.g. Twiss with Track and Cofind).

๏ Actions can be combined with combinators (and selectors).
➡ chain(f1,f2) ➠ f1() ; return f2().
➡ achain(f1,f2) ➠ return f1() and f2().
➡ ochain(f1,f2) ➠ return f1() or f2().
➡ compose(f1,f2) ➠ return f1(f2()).
➡ ftrue, ffalse, fnone.

๏ Actions can be selected by selectors:
➡ Selectors are functions to enable/disable actions based on some particular criteria

e.g. slices number or any other user-defined criteria.
predefined selectors: atall, atentry, atbegin, atbody, atbound, atend, atexit,
 atmid, atins, atstd, actionat, action.

13

mailto:laurent.deniau@cern.ch

BE Beams
Department

La
ur

en
t D

en
ia

u,
 C

E
R

N
 B

E
/A

B
P,

 1
21

1
G

en
ev

a,
 la

ur
en

t.d
en

ia
u@

ce
rn

.c
h

Tracking actions (Survey, Track, Cofind and Twiss)

๏ Actions are functions (or objects with function-like semantic).
➡ MAD-NG functions are first class lexical closures (fun & env) and can do everything…
‣ i.e. high order functions that can receive and return multiple arguments.

➡ actions kinds: atentry, atslice, atexit, ataper, atsave.
➡ mechanism to customise or extend other commands (e.g. Twiss with Track and Cofind).

๏ Actions can be combined with combinators (and selectors).
➡ chain(f1,f2) ➠ f1() ; return f2().
➡ achain(f1,f2) ➠ return f1() and f2().
➡ ochain(f1,f2) ➠ return f1() or f2().
➡ compose(f1,f2) ➠ return f1(f2()).
➡ ftrue, ffalse, fnone.

๏ Actions can be selected by selectors:
➡ Selectors are functions to enable/disable actions based on some particular criteria

e.g. slices number or any other user-defined criteria.
predefined selectors: atall, atentry, atbegin, atbody, atbound, atend, atexit,
 atmid, atins, atstd, actionat, action.

13

๏ Actions are triggered by tracking codes (Survey and Track).
➡ actions are chained so they are independent from each other.
➡ default for ataper: check for aperture at slice 0 (titled frame).
➡ default for atsave: save data at exit (reference frame),

 and at slices (titled frame) if atslice = ftrue.

mailto:laurent.deniau@cern.ch

BE Beams
Department

La
ur

en
t D

en
ia

u,
 C

E
R

N
 B

E
/A

B
P,

 1
21

1
G

en
ev

a,
 la

ur
en

t.d
en

ia
u@

ce
rn

.c
h

Tracking actions (Survey, Track, Cofind and Twiss)

๏ Actions are functions (or objects with function-like semantic).
➡ MAD-NG functions are first class lexical closures (fun & env) and can do everything…
‣ i.e. high order functions that can receive and return multiple arguments.

➡ actions kinds: atentry, atslice, atexit, ataper, atsave.
➡ mechanism to customise or extend other commands (e.g. Twiss with Track and Cofind).

๏ Actions can be combined with combinators (and selectors).
➡ chain(f1,f2) ➠ f1() ; return f2().
➡ achain(f1,f2) ➠ return f1() and f2().
➡ ochain(f1,f2) ➠ return f1() or f2().
➡ compose(f1,f2) ➠ return f1(f2()).
➡ ftrue, ffalse, fnone.

๏ Actions can be selected by selectors:
➡ Selectors are functions to enable/disable actions based on some particular criteria

e.g. slices number or any other user-defined criteria.
predefined selectors: atall, atentry, atbegin, atbody, atbound, atend, atexit,
 atmid, atins, atstd, actionat, action.

13

๏ Actions are triggered by tracking codes (Survey and Track).
➡ actions are chained so they are independent from each other.
➡ default for ataper: check for aperture at slice 0 (titled frame).
➡ default for atsave: save data at exit (reference frame),

 and at slices (titled frame) if atslice = ftrue.

atslice = ftrue

atbegin and ataper
and ataper (user)

atsave (track)
and atsave (twiss)

and atsave (user)

Order of execution at each slice

Actions are a powerful tool to extend

tracking codes (survey and track).

E.g. connect sequences (or beams)

together; replace, extend or wrap

computations; add extra physics

between multi-particules or damaps,

etc…

mailto:laurent.deniau@cern.ch

BE Beams
Department

La
ur

en
t D

en
ia

u,
 C

E
R

N
 B

E
/A

B
P,

 1
21

1
G

en
ev

a,
 la

ur
en

t.d
en

ia
u@

ce
rn

.c
h

Track in “depth” : user-defined possible extensions

14

Sequence Element Integrator Maps

mailto:laurent.deniau@cern.ch

BE Beams
Department

La
ur

en
t D

en
ia

u,
 C

E
R

N
 B

E
/A

B
P,

 1
21

1
G

en
ev

a,
 la

ur
en

t.d
en

ia
u@

ce
rn

.c
h

Track in “depth” : user-defined possible extensions

14

Track

build mflow
and mtable

run track
main loop

Sequence Element Integrator Maps

mailto:laurent.deniau@cern.ch

BE Beams
Department

La
ur

en
t D

en
ia

u,
 C

E
R

N
 B

E
/A

B
P,

 1
21

1
G

en
ev

a,
 la

ur
en

t.d
en

ia
u@

ce
rn

.c
h

Track in “depth” : user-defined possible extensions

14

Track

build mflow
and mtable

run track
main loop

track
(method)

retrieve
attributes

model & attributes ➠
thick, thin & fringe maps

model & method ➠
integrator

Sequence Element Integrator Maps

mailto:laurent.deniau@cern.ch

BE Beams
Department

La
ur

en
t D

en
ia

u,
 C

E
R

N
 B

E
/A

B
P,

 1
21

1
G

en
ev

a,
 la

ur
en

t.d
en

ia
u@

ce
rn

.c
h

Track in “depth” : user-defined possible extensions

14

Track

build mflow
and mtable

run track
main loop

atentry
misalign

tilt, fringe

track
(method)

retrieve
attributes

model & attributes ➠
thick, thin & fringe maps

model & method ➠
integrator track through

(sub)element

Sequence Element Integrator Maps

mailto:laurent.deniau@cern.ch

BE Beams
Department

La
ur

en
t D

en
ia

u,
 C

E
R

N
 B

E
/A

B
P,

 1
21

1
G

en
ev

a,
 la

ur
en

t.d
en

ia
u@

ce
rn

.c
h

Track in “depth” : user-defined possible extensions

14

Track

build mflow
and mtable

run track
main loop

atentry
misalign

tilt, fringe

track
(method)

retrieve
attributes

model & attributes ➠
thick, thin & fringe maps

model & method ➠
integrator

slicing & atslice ➠
integration steps
(ataper, atsave)

track through
(sub)element

Integrate
selected maps &
scheme: Yoshida,
Boole, Teapot,…

Sequence Element Integrator Maps

mailto:laurent.deniau@cern.ch

BE Beams
Department

La
ur

en
t D

en
ia

u,
 C

E
R

N
 B

E
/A

B
P,

 1
21

1
G

en
ev

a,
 la

ur
en

t.d
en

ia
u@

ce
rn

.c
h

Track in “depth” : user-defined possible extensions

14

Track

build mflow
and mtable

run track
main loop

atentry
misalign

tilt, fringe

track
(method)

retrieve
attributes

model & attributes ➠
thick, thin & fringe maps

model & method ➠
integrator

slicing & atslice ➠
integration steps
(ataper, atsave)

track through
(sub)element

Integrate
selected maps &
scheme: Yoshida,
Boole, Teapot,…

thick

kick

thick

atslice

Sequence Element Integrator Maps

mailto:laurent.deniau@cern.ch

BE Beams
Department

La
ur

en
t D

en
ia

u,
 C

E
R

N
 B

E
/A

B
P,

 1
21

1
G

en
ev

a,
 la

ur
en

t.d
en

ia
u@

ce
rn

.c
h

Track in “depth” : user-defined possible extensions

14

Track

build mflow
and mtable

run track
main loop

atentry
misalign

tilt, fringe

track
(method)

retrieve
attributes

model & attributes ➠
thick, thin & fringe maps

model & method ➠
integrator

slicing & atslice ➠
integration steps
(ataper, atsave)

track through
(sub)element

Integrate
selected maps &
scheme: Yoshida,
Boole, Teapot,…

thick

kick

thick

atslice

Sequence Element Integrator Maps

nslice
times

mailto:laurent.deniau@cern.ch

BE Beams
Department

La
ur

en
t D

en
ia

u,
 C

E
R

N
 B

E
/A

B
P,

 1
21

1
G

en
ev

a,
 la

ur
en

t.d
en

ia
u@

ce
rn

.c
h

Track in “depth” : user-defined possible extensions

14

Track

build mflow
and mtable

run track
main loop

atentry
misalign

tilt, fringe

track
(method)

retrieve
attributes

model & attributes ➠
thick, thin & fringe maps

model & method ➠
integrator

slicing & atslice ➠
integration steps
(ataper, atsave)

track through
(sub)element

Integrate
selected maps &
scheme: Yoshida,
Boole, Teapot,…

thick

kick

thick

atslice

Sequence Element Integrator Maps

nslice
times

mailto:laurent.deniau@cern.ch

BE Beams
Department

La
ur

en
t D

en
ia

u,
 C

E
R

N
 B

E
/A

B
P,

 1
21

1
G

en
ev

a,
 la

ur
en

t.d
en

ia
u@

ce
rn

.c
h

Track in “depth” : user-defined possible extensions

14

Track

build mflow
and mtable

run track
main loop

atentry
misalign

tilt, fringe

track
(method)

fringe, tilt
misalign
atexit

(atsave)

retrieve
attributes

model & attributes ➠
thick, thin & fringe maps

model & method ➠
integrator

slicing & atslice ➠
integration steps
(ataper, atsave)

track through
(sub)element

Integrate
selected maps &
scheme: Yoshida,
Boole, Teapot,…

thick

kick

thick

atslice

Sequence Element Integrator Maps

nslice
times

mailto:laurent.deniau@cern.ch

BE Beams
Department

La
ur

en
t D

en
ia

u,
 C

E
R

N
 B

E
/A

B
P,

 1
21

1
G

en
ev

a,
 la

ur
en

t.d
en

ia
u@

ce
rn

.c
h

Track in “depth” : user-defined possible extensions

14

Track

build mflow
and mtable

run track
main loop

atentry
misalign

tilt, fringe

track
(method)

fringe, tilt
misalign
atexit

(atsave)

retrieve
attributes

model & attributes ➠
thick, thin & fringe maps

model & method ➠
integrator

return
results

slicing & atslice ➠
integration steps
(ataper, atsave)

track through
(sub)element

Integrate
selected maps &
scheme: Yoshida,
Boole, Teapot,…

thick

kick

thick

atslice

Sequence Element Integrator Maps

nslice
times

mailto:laurent.deniau@cern.ch

BE Beams
Department

La
ur

en
t D

en
ia

u,
 C

E
R

N
 B

E
/A

B
P,

 1
21

1
G

en
ev

a,
 la

ur
en

t.d
en

ia
u@

ce
rn

.c
h

Track in “depth” : user-defined possible extensions

14

Track

build mflow
and mtable

run track
main loop

atentry
misalign

tilt, fringe

track
(method)

fringe, tilt
misalign
atexit

(atsave)

retrieve
attributes

model & attributes ➠
thick, thin & fringe maps

model & method ➠
integrator

return
results

slicing & atslice ➠
integration steps
(ataper, atsave)

track through
(sub)element

Integrate
selected maps &
scheme: Yoshida,
Boole, Teapot,…

thick

kick

thick

atslice

Sequence Element Integrator Maps

nslice
times

Physics can be parametrised and/or
configured by element attributes and

commands attributes

mailto:laurent.deniau@cern.ch

BE Beams
Department

La
ur

en
t D

en
ia

u,
 C

E
R

N
 B

E
/A

B
P,

 1
21

1
G

en
ev

a,
 la

ur
en

t.d
en

ia
u@

ce
rn

.c
h

Track in “depth” : user-defined possible extensions

14

Track

build mflow
and mtable

run track
main loop

atentry
misalign

tilt, fringe

track
(method)

fringe, tilt
misalign
atexit

(atsave)

retrieve
attributes

model & attributes ➠
thick, thin & fringe maps

model & method ➠
integrator

return
results

slicing & atslice ➠
integration steps
(ataper, atsave)

track through
(sub)element

Integrate
selected maps &
scheme: Yoshida,
Boole, Teapot,…

thick

kick

thick

atslice

Sequence Element Integrator Maps

nslice
times

Physics can be extended by creating
new element or modifying existing

element or subelements track method
(object oriented approach)

Physics can be parametrised and/or
configured by element attributes and

commands attributes

mailto:laurent.deniau@cern.ch

BE Beams
Department

La
ur

en
t D

en
ia

u,
 C

E
R

N
 B

E
/A

B
P,

 1
21

1
G

en
ev

a,
 la

ur
en

t.d
en

ia
u@

ce
rn

.c
h

Track in “depth” : user-defined possible extensions

14

Track

build mflow
and mtable

run track
main loop

atentry
misalign

tilt, fringe

track
(method)

fringe, tilt
misalign
atexit

(atsave)

retrieve
attributes

model & attributes ➠
thick, thin & fringe maps

model & method ➠
integrator

return
results

slicing & atslice ➠
integration steps
(ataper, atsave)

track through
(sub)element

Integrate
selected maps &
scheme: Yoshida,
Boole, Teapot,…

thick

kick

thick

atslice

Sequence Element Integrator Maps

nslice
times

Physics can be extended by creating
new element or modifying existing

element or subelements track method
(object oriented approach)

Physics can be parametrised and/or
configured by element attributes and

commands attributes

Physics can be extended by
providing extra integration methods

e.g. 3D field maps.

mailto:laurent.deniau@cern.ch

BE Beams
Department

La
ur

en
t D

en
ia

u,
 C

E
R

N
 B

E
/A

B
P,

 1
21

1
G

en
ev

a,
 la

ur
en

t.d
en

ia
u@

ce
rn

.c
h

Track in “depth” : user-defined possible extensions

14

Track

build mflow
and mtable

run track
main loop

atentry
misalign

tilt, fringe

track
(method)

fringe, tilt
misalign
atexit

(atsave)

retrieve
attributes

model & attributes ➠
thick, thin & fringe maps

model & method ➠
integrator

return
results

slicing & atslice ➠
integration steps
(ataper, atsave)

track through
(sub)element

Integrate
selected maps &
scheme: Yoshida,
Boole, Teapot,…

thick

kick

thick

atslice

Sequence Element Integrator Maps

nslice
times

Physics can be extended by creating
new element or modifying existing

element or subelements track method
(object oriented approach)

Physics can be parametrised and/or
configured by element attributes and

commands attributes

Physics can be extended by
providing extra integration methods

e.g. 3D field maps.

Physics can be extended by
providing new maps or actions

e.g. strong beam-beam
(functional approach)

mailto:laurent.deniau@cern.ch

BE Beams
Department

La
ur

en
t D

en
ia

u,
 C

E
R

N
 B

E
/A

B
P,

 1
21

1
G

en
ev

a,
 la

ur
en

t.d
en

ia
u@

ce
rn

.c
h

Track in “depth” : user-defined possible extensions

14

Track

build mflow
and mtable

run track
main loop

atentry
misalign

tilt, fringe

track
(method)

fringe, tilt
misalign
atexit

(atsave)

retrieve
attributes

model & attributes ➠
thick, thin & fringe maps

model & method ➠
integrator

return
results

slicing & atslice ➠
integration steps
(ataper, atsave)

track through
(sub)element

Integrate
selected maps &
scheme: Yoshida,
Boole, Teapot,…

thick

kick

thick

atslice

Sequence Element Integrator Maps

nslice
times

Physics can be extended by creating
new element or modifying existing

element or subelements track method
(object oriented approach)

Physics can be parametrised and/or
configured by element attributes and

commands attributes

Physics can be extended by
providing extra integration methods

e.g. 3D field maps.

Physics can be extended by
providing new maps or actions

e.g. strong beam-beam
(functional approach)

All this code is written in the scripting language.

i.e. ultimately configurable, modifiable and

extensible, even at runtime by users.

mailto:laurent.deniau@cern.ch

BE Beams
Department

La
ur

en
t D

en
ia

u,
 C

E
R

N
 B

E
/A

B
P,

 1
21

1
G

en
ev

a,
 la

ur
en

t.d
en

ia
u@

ce
rn

.c
h

MAD-NG physics I

15

mailto:laurent.deniau@cern.ch

BE Beams
Department

La
ur

en
t D

en
ia

u,
 C

E
R

N
 B

E
/A

B
P,

 1
21

1
G

en
ev

a,
 la

ur
en

t.d
en

ia
u@

ce
rn

.c
h

MAD-NG physics I

๏ 6D PTC physics using GTPSA (for DA) and symplectic integrators.
‣ slicing, combined physics & elements, easy support for extensions, etc…
‣ x4-10 faster than PTC for TPSA tracking, x1-2 slower than MAD-X for most cases.

15

mailto:laurent.deniau@cern.ch

BE Beams
Department

La
ur

en
t D

en
ia

u,
 C

E
R

N
 B

E
/A

B
P,

 1
21

1
G

en
ev

a,
 la

ur
en

t.d
en

ia
u@

ce
rn

.c
h

MAD-NG physics I

๏ 6D PTC physics using GTPSA (for DA) and symplectic integrators.
‣ slicing, combined physics & elements, easy support for extensions, etc…
‣ x4-10 faster than PTC for TPSA tracking, x1-2 slower than MAD-X for most cases.

๏ Survey: geometrical tracking
‣ Survey supports multi-turns, ranged and step-by-step backtracking and reverse

tracking. Return a Survey table and a Survey map flow (tracked context).
‣ fully compatible with Track for superposition and observable points (e.g. table output,

smooth plots, slicing, actions, sub-elements, etc…)
‣ support exact misalignments and permanent misalignments, and patches.

15

mailto:laurent.deniau@cern.ch

BE Beams
Department

La
ur

en
t D

en
ia

u,
 C

E
R

N
 B

E
/A

B
P,

 1
21

1
G

en
ev

a,
 la

ur
en

t.d
en

ia
u@

ce
rn

.c
h

MAD-NG physics I

๏ 6D PTC physics using GTPSA (for DA) and symplectic integrators.
‣ slicing, combined physics & elements, easy support for extensions, etc…
‣ x4-10 faster than PTC for TPSA tracking, x1-2 slower than MAD-X for most cases.

๏ Survey: geometrical tracking
‣ Survey supports multi-turns, ranged and step-by-step backtracking and reverse

tracking. Return a Survey table and a Survey map flow (tracked context).
‣ fully compatible with Track for superposition and observable points (e.g. table output,

smooth plots, slicing, actions, sub-elements, etc…)
‣ support exact misalignments and permanent misalignments, and patches.

๏ Track: dynamical tracking
‣ Track supports multi-particles or multi-damaps, multi-turns, ranged and step-by-

step backtracking and reverse tracking of charged particles to arbitrary DA order
and arbitrary number of parameters (few thousands). Return a Track table and a
Track map flow (tracked context).

‣ fully compatible with Survey for superposition and observable points (same tracking
engine).

‣ support exact misalignments, permanent misalignments, multipoles & field errors
for all elements. Can be combined freely with patches.

‣ symplectic tracking up to 8th order on 5D (delta-p) and 6D (delta-rf) phase space
(exact=true, time=true, totalpath e.g. for thick RF).

‣ provides true thick lens and thin lens tracking model, radiation with photons
tracking (disabled in twiss), fringe fields (hard edge for all elements, including
solenoid), mutable particles (multiple beams), exact patches (translations, rotations
& time-energy), 4D weak-strong beam-beam (sixtracklib), apertures (all kinds).

‣ may search for the closed orbit to support relative initial coordinates. 15

mailto:laurent.deniau@cern.ch

BE Beams
Department

La
ur

en
t D

en
ia

u,
 C

E
R

N
 B

E
/A

B
P,

 1
21

1
G

en
ev

a,
 la

ur
en

t.d
en

ia
u@

ce
rn

.c
h

MAD-NG physics II

16

mailto:laurent.deniau@cern.ch

BE Beams
Department

La
ur

en
t D

en
ia

u,
 C

E
R

N
 B

E
/A

B
P,

 1
21

1
G

en
ev

a,
 la

ur
en

t.d
en

ia
u@

ce
rn

.c
h

MAD-NG physics II

๏ Cofind: fix point search
‣ Newton-based optimiser running Track with 1st order DA map or 7 particles.
‣ support final coordinates translation.
‣ extend Track with actions.

16

mailto:laurent.deniau@cern.ch

BE Beams
Department

La
ur

en
t D

en
ia

u,
 C

E
R

N
 B

E
/A

B
P,

 1
21

1
G

en
ev

a,
 la

ur
en

t.d
en

ia
u@

ce
rn

.c
h

MAD-NG physics II

๏ Cofind: fix point search
‣ Newton-based optimiser running Track with 1st order DA map or 7 particles.
‣ support final coordinates translation.
‣ extend Track with actions.

๏ Twiss: optics tracking
‣ runs Cofind (closed orbit) - Track (one-turn map) - Normal - Track (optics) - post

processing.
‣ extend Track with actions to compute on-the-fly optics and fill twiss table (extended

track table).
‣ support coupled optics, dispersions, tunes, chromaticities, synchrotron integrals,

momentum compaction factor, phase slip factor, energy gamma transition, etc…
support chrom option to compute chromatic derivatives of previous quantities
(e.g. Montaigue functions).

16

mailto:laurent.deniau@cern.ch

BE Beams
Department

La
ur

en
t D

en
ia

u,
 C

E
R

N
 B

E
/A

B
P,

 1
21

1
G

en
ev

a,
 la

ur
en

t.d
en

ia
u@

ce
rn

.c
h

MAD-NG physics II

๏ Cofind: fix point search
‣ Newton-based optimiser running Track with 1st order DA map or 7 particles.
‣ support final coordinates translation.
‣ extend Track with actions.

๏ Twiss: optics tracking
‣ runs Cofind (closed orbit) - Track (one-turn map) - Normal - Track (optics) - post

processing.
‣ extend Track with actions to compute on-the-fly optics and fill twiss table (extended

track table).
‣ support coupled optics, dispersions, tunes, chromaticities, synchrotron integrals,

momentum compaction factor, phase slip factor, energy gamma transition, etc…
support chrom option to compute chromatic derivatives of previous quantities
(e.g. Montaigue functions).

๏ Match: highly configurable optimiser
‣ on the model of MAD-X use_macro approach, i.e. arbitrary user’s setups & runs.
‣ provides all kinds of local & global, linear & non-linear, optimiser (~20 algorithms).
‣ very flexible, highly configurable with many physics-oriented setups (not just a

penalty-function to minimise).

16

mailto:laurent.deniau@cern.ch

BE Beams
Department

La
ur

en
t D

en
ia

u,
 C

E
R

N
 B

E
/A

B
P,

 1
21

1
G

en
ev

a,
 la

ur
en

t.d
en

ia
u@

ce
rn

.c
h

MAD-NG physics II

๏ Cofind: fix point search
‣ Newton-based optimiser running Track with 1st order DA map or 7 particles.
‣ support final coordinates translation.
‣ extend Track with actions.

๏ Twiss: optics tracking
‣ runs Cofind (closed orbit) - Track (one-turn map) - Normal - Track (optics) - post

processing.
‣ extend Track with actions to compute on-the-fly optics and fill twiss table (extended

track table).
‣ support coupled optics, dispersions, tunes, chromaticities, synchrotron integrals,

momentum compaction factor, phase slip factor, energy gamma transition, etc…
support chrom option to compute chromatic derivatives of previous quantities
(e.g. Montaigue functions).

๏ Match: highly configurable optimiser
‣ on the model of MAD-X use_macro approach, i.e. arbitrary user’s setups & runs.
‣ provides all kinds of local & global, linear & non-linear, optimiser (~20 algorithms).
‣ very flexible, highly configurable with many physics-oriented setups (not just a

penalty-function to minimise).
๏ Correct: orbit correction

‣ provides few algorithms (e.g. SVD, Micado) to correct orbit using BPMs and
Kickers. Supports many options.

16

mailto:laurent.deniau@cern.ch

BE Beams
Department

La
ur

en
t D

en
ia

u,
 C

E
R

N
 B

E
/A

B
P,

 1
21

1
G

en
ev

a,
 la

ur
en

t.d
en

ia
u@

ce
rn

.c
h

MAD-NG physics II

๏ Cofind: fix point search
‣ Newton-based optimiser running Track with 1st order DA map or 7 particles.
‣ support final coordinates translation.
‣ extend Track with actions.

๏ Twiss: optics tracking
‣ runs Cofind (closed orbit) - Track (one-turn map) - Normal - Track (optics) - post

processing.
‣ extend Track with actions to compute on-the-fly optics and fill twiss table (extended

track table).
‣ support coupled optics, dispersions, tunes, chromaticities, synchrotron integrals,

momentum compaction factor, phase slip factor, energy gamma transition, etc…
support chrom option to compute chromatic derivatives of previous quantities
(e.g. Montaigue functions).

๏ Match: highly configurable optimiser
‣ on the model of MAD-X use_macro approach, i.e. arbitrary user’s setups & runs.
‣ provides all kinds of local & global, linear & non-linear, optimiser (~20 algorithms).
‣ very flexible, highly configurable with many physics-oriented setups (not just a

penalty-function to minimise).
๏ Correct: orbit correction

‣ provides few algorithms (e.g. SVD, Micado) to correct orbit using BPMs and
Kickers. Supports many options.

๏ Normal: normal forms analysis (under validation)
‣ provides linear and non-linear parametric normal forms on DA map (used by twiss)

to extract RDTs. Can be applied at observable points in Track to track RDTs, either
on-the-fly with actions or through post processing of DA maps saved in Track table.

16

mailto:laurent.deniau@cern.ch

BE Beams
Department

La
ur

en
t D

en
ia

u,
 C

E
R

N
 B

E
/A

B
P,

 1
21

1
G

en
ev

a,
 la

ur
en

t.d
en

ia
u@

ce
rn

.c
h

MAD-NG review

17

mailto:laurent.deniau@cern.ch

BE Beams
Department

La
ur

en
t D

en
ia

u,
 C

E
R

N
 B

E
/A

B
P,

 1
21

1
G

en
ev

a,
 la

ur
en

t.d
en

ia
u@

ce
rn

.c
h

MAD-NG review

๏ Performed from Oct. 2020 to Mar. 2021.

17

mailto:laurent.deniau@cern.ch

BE Beams
Department

La
ur

en
t D

en
ia

u,
 C

E
R

N
 B

E
/A

B
P,

 1
21

1
G

en
ev

a,
 la

ur
en

t.d
en

ia
u@

ce
rn

.c
h

MAD-NG review

๏ Performed from Oct. 2020 to Mar. 2021.
๏ Run simple studies on CERN machines and compare results vs

MAD-X and MADX-PTC (listed in reverse time order, from last to first).

➡Clic 380 GeV BDS optimisation (Andrii Pastushenko, 2 presentations)

‣ twiss, high order maps generation, beam size comparison.

➡MAD-NG outlook for LHC and HL-LHC (Riccardo De Maria)

➡MAD-NG in Gantries (Cedric Hernalsteens, not presented)

➡Experience with FCC-ee Lattice in MAD-NG (Leon van Riesen-Haupt)

‣ linear optics, momentum detuning, amplitude detuning, radiation integrals.

➡Experience for LHC coupling with MAD-NG (Tobias Persson).

‣ example in the next slide

➡Experience of MAD-NG with the PS (Alexander Huschauer).

‣ linear optics, dispersions, tunes, chromaticities.

‣ exploration of model and integration methods.

➡Translating MAD-X scripts to MAD-NG (Laurent Deniau).

17

mailto:laurent.deniau@cern.ch

BE Beams
Department

La
ur

en
t D

en
ia

u,
 C

E
R

N
 B

E
/A

B
P,

 1
21

1
G

en
ev

a,
 la

ur
en

t.d
en

ia
u@

ce
rn

.c
h

MAD-NG studies - LHC coupling with param. maps

18

mailto:laurent.deniau@cern.ch

BE Beams
Department

La
ur

en
t D

en
ia

u,
 C

E
R

N
 B

E
/A

B
P,

 1
21

1
G

en
ev

a,
 la

ur
en

t.d
en

ia
u@

ce
rn

.c
h

MAD-NG studies - LHC coupling with param. maps

18

print(“strengths before matching coupling correctors:")
print("sk1r=", MADX.sk1r)
print("sk2r=", MADX.sk2r)
print("sk3r=", MADX.sk3r)
print("sk4r=", MADX.sk4r)

local X0 = damap {mo=2, nv=6, nk=4, ko=1,
 vn={‘x','px','y','py','t','pt',
 ‘sk1r','sk2r','sk3r','sk4r'}}

-- set knobs: scalar + TPSA -> TPSA
MADX.sk1r = MADX.sk1r + X0.sk1r
MADX.sk2r = MADX.sk2r + X0.sk2r
MADX.sk3r = MADX.sk3r + X0.sk3r
MADX.sk4r = MADX.sk4r + X0.sk4r

local mjac = { ---> variables & knobs
 { var='x' ,'0010001','00100001','001000001','0010000001' }, -- |
 { var='x' ,'0001001','00010001','000100001','0001000001' }, -- |
 { var='px','0010001','00100001','001000001','0010000001' }, -- v
 { var='px','0001001','00010001','000100001','0001000001' }, -- constraints
}

status, fmin, ncall = match {
 command := track {sequence=lhcb1, X0=X0, observe=1, savemap=true},
…

mailto:laurent.deniau@cern.ch

BE Beams
Department

La
ur

en
t D

en
ia

u,
 C

E
R

N
 B

E
/A

B
P,

 1
21

1
G

en
ev

a,
 la

ur
en

t.d
en

ia
u@

ce
rn

.c
h

MAD-NG studies - LHC coupling with param. maps

18

print(“strengths before matching coupling correctors:")
print("sk1r=", MADX.sk1r)
print("sk2r=", MADX.sk2r)
print("sk3r=", MADX.sk3r)
print("sk4r=", MADX.sk4r)

local X0 = damap {mo=2, nv=6, nk=4, ko=1,
 vn={‘x','px','y','py','t','pt',
 ‘sk1r','sk2r','sk3r','sk4r'}}

-- set knobs: scalar + TPSA -> TPSA
MADX.sk1r = MADX.sk1r + X0.sk1r
MADX.sk2r = MADX.sk2r + X0.sk2r
MADX.sk3r = MADX.sk3r + X0.sk3r
MADX.sk4r = MADX.sk4r + X0.sk4r

local mjac = { ---> variables & knobs
 { var='x' ,'0010001','00100001','001000001','0010000001' }, -- |
 { var='x' ,'0001001','00010001','000100001','0001000001' }, -- |
 { var='px','0010001','00100001','001000001','0010000001' }, -- v
 { var='px','0001001','00010001','000100001','0001000001' }, -- constraints
}

status, fmin, ncall = match {
 command := track {sequence=lhcb1, X0=X0, observe=1, savemap=true},
…

status, fmin, ncall = match {
 command := track {sequence=lhcb1, X0=X0, observe=1, savemap=true},

 jacobian = \t,grd,jac => -- gradient not used, fill only jacobian
 jac:setrow(1.. 8, t['S.DS.L2.B1'].__map:getm(mjac))
 jac:setrow(9..16, t['E.DS.L2.B1'].__map:getm(mjac))
 end,

 variables = { rtol=1e-6, -- 1 ppm
 { name='sk1r', get := MADX.sk1r:get0(), set = \x -> MADX.sk1r:set0(x) },
 { name='sk2r', get := MADX.sk2r:get0(), set = \x -> MADX.sk2r:set0(x) },
 { name='sk3r', get := MADX.sk3r:get0(), set = \x -> MADX.sk3r:set0(x) },
 { name='sk4r', get := MADX.sk4r:get0(), set = \x -> MADX.sk4r:set0(x) },
 },

 equalities = {
 { expr = \t -> t['S.DS.L2.B1'].__map.x :get'0010', name='S.R11.x' },
 { expr = \t -> t['S.DS.L2.B1'].__map.x :get'0001', name='S.R12.x' },
 { expr = \t -> t['S.DS.L2.B1'].__map.px:get'0010', name='S.R21.x' },
 { expr = \t -> t['S.DS.L2.B1'].__map.px:get'0001', name='S.R22.x' },

 { expr = \t -> t['E.DS.L2.B1'].__map.x :get'0010', name='E.R11.x' },
 { expr = \t -> t['E.DS.L2.B1'].__map.x :get'0001', name='E.R12.x' },
 { expr = \t -> t['E.DS.L2.B1'].__map.px:get'0010', name='E.R21.x' },
 { expr = \t -> t['E.DS.L2.B1'].__map.px:get'0001', name='E.R22.x' },
 },
 objective = { fmin=1e-12 },
 maxcall=100, info=2
}

-- reset knobs: extract scalar values from TPSA
MADX.sk1r = MADX.sk1r:get0()
MADX.sk2r = MADX.sk2r:get0()
MADX.sk3r = MADX.sk3r:get0()
MADX.sk4r = MADX.sk4r:get0()

print("status=", status, "fmin=", fmin, "ncall=", ncall)
print("strengths after matching coupling correctors:")
print("sk1r=" , MADX.sk1r)
print("sk2r=" , MADX.sk2r)
print("sk3r=" , MADX.sk3r)
print("sk4r=" , MADX.sk4r)

mailto:laurent.deniau@cern.ch

BE Beams
Department

La
ur

en
t D

en
ia

u,
 C

E
R

N
 B

E
/A

B
P,

 1
21

1
G

en
ev

a,
 la

ur
en

t.d
en

ia
u@

ce
rn

.c
h

MAD-NG studies - LHC coupling with param. maps

18

Timing summary and links to codes:
MAD-X using matrix 1m55
MAD-NG using matrix 55s (15s)
MAD-NG using matrix & knobs 40s (4.5s)
MADX-PTC using alphas-betas >40m

print(“strengths before matching coupling correctors:")
print("sk1r=", MADX.sk1r)
print("sk2r=", MADX.sk2r)
print("sk3r=", MADX.sk3r)
print("sk4r=", MADX.sk4r)

local X0 = damap {mo=2, nv=6, nk=4, ko=1,
 vn={‘x','px','y','py','t','pt',
 ‘sk1r','sk2r','sk3r','sk4r'}}

-- set knobs: scalar + TPSA -> TPSA
MADX.sk1r = MADX.sk1r + X0.sk1r
MADX.sk2r = MADX.sk2r + X0.sk2r
MADX.sk3r = MADX.sk3r + X0.sk3r
MADX.sk4r = MADX.sk4r + X0.sk4r

local mjac = { ---> variables & knobs
 { var='x' ,'0010001','00100001','001000001','0010000001' }, -- |
 { var='x' ,'0001001','00010001','000100001','0001000001' }, -- |
 { var='px','0010001','00100001','001000001','0010000001' }, -- v
 { var='px','0001001','00010001','000100001','0001000001' }, -- constraints
}

status, fmin, ncall = match {
 command := track {sequence=lhcb1, X0=X0, observe=1, savemap=true},
…

status, fmin, ncall = match {
 command := track {sequence=lhcb1, X0=X0, observe=1, savemap=true},

 jacobian = \t,grd,jac => -- gradient not used, fill only jacobian
 jac:setrow(1.. 8, t['S.DS.L2.B1'].__map:getm(mjac))
 jac:setrow(9..16, t['E.DS.L2.B1'].__map:getm(mjac))
 end,

 variables = { rtol=1e-6, -- 1 ppm
 { name='sk1r', get := MADX.sk1r:get0(), set = \x -> MADX.sk1r:set0(x) },
 { name='sk2r', get := MADX.sk2r:get0(), set = \x -> MADX.sk2r:set0(x) },
 { name='sk3r', get := MADX.sk3r:get0(), set = \x -> MADX.sk3r:set0(x) },
 { name='sk4r', get := MADX.sk4r:get0(), set = \x -> MADX.sk4r:set0(x) },
 },

 equalities = {
 { expr = \t -> t['S.DS.L2.B1'].__map.x :get'0010', name='S.R11.x' },
 { expr = \t -> t['S.DS.L2.B1'].__map.x :get'0001', name='S.R12.x' },
 { expr = \t -> t['S.DS.L2.B1'].__map.px:get'0010', name='S.R21.x' },
 { expr = \t -> t['S.DS.L2.B1'].__map.px:get'0001', name='S.R22.x' },

 { expr = \t -> t['E.DS.L2.B1'].__map.x :get'0010', name='E.R11.x' },
 { expr = \t -> t['E.DS.L2.B1'].__map.x :get'0001', name='E.R12.x' },
 { expr = \t -> t['E.DS.L2.B1'].__map.px:get'0010', name='E.R21.x' },
 { expr = \t -> t['E.DS.L2.B1'].__map.px:get'0001', name='E.R22.x' },
 },
 objective = { fmin=1e-12 },
 maxcall=100, info=2
}

-- reset knobs: extract scalar values from TPSA
MADX.sk1r = MADX.sk1r:get0()
MADX.sk2r = MADX.sk2r:get0()
MADX.sk3r = MADX.sk3r:get0()
MADX.sk4r = MADX.sk4r:get0()

print("status=", status, "fmin=", fmin, "ncall=", ncall)
print("strengths after matching coupling correctors:")
print("sk1r=" , MADX.sk1r)
print("sk2r=" , MADX.sk2r)
print("sk3r=" , MADX.sk3r)
print("sk4r=" , MADX.sk4r)

mailto:laurent.deniau@cern.ch
https://github.com/MethodicalAcceleratorDesign/MAD/blob/d0b3408e58029309ba35c80d6c8b34e97804b154/examples/ex-lhc-couplingRDT/ex-lhc-couplingRDT.madx#L96
https://github.com/MethodicalAcceleratorDesign/MAD/blob/d0b3408e58029309ba35c80d6c8b34e97804b154/examples/ex-lhc-couplingRDT/ex-lhc-couplingRDT.mad#L241
https://github.com/MethodicalAcceleratorDesign/MAD/blob/d0b3408e58029309ba35c80d6c8b34e97804b154/examples/ex-lhc-couplingRDT/ex-lhc-couplingRDT-knobs.mad#L177
https://github.com/MethodicalAcceleratorDesign/MAD/blob/d0b3408e58029309ba35c80d6c8b34e97804b154/examples/ex-lhc-couplingRDT/ex-lhc-couplingRDT-PTC.madx#L119

BE Beams
Department

La
ur

en
t D

en
ia

u,
 C

E
R

N
 B

E
/A

B
P,

 1
21

1
G

en
ev

a,
 la

ur
en

t.d
en

ia
u@

ce
rn

.c
h

MAD-NG studies - LHC coupling with param. maps

18

Timing summary and links to codes:
MAD-X using matrix 1m55
MAD-NG using matrix 55s (15s)
MAD-NG using matrix & knobs 40s (4.5s)
MADX-PTC using alphas-betas >40m

print(“strengths before matching coupling correctors:")
print("sk1r=", MADX.sk1r)
print("sk2r=", MADX.sk2r)
print("sk3r=", MADX.sk3r)
print("sk4r=", MADX.sk4r)

local X0 = damap {mo=2, nv=6, nk=4, ko=1,
 vn={‘x','px','y','py','t','pt',
 ‘sk1r','sk2r','sk3r','sk4r'}}

-- set knobs: scalar + TPSA -> TPSA
MADX.sk1r = MADX.sk1r + X0.sk1r
MADX.sk2r = MADX.sk2r + X0.sk2r
MADX.sk3r = MADX.sk3r + X0.sk3r
MADX.sk4r = MADX.sk4r + X0.sk4r

local mjac = { ---> variables & knobs
 { var='x' ,'0010001','00100001','001000001','0010000001' }, -- |
 { var='x' ,'0001001','00010001','000100001','0001000001' }, -- |
 { var='px','0010001','00100001','001000001','0010000001' }, -- v
 { var='px','0001001','00010001','000100001','0001000001' }, -- constraints
}

status, fmin, ncall = match {
 command := track {sequence=lhcb1, X0=X0, observe=1, savemap=true},
…

status, fmin, ncall = match {
 command := track {sequence=lhcb1, X0=X0, observe=1, savemap=true},

 jacobian = \t,grd,jac => -- gradient not used, fill only jacobian
 jac:setrow(1.. 8, t['S.DS.L2.B1'].__map:getm(mjac))
 jac:setrow(9..16, t['E.DS.L2.B1'].__map:getm(mjac))
 end,

 variables = { rtol=1e-6, -- 1 ppm
 { name='sk1r', get := MADX.sk1r:get0(), set = \x -> MADX.sk1r:set0(x) },
 { name='sk2r', get := MADX.sk2r:get0(), set = \x -> MADX.sk2r:set0(x) },
 { name='sk3r', get := MADX.sk3r:get0(), set = \x -> MADX.sk3r:set0(x) },
 { name='sk4r', get := MADX.sk4r:get0(), set = \x -> MADX.sk4r:set0(x) },
 },

 equalities = {
 { expr = \t -> t['S.DS.L2.B1'].__map.x :get'0010', name='S.R11.x' },
 { expr = \t -> t['S.DS.L2.B1'].__map.x :get'0001', name='S.R12.x' },
 { expr = \t -> t['S.DS.L2.B1'].__map.px:get'0010', name='S.R21.x' },
 { expr = \t -> t['S.DS.L2.B1'].__map.px:get'0001', name='S.R22.x' },

 { expr = \t -> t['E.DS.L2.B1'].__map.x :get'0010', name='E.R11.x' },
 { expr = \t -> t['E.DS.L2.B1'].__map.x :get'0001', name='E.R12.x' },
 { expr = \t -> t['E.DS.L2.B1'].__map.px:get'0010', name='E.R21.x' },
 { expr = \t -> t['E.DS.L2.B1'].__map.px:get'0001', name='E.R22.x' },
 },
 objective = { fmin=1e-12 },
 maxcall=100, info=2
}

-- reset knobs: extract scalar values from TPSA
MADX.sk1r = MADX.sk1r:get0()
MADX.sk2r = MADX.sk2r:get0()
MADX.sk3r = MADX.sk3r:get0()
MADX.sk4r = MADX.sk4r:get0()

print("status=", status, "fmin=", fmin, "ncall=", ncall)
print("strengths after matching coupling correctors:")
print("sk1r=" , MADX.sk1r)
print("sk2r=" , MADX.sk2r)
print("sk3r=" , MADX.sk3r)
print("sk4r=" , MADX.sk4r)

Match command performs a Principal

Component Analysis on the Jacobian

and tags useless constraints and

variables, i.e. starting with oversized

set of knobs or constrains does not

harm when using parametric maps!

mailto:laurent.deniau@cern.ch
https://github.com/MethodicalAcceleratorDesign/MAD/blob/d0b3408e58029309ba35c80d6c8b34e97804b154/examples/ex-lhc-couplingRDT/ex-lhc-couplingRDT.madx#L96
https://github.com/MethodicalAcceleratorDesign/MAD/blob/d0b3408e58029309ba35c80d6c8b34e97804b154/examples/ex-lhc-couplingRDT/ex-lhc-couplingRDT.mad#L241
https://github.com/MethodicalAcceleratorDesign/MAD/blob/d0b3408e58029309ba35c80d6c8b34e97804b154/examples/ex-lhc-couplingRDT/ex-lhc-couplingRDT-knobs.mad#L177
https://github.com/MethodicalAcceleratorDesign/MAD/blob/d0b3408e58029309ba35c80d6c8b34e97804b154/examples/ex-lhc-couplingRDT/ex-lhc-couplingRDT-PTC.madx#L119

BE Beams
Department

La
ur

en
t D

en
ia

u,
 C

E
R

N
 B

E
/A

B
P,

 1
21

1
G

en
ev

a,
 la

ur
en

t.d
en

ia
u@

ce
rn

.c
h

Conclusions

19

mailto:laurent.deniau@cern.ch

BE Beams
Department

La
ur

en
t D

en
ia

u,
 C

E
R

N
 B

E
/A

B
P,

 1
21

1
G

en
ev

a,
 la

ur
en

t.d
en

ia
u@

ce
rn

.c
h

Conclusions

๏ MAD-NG is reaching the end of its development process.

19

mailto:laurent.deniau@cern.ch

BE Beams
Department

La
ur

en
t D

en
ia

u,
 C

E
R

N
 B

E
/A

B
P,

 1
21

1
G

en
ev

a,
 la

ur
en

t.d
en

ia
u@

ce
rn

.c
h

Conclusions

๏ MAD-NG is reaching the end of its development process.
๏ 2022 will focus on participation to real studies and consolidation.

‣ bottom-top validation for the physics of real case studies.

‣ add missing physics on demand (e.g. tapering, spin, generalised multipoles).

‣ complete unit tests & manual.

‣ improve performance (room for x3-x5 in speed).

‣ simplify some aspects, “simpler is better” (e.g. object model).

19

mailto:laurent.deniau@cern.ch

BE Beams
Department

La
ur

en
t D

en
ia

u,
 C

E
R

N
 B

E
/A

B
P,

 1
21

1
G

en
ev

a,
 la

ur
en

t.d
en

ia
u@

ce
rn

.c
h

Conclusions

๏ MAD-NG is reaching the end of its development process.
๏ 2022 will focus on participation to real studies and consolidation.

‣ bottom-top validation for the physics of real case studies.

‣ add missing physics on demand (e.g. tapering, spin, generalised multipoles).

‣ complete unit tests & manual.

‣ improve performance (room for x3-x5 in speed).

‣ simplify some aspects, “simpler is better” (e.g. object model).
๏ On some aspects, MAD-NG is more mature than MAD-X

‣ better code architecture and structure.

‣ more flexible and extensible for the physics (new features require day(s)).

‣ less surprises when combining features (e.g. misalignments and slicing).

‣ main stream programming language for scripting (save user time!) & many toolboxes.

‣ mature technologies, syntax error, backtrace, debugger, profiler, JIT (save user time!).

‣ some features have been back ported to MAD-X (e.g. permanent misalignment,
patches) or will be (fringe fields, combined/overlapping elements).

‣ support backtracking, charged particles, parallel sequences, useful for e.g. matching
IPs, no need for reverse sequence, etc…

19

mailto:laurent.deniau@cern.ch

BE Beams
Department

La
ur

en
t D

en
ia

u,
 C

E
R

N
 B

E
/A

B
P,

 1
21

1
G

en
ev

a,
 la

ur
en

t.d
en

ia
u@

ce
rn

.c
h

Conclusions

๏ MAD-NG is reaching the end of its development process.
๏ 2022 will focus on participation to real studies and consolidation.

‣ bottom-top validation for the physics of real case studies.

‣ add missing physics on demand (e.g. tapering, spin, generalised multipoles).

‣ complete unit tests & manual.

‣ improve performance (room for x3-x5 in speed).

‣ simplify some aspects, “simpler is better” (e.g. object model).
๏ On some aspects, MAD-NG is more mature than MAD-X

‣ better code architecture and structure.

‣ more flexible and extensible for the physics (new features require day(s)).

‣ less surprises when combining features (e.g. misalignments and slicing).

‣ main stream programming language for scripting (save user time!) & many toolboxes.

‣ mature technologies, syntax error, backtrace, debugger, profiler, JIT (save user time!).

‣ some features have been back ported to MAD-X (e.g. permanent misalignment,
patches) or will be (fringe fields, combined/overlapping elements).

‣ support backtracking, charged particles, parallel sequences, useful for e.g. matching
IPs, no need for reverse sequence, etc…

19

Do not hesitate to ask me some help!

mailto:laurent.deniau@cern.ch

BE Beams
Department

La
ur

en
t D

en
ia

u,
 C

E
R

N
 B

E
/A

B
P,

 1
21

1
G

en
ev

a,
 la

ur
en

t.d
en

ia
u@

ce
rn

.c
h

20

Thank YOU for your attention

mailto:laurent.deniau@cern.ch

BE Beams
Department

La
ur

en
t D

en
ia

u,
 C

E
R

N
 B

E
/A

B
P,

 1
21

1
G

en
ev

a
23

, l
au

re
nt

.d
en

ia
u@

ce
rn

.c
h

Lua overview (http://www.lua.org)

21

MAD scripting language is based on Lua 5.1+ (it is a superset of)

mailto:laurent.deniau@cern.ch
http://www.lua.org

BE Beams
Department

La
ur

en
t D

en
ia

u,
 C

E
R

N
 B

E
/A

B
P,

 1
21

1
G

en
ev

a
23

, l
au

re
nt

.d
en

ia
u@

ce
rn

.c
h

Lua overview (http://www.lua.org)

21

As old as Python (~25 years)
Community is Python/10

MAD scripting language is based on Lua 5.1+ (it is a superset of)

mailto:laurent.deniau@cern.ch
http://www.lua.org

BE Beams
Department

La
ur

en
t D

en
ia

u,
 C

E
R

N
 B

E
/A

B
P,

 1
21

1
G

en
ev

a
23

, l
au

re
nt

.d
en

ia
u@

ce
rn

.c
h

Lua overview (http://www.lua.org)

21

Lua is a powerful, fast, lightweight, embeddable scripting language.

Lua combines simple procedural syntax with powerful data description constructs based on associative arrays and
extensible semantics. Lua is dynamically typed, runs by interpreting bytecode for a register-based virtual machine,
and has automatic memory management with incremental garbage collection, making it ideal for configuration,
scripting, and rapid prototyping.

Lua has been used in many industrial applications (e.g., Adobe's Photoshop Lightroom), with an emphasis on
embedded systems (e.g., the Ginga middleware for digital TV in Brazil) and games (e.g., World of Warcraft and Angry
Birds). Lua is currently the leading scripting language in games. Lua has a solid reference manual and there are
several books about it. Several versions of Lua have been released and used in real applications since its creation in
1993. Lua featured in HOPL III, the Third ACM SIGPLAN History of Programming Languages Conference, in June
2007. Lua won the Front Line Award 2011 from the Game Developers Magazine.

As old as Python (~25 years)
Community is Python/10

MAD scripting language is based on Lua 5.1+ (it is a superset of)

mailto:laurent.deniau@cern.ch
http://www.lua.org

BE Beams
Department

La
ur

en
t D

en
ia

u,
 C

E
R

N
 B

E
/A

B
P,

 1
21

1
G

en
ev

a
23

, l
au

re
nt

.d
en

ia
u@

ce
rn

.c
h

Lua overview (http://www.lua.org)

21

Lua is a powerful, fast, lightweight, embeddable scripting language.

Lua combines simple procedural syntax with powerful data description constructs based on associative arrays and
extensible semantics. Lua is dynamically typed, runs by interpreting bytecode for a register-based virtual machine,
and has automatic memory management with incremental garbage collection, making it ideal for configuration,
scripting, and rapid prototyping.

Lua has been used in many industrial applications (e.g., Adobe's Photoshop Lightroom), with an emphasis on
embedded systems (e.g., the Ginga middleware for digital TV in Brazil) and games (e.g., World of Warcraft and Angry
Birds). Lua is currently the leading scripting language in games. Lua has a solid reference manual and there are
several books about it. Several versions of Lua have been released and used in real applications since its creation in
1993. Lua featured in HOPL III, the Third ACM SIGPLAN History of Programming Languages Conference, in June
2007. Lua won the Front Line Award 2011 from the Game Developers Magazine.

Reference manual is 29 pages!

As old as Python (~25 years)
Community is Python/10

MAD scripting language is based on Lua 5.1+ (it is a superset of)

mailto:laurent.deniau@cern.ch
http://www.lua.org

BE Beams
Department

La
ur

en
t D

en
ia

u,
 C

E
R

N
 B

E
/A

B
P,

 1
21

1
G

en
ev

a
23

, l
au

re
nt

.d
en

ia
u@

ce
rn

.c
h

LuaJIT overview (http://www.luajit.org)

22

LuaJIT has been successfully used as a
scripting middleware in games,
appliances, network and graphics apps,
numerical simulations, trading platforms
and many other specialty applications. It
scales from embedded devices,
smartphones, desktops up to server farms.
It combines high flexibility with high
performance and an unmatched low
memory footprint.

LuaJIT has been in continuous development
since 2005. It's widely considered to be one
of the fastest dynamic language
implementations. It has outperformed
other dynamic languages on many cross-
language benchmarks since its first release
— often by a substantial margin.
For LuaJIT 2.0, the whole VM has been
rewritten from the ground up and
relentlessly optimised for performance. It
combines a high-speed interpreter,
written in assembler, with a state-of-the-
art JIT compiler.

An innovative trace compiler is integrated
with advanced, SSA-based optimisations
and highly tuned code generation backends.
A substantial reduction of the overhead
associated with dynamic languages allows it
to break into the performance range
traditionally reserved for offline, static
language compilers.

mailto:laurent.deniau@cern.ch
http://www.luajit.org
http://luajit.org/performance.html
http://luajit.org/performance.html

BE Beams
Department

La
ur

en
t D

en
ia

u,
 C

E
R

N
 B

E
/A

B
P,

 1
21

1
G

en
ev

a
23

, l
au

re
nt

.d
en

ia
u@

ce
rn

.c
h

LuaJIT overview (http://www.luajit.org)

22

LuaJIT has been successfully used as a
scripting middleware in games,
appliances, network and graphics apps,
numerical simulations, trading platforms
and many other specialty applications. It
scales from embedded devices,
smartphones, desktops up to server farms.
It combines high flexibility with high
performance and an unmatched low
memory footprint.

LuaJIT has been in continuous development
since 2005. It's widely considered to be one
of the fastest dynamic language
implementations. It has outperformed
other dynamic languages on many cross-
language benchmarks since its first release
— often by a substantial margin.
For LuaJIT 2.0, the whole VM has been
rewritten from the ground up and
relentlessly optimised for performance. It
combines a high-speed interpreter,
written in assembler, with a state-of-the-
art JIT compiler.

An innovative trace compiler is integrated
with advanced, SSA-based optimisations
and highly tuned code generation backends.
A substantial reduction of the overhead
associated with dynamic languages allows it
to break into the performance range
traditionally reserved for offline, static
language compilers.

From M. Pall website, author of LuaJIT

mailto:laurent.deniau@cern.ch
http://www.luajit.org
http://luajit.org/performance.html
http://luajit.org/performance.html

BE Beams
Department

La
ur

en
t D

en
ia

u,
 C

E
R

N
 B

E
/A

B
P,

 1
21

1
G

en
ev

a
23

, l
au

re
nt

.d
en

ia
u@

ce
rn

.c
h

LuaJIT overview (http://www.luajit.org)

22

LuaJIT has been successfully used as a
scripting middleware in games,
appliances, network and graphics apps,
numerical simulations, trading platforms
and many other specialty applications. It
scales from embedded devices,
smartphones, desktops up to server farms.
It combines high flexibility with high
performance and an unmatched low
memory footprint.

LuaJIT has been in continuous development
since 2005. It's widely considered to be one
of the fastest dynamic language
implementations. It has outperformed
other dynamic languages on many cross-
language benchmarks since its first release
— often by a substantial margin.
For LuaJIT 2.0, the whole VM has been
rewritten from the ground up and
relentlessly optimised for performance. It
combines a high-speed interpreter,
written in assembler, with a state-of-the-
art JIT compiler.

An innovative trace compiler is integrated
with advanced, SSA-based optimisations
and highly tuned code generation backends.
A substantial reduction of the overhead
associated with dynamic languages allows it
to break into the performance range
traditionally reserved for offline, static
language compilers.

From M. Pall website, author of LuaJIT
As old as PyPy (~10 years)
Community is ~PyPy

mailto:laurent.deniau@cern.ch
http://www.luajit.org
http://luajit.org/performance.html
http://luajit.org/performance.html

BE Beams
Department

La
ur

en
t D

en
ia

u,
 C

E
R

N
 B

E
/A

B
P,

 1
21

1
G

en
ev

a
23

, l
au

re
nt

.d
en

ia
u@

ce
rn

.c
h

LuaJIT overview (http://www.luajit.org)

22

LuaJIT has been successfully used as a
scripting middleware in games,
appliances, network and graphics apps,
numerical simulations, trading platforms
and many other specialty applications. It
scales from embedded devices,
smartphones, desktops up to server farms.
It combines high flexibility with high
performance and an unmatched low
memory footprint.

LuaJIT has been in continuous development
since 2005. It's widely considered to be one
of the fastest dynamic language
implementations. It has outperformed
other dynamic languages on many cross-
language benchmarks since its first release
— often by a substantial margin.
For LuaJIT 2.0, the whole VM has been
rewritten from the ground up and
relentlessly optimised for performance. It
combines a high-speed interpreter,
written in assembler, with a state-of-the-
art JIT compiler.

An innovative trace compiler is integrated
with advanced, SSA-based optimisations
and highly tuned code generation backends.
A substantial reduction of the overhead
associated with dynamic languages allows it
to break into the performance range
traditionally reserved for offline, static
language compilers.

From M. Pall website, author of LuaJIT
As old as PyPy (~10 years)
Community is ~PyPy

mailto:laurent.deniau@cern.ch
http://www.luajit.org
http://luajit.org/performance.html
http://luajit.org/performance.html

BE Beams
Department

La
ur

en
t D

en
ia

u,
 C

E
R

N
 B

E
/A

B
P,

 1
21

1
G

en
ev

a
23

, l
au

re
nt

.d
en

ia
u@

ce
rn

.c
h

GTPSA in a nutshell

23

mailto:laurent.deniau@cern.ch

BE Beams
Department

La
ur

en
t D

en
ia

u,
 C

E
R

N
 B

E
/A

B
P,

 1
21

1
G

en
ev

a
23

, l
au

re
nt

.d
en

ia
u@

ce
rn

.c
h

GTPSA in a nutshell

23

๏ Generalised Truncated Power Series Algebra

mailto:laurent.deniau@cern.ch

BE Beams
Department

La
ur

en
t D

en
ia

u,
 C

E
R

N
 B

E
/A

B
P,

 1
21

1
G

en
ev

a
23

, l
au

re
nt

.d
en

ia
u@

ce
rn

.c
h

GTPSA in a nutshell

23

๏ Generalised Truncated Power Series Algebra
➡ Multivariate Taylor polynomials of order n in ℝ & ℂ.

mailto:laurent.deniau@cern.ch

BE Beams
Department

La
ur

en
t D

en
ia

u,
 C

E
R

N
 B

E
/A

B
P,

 1
21

1
G

en
ev

a
23

, l
au

re
nt

.d
en

ia
u@

ce
rn

.c
h

GTPSA in a nutshell

23

๏ Generalised Truncated Power Series Algebra
➡ Multivariate Taylor polynomials of order n in ℝ & ℂ.
➡ Powerful tool for solving differential equations (e.g. motion equations).

mailto:laurent.deniau@cern.ch

BE Beams
Department

La
ur

en
t D

en
ia

u,
 C

E
R

N
 B

E
/A

B
P,

 1
21

1
G

en
ev

a
23

, l
au

re
nt

.d
en

ia
u@

ce
rn

.c
h

GTPSA in a nutshell

23

๏ Generalised Truncated Power Series Algebra
➡ Multivariate Taylor polynomials of order n in ℝ & ℂ.
➡ Powerful tool for solving differential equations (e.g. motion equations).

Tn
f (x; a) = f(a) + f′ (a)(x − a) +

f′ ′ (a)
2!

(x − a)2 + … +
f (n)(a)

n!
(x − a)n =

n

∑
k=0

f (k)
a

k!
(x − a)k

1 variable x at order n in the neighbourhood of the point a in the domain of the function f :

mailto:laurent.deniau@cern.ch

BE Beams
Department

La
ur

en
t D

en
ia

u,
 C

E
R

N
 B

E
/A

B
P,

 1
21

1
G

en
ev

a
23

, l
au

re
nt

.d
en

ia
u@

ce
rn

.c
h

GTPSA in a nutshell

23

๏ Generalised Truncated Power Series Algebra
➡ Multivariate Taylor polynomials of order n in ℝ & ℂ.
➡ Powerful tool for solving differential equations (e.g. motion equations).

Tn
f (x; a) = f(a) + f′ (a)(x − a) +

f′ ′ (a)
2!

(x − a)2 + … +
f (n)(a)

n!
(x − a)n =

n

∑
k=0

f (k)
a

k!
(x − a)k

1 variable x at order n in the neighbourhood of the point a in the domain of the function f :
TPSA coefficients

mailto:laurent.deniau@cern.ch

BE Beams
Department

La
ur

en
t D

en
ia

u,
 C

E
R

N
 B

E
/A

B
P,

 1
21

1
G

en
ev

a
23

, l
au

re
nt

.d
en

ia
u@

ce
rn

.c
h

GTPSA in a nutshell

23

๏ Generalised Truncated Power Series Algebra
➡ Multivariate Taylor polynomials of order n in ℝ & ℂ.
➡ Powerful tool for solving differential equations (e.g. motion equations).

Tn
f (x; a) = f(a) + f′ (a)(x − a) +

f′ ′ (a)
2!

(x − a)2 + … +
f (n)(a)

n!
(x − a)n =

n

∑
k=0

f (k)
a

k!
(x − a)k

1 variable x at order n in the neighbourhood of the point a in the domain of the function f :
TPSA coefficients

convergence of the remainder (i.e. truncation error):
lim
n→∞

Rn
f (x; a) = lim

n→∞
f(x) − Tn

f (x; a) = 0

mailto:laurent.deniau@cern.ch

BE Beams
Department

La
ur

en
t D

en
ia

u,
 C

E
R

N
 B

E
/A

B
P,

 1
21

1
G

en
ev

a
23

, l
au

re
nt

.d
en

ia
u@

ce
rn

.c
h

GTPSA in a nutshell

23

๏ Generalised Truncated Power Series Algebra
➡ Multivariate Taylor polynomials of order n in ℝ & ℂ.
➡ Powerful tool for solving differential equations (e.g. motion equations).

Tn
f (x; a) = f(a) + f′ (a)(x − a) +

f′ ′ (a)
2!

(x − a)2 + … +
f (n)(a)

n!
(x − a)n =

n

∑
k=0

f (k)
a

k!
(x − a)k

1 variable x at order n in the neighbourhood of the point a in the domain of the function f :
TPSA coefficients

convergence of the remainder (i.e. truncation error):
lim
n→∞

Rn
f (x; a) = lim

n→∞
f(x) − Tn

f (x; a) = 0 f(x) is an analytic function, is a polynomial approximation
nearby a with radius of convergence h:

Tn
f (x; a)

min
h>0

lim
n→∞

Rn
f (a ± h; a) ≠ 0.

mailto:laurent.deniau@cern.ch

BE Beams
Department

La
ur

en
t D

en
ia

u,
 C

E
R

N
 B

E
/A

B
P,

 1
21

1
G

en
ev

a
23

, l
au

re
nt

.d
en

ia
u@

ce
rn

.c
h

GTPSA in a nutshell

23

๏ Generalised Truncated Power Series Algebra
➡ Multivariate Taylor polynomials of order n in ℝ & ℂ.
➡ Powerful tool for solving differential equations (e.g. motion equations).

Tn
f (x; a) = f(a) + f′ (a)(x − a) +

f′ ′ (a)
2!

(x − a)2 + … +
f (n)(a)

n!
(x − a)n =

n

∑
k=0

f (k)
a

k!
(x − a)k

1 variable x at order n in the neighbourhood of the point a in the domain of the function f :
TPSA coefficients

convergence of the remainder (i.e. truncation error):
lim
n→∞

Rn
f (x; a) = lim

n→∞
f(x) − Tn

f (x; a) = 0 f(x) is an analytic function, is a polynomial approximation
nearby a with radius of convergence h:

Tn
f (x; a)

min
h>0

lim
n→∞

Rn
f (a ± h; a) ≠ 0.

2 variables (x,y) at order 2 nearby (a,b):

T2
f (x, y; a, b) = f(a, b) +

∂f
∂x

(a,b)

(x − a) +
∂f
∂y

(a,b)

(y − b) + …

mailto:laurent.deniau@cern.ch

BE Beams
Department

La
ur

en
t D

en
ia

u,
 C

E
R

N
 B

E
/A

B
P,

 1
21

1
G

en
ev

a
23

, l
au

re
nt

.d
en

ia
u@

ce
rn

.c
h

GTPSA in a nutshell

23

๏ Generalised Truncated Power Series Algebra
➡ Multivariate Taylor polynomials of order n in ℝ & ℂ.
➡ Powerful tool for solving differential equations (e.g. motion equations).

Tn
f (x; a) = f(a) + f′ (a)(x − a) +

f′ ′ (a)
2!

(x − a)2 + … +
f (n)(a)

n!
(x − a)n =

n

∑
k=0

f (k)
a

k!
(x − a)k

1 variable x at order n in the neighbourhood of the point a in the domain of the function f :
TPSA coefficients

convergence of the remainder (i.e. truncation error):
lim
n→∞

Rn
f (x; a) = lim

n→∞
f(x) − Tn

f (x; a) = 0 f(x) is an analytic function, is a polynomial approximation
nearby a with radius of convergence h:

Tn
f (x; a)

min
h>0

lim
n→∞

Rn
f (a ± h; a) ≠ 0.

2 variables (x,y) at order 2 nearby (a,b):

T2
f (x, y; a, b) = f(a, b) +

∂f
∂x

(a,b)

(x − a) +
∂f
∂y

(a,b)

(y − b) + …

= f (1)
(a,b)(x − a, y − b)

mailto:laurent.deniau@cern.ch

BE Beams
Department

La
ur

en
t D

en
ia

u,
 C

E
R

N
 B

E
/A

B
P,

 1
21

1
G

en
ev

a
23

, l
au

re
nt

.d
en

ia
u@

ce
rn

.c
h

GTPSA in a nutshell

23

๏ Generalised Truncated Power Series Algebra
➡ Multivariate Taylor polynomials of order n in ℝ & ℂ.
➡ Powerful tool for solving differential equations (e.g. motion equations).

Tn
f (x; a) = f(a) + f′ (a)(x − a) +

f′ ′ (a)
2!

(x − a)2 + … +
f (n)(a)

n!
(x − a)n =

n

∑
k=0

f (k)
a

k!
(x − a)k

1 variable x at order n in the neighbourhood of the point a in the domain of the function f :
TPSA coefficients

convergence of the remainder (i.e. truncation error):
lim
n→∞

Rn
f (x; a) = lim

n→∞
f(x) − Tn

f (x; a) = 0 f(x) is an analytic function, is a polynomial approximation
nearby a with radius of convergence h:

Tn
f (x; a)

min
h>0

lim
n→∞

Rn
f (a ± h; a) ≠ 0.

2 variables (x,y) at order 2 nearby (a,b):

T2
f (x, y; a, b) = f(a, b) +

∂f
∂x

(a,b)

(x − a) +
∂f
∂y

(a,b)

(y − b) + …

= f (1)
(a,b)(x − a, y − b)

+
1
2!

∂2f
∂x2

(a,b)

(x − a)2 + 2
∂2f

∂x∂y
(a,b)

(x − a)(y − b) +
∂2f
∂y2

(a,b)

(y − b)2

mailto:laurent.deniau@cern.ch

BE Beams
Department

La
ur

en
t D

en
ia

u,
 C

E
R

N
 B

E
/A

B
P,

 1
21

1
G

en
ev

a
23

, l
au

re
nt

.d
en

ia
u@

ce
rn

.c
h

GTPSA in a nutshell

23

๏ Generalised Truncated Power Series Algebra
➡ Multivariate Taylor polynomials of order n in ℝ & ℂ.
➡ Powerful tool for solving differential equations (e.g. motion equations).

Tn
f (x; a) = f(a) + f′ (a)(x − a) +

f′ ′ (a)
2!

(x − a)2 + … +
f (n)(a)

n!
(x − a)n =

n

∑
k=0

f (k)
a

k!
(x − a)k

1 variable x at order n in the neighbourhood of the point a in the domain of the function f :
TPSA coefficients

convergence of the remainder (i.e. truncation error):
lim
n→∞

Rn
f (x; a) = lim

n→∞
f(x) − Tn

f (x; a) = 0 f(x) is an analytic function, is a polynomial approximation
nearby a with radius of convergence h:

Tn
f (x; a)

min
h>0

lim
n→∞

Rn
f (a ± h; a) ≠ 0.

2 variables (x,y) at order 2 nearby (a,b):

T2
f (x, y; a, b) = f(a, b) +

∂f
∂x

(a,b)

(x − a) +
∂f
∂y

(a,b)

(y − b) + …

= f (1)
(a,b)(x − a, y − b)

+
1
2!

∂2f
∂x2

(a,b)

(x − a)2 + 2
∂2f

∂x∂y
(a,b)

(x − a)(y − b) +
∂2f
∂y2

(a,b)

(y − b)2

= f (2)
(a,b)(x − a, y − b)

mailto:laurent.deniau@cern.ch

BE Beams
Department

La
ur

en
t D

en
ia

u,
 C

E
R

N
 B

E
/A

B
P,

 1
21

1
G

en
ev

a
23

, l
au

re
nt

.d
en

ia
u@

ce
rn

.c
h

GTPSA in a nutshell

23

๏ Generalised Truncated Power Series Algebra
➡ Multivariate Taylor polynomials of order n in ℝ & ℂ.
➡ Powerful tool for solving differential equations (e.g. motion equations).

Tn
f (x; a) = f(a) + f′ (a)(x − a) +

f′ ′ (a)
2!

(x − a)2 + … +
f (n)(a)

n!
(x − a)n =

n

∑
k=0

f (k)
a

k!
(x − a)k

1 variable x at order n in the neighbourhood of the point a in the domain of the function f :
TPSA coefficients

convergence of the remainder (i.e. truncation error):
lim
n→∞

Rn
f (x; a) = lim

n→∞
f(x) − Tn

f (x; a) = 0 f(x) is an analytic function, is a polynomial approximation
nearby a with radius of convergence h:

Tn
f (x; a)

min
h>0

lim
n→∞

Rn
f (a ± h; a) ≠ 0.

2 variables (x,y) at order 2 nearby (a,b):

T2
f (x, y; a, b) = f(a, b) +

∂f
∂x

(a,b)

(x − a) +
∂f
∂y

(a,b)

(y − b) + …

= f (1)
(a,b)(x − a, y − b)

+
1
2!

∂2f
∂x2

(a,b)

(x − a)2 + 2
∂2f

∂x∂y
(a,b)

(x − a)(y − b) +
∂2f
∂y2

(a,b)

(y − b)2

= f (2)
(a,b)(x − a, y − b)

homogeneous

polynomials

mailto:laurent.deniau@cern.ch

BE Beams
Department

La
ur

en
t D

en
ia

u,
 C

E
R

N
 B

E
/A

B
P,

 1
21

1
G

en
ev

a
23

, l
au

re
nt

.d
en

ia
u@

ce
rn

.c
h

GTPSA in a nutshell

23

๏ Generalised Truncated Power Series Algebra
➡ Multivariate Taylor polynomials of order n in ℝ & ℂ.
➡ Powerful tool for solving differential equations (e.g. motion equations).

Tn
f (x; a) = f(a) + f′ (a)(x − a) +

f′ ′ (a)
2!

(x − a)2 + … +
f (n)(a)

n!
(x − a)n =

n

∑
k=0

f (k)
a

k!
(x − a)k

1 variable x at order n in the neighbourhood of the point a in the domain of the function f :
TPSA coefficients

convergence of the remainder (i.e. truncation error):
lim
n→∞

Rn
f (x; a) = lim

n→∞
f(x) − Tn

f (x; a) = 0 f(x) is an analytic function, is a polynomial approximation
nearby a with radius of convergence h:

Tn
f (x; a)

min
h>0

lim
n→∞

Rn
f (a ± h; a) ≠ 0.

2 variables (x,y) at order 2 nearby (a,b):

T2
f (x, y; a, b) = f(a, b) +

∂f
∂x

(a,b)

(x − a) +
∂f
∂y

(a,b)

(y − b) + …

= f (1)
(a,b)(x − a, y − b)

+
1
2!

∂2f
∂x2

(a,b)

(x − a)2 + 2
∂2f

∂x∂y
(a,b)

(x − a)(y − b) +
∂2f
∂y2

(a,b)

(y − b)2

= f (2)
(a,b)(x − a, y − b)

homogeneous

polynomials
f must not depend on the integration

path, i.e. must derive from a potential!

mailto:laurent.deniau@cern.ch

BE Beams
Department

La
ur

en
t D

en
ia

u,
 C

E
R

N
 B

E
/A

B
P,

 1
21

1
G

en
ev

a
23

, l
au

re
nt

.d
en

ia
u@

ce
rn

.c
h

GTPSA in a nutshell

23

๏ Generalised Truncated Power Series Algebra
➡ Multivariate Taylor polynomials of order n in ℝ & ℂ.
➡ Powerful tool for solving differential equations (e.g. motion equations).

Tn
f (x; a) = f(a) + f′ (a)(x − a) +

f′ ′ (a)
2!

(x − a)2 + … +
f (n)(a)

n!
(x − a)n =

n

∑
k=0

f (k)
a

k!
(x − a)k

1 variable x at order n in the neighbourhood of the point a in the domain of the function f :
TPSA coefficients

convergence of the remainder (i.e. truncation error):
lim
n→∞

Rn
f (x; a) = lim

n→∞
f(x) − Tn

f (x; a) = 0 f(x) is an analytic function, is a polynomial approximation
nearby a with radius of convergence h:

Tn
f (x; a)

min
h>0

lim
n→∞

Rn
f (a ± h; a) ≠ 0.

2 variables (x,y) at order 2 nearby (a,b):

T2
f (x, y; a, b) = f(a, b) +

∂f
∂x

(a,b)

(x − a) +
∂f
∂y

(a,b)

(y − b) + …

= f (1)
(a,b)(x − a, y − b)

+
1
2!

∂2f
∂x2

(a,b)

(x − a)2 + 2
∂2f

∂x∂y
(a,b)

(x − a)(y − b) +
∂2f
∂y2

(a,b)

(y − b)2

= f (2)
(a,b)(x − a, y − b)

homogeneous

polynomials
f must not depend on the integration

path, i.e. must derive from a potential!

v variables X at order n nearby A:

Tn
f (X; A) =

n

∑
k=0

f (k)
A

k!
(X; A)k =

n

∑
k=0

1
k! ∑

| ⃗m|=k
(k

⃗m) ∂kf
∂X ⃗m

A

(X; A) ⃗m with (k
⃗m) =

k!
c1! c2! . . . cv!

mailto:laurent.deniau@cern.ch

BE Beams
Department

La
ur

en
t D

en
ia

u,
 C

E
R

N
 B

E
/A

B
P,

 1
21

1
G

en
ev

a
23

, l
au

re
nt

.d
en

ia
u@

ce
rn

.c
h

GTPSA in a nutshell

23

๏ Generalised Truncated Power Series Algebra
➡ Multivariate Taylor polynomials of order n in ℝ & ℂ.
➡ Powerful tool for solving differential equations (e.g. motion equations).

Tn
f (x; a) = f(a) + f′ (a)(x − a) +

f′ ′ (a)
2!

(x − a)2 + … +
f (n)(a)

n!
(x − a)n =

n

∑
k=0

f (k)
a

k!
(x − a)k

1 variable x at order n in the neighbourhood of the point a in the domain of the function f :
TPSA coefficients

convergence of the remainder (i.e. truncation error):
lim
n→∞

Rn
f (x; a) = lim

n→∞
f(x) − Tn

f (x; a) = 0 f(x) is an analytic function, is a polynomial approximation
nearby a with radius of convergence h:

Tn
f (x; a)

min
h>0

lim
n→∞

Rn
f (a ± h; a) ≠ 0.

2 variables (x,y) at order 2 nearby (a,b):

T2
f (x, y; a, b) = f(a, b) +

∂f
∂x

(a,b)

(x − a) +
∂f
∂y

(a,b)

(y − b) + …

= f (1)
(a,b)(x − a, y − b)

+
1
2!

∂2f
∂x2

(a,b)

(x − a)2 + 2
∂2f

∂x∂y
(a,b)

(x − a)(y − b) +
∂2f
∂y2

(a,b)

(y − b)2

= f (2)
(a,b)(x − a, y − b)

homogeneous

polynomials
f must not depend on the integration

path, i.e. must derive from a potential!

v variables X at order n nearby A:

Tn
f (X; A) =

n

∑
k=0

f (k)
A

k!
(X; A)k =

n

∑
k=0

1
k! ∑

| ⃗m|=k
(k

⃗m) ∂kf
∂X ⃗m

A

(X; A) ⃗m with (k
⃗m) =

k!
c1! c2! . . . cv!

monomials of order k

mailto:laurent.deniau@cern.ch

BE Beams
Department

La
ur

en
t D

en
ia

u,
 C

E
R

N
 B

E
/A

B
P,

 1
21

1
G

en
ev

a
23

, l
au

re
nt

.d
en

ia
u@

ce
rn

.c
h

GTPSA in a nutshell

23

๏ Generalised Truncated Power Series Algebra
➡ Multivariate Taylor polynomials of order n in ℝ & ℂ.
➡ Powerful tool for solving differential equations (e.g. motion equations).

Tn
f (x; a) = f(a) + f′ (a)(x − a) +

f′ ′ (a)
2!

(x − a)2 + … +
f (n)(a)

n!
(x − a)n =

n

∑
k=0

f (k)
a

k!
(x − a)k

1 variable x at order n in the neighbourhood of the point a in the domain of the function f :
TPSA coefficients

convergence of the remainder (i.e. truncation error):
lim
n→∞

Rn
f (x; a) = lim

n→∞
f(x) − Tn

f (x; a) = 0 f(x) is an analytic function, is a polynomial approximation
nearby a with radius of convergence h:

Tn
f (x; a)

min
h>0

lim
n→∞

Rn
f (a ± h; a) ≠ 0.

2 variables (x,y) at order 2 nearby (a,b):

T2
f (x, y; a, b) = f(a, b) +

∂f
∂x

(a,b)

(x − a) +
∂f
∂y

(a,b)

(y − b) + …

= f (1)
(a,b)(x − a, y − b)

+
1
2!

∂2f
∂x2

(a,b)

(x − a)2 + 2
∂2f

∂x∂y
(a,b)

(x − a)(y − b) +
∂2f
∂y2

(a,b)

(y − b)2

= f (2)
(a,b)(x − a, y − b)

homogeneous

polynomials
f must not depend on the integration

path, i.e. must derive from a potential!

v variables X at order n nearby A:

Tn
f (X; A) =

n

∑
k=0

f (k)
A

k!
(X; A)k =

n

∑
k=0

1
k! ∑

| ⃗m|=k
(k

⃗m) ∂kf
∂X ⃗m

A

(X; A) ⃗m with (k
⃗m) =

k!
c1! c2! . . . cv!

monomials of order k
multinomial

mailto:laurent.deniau@cern.ch

BE Beams
Department

La
ur

en
t D

en
ia

u,
 C

E
R

N
 B

E
/A

B
P,

 1
21

1
G

en
ev

a
23

, l
au

re
nt

.d
en

ia
u@

ce
rn

.c
h

GTPSA in a nutshell

23

๏ Generalised Truncated Power Series Algebra
➡ Multivariate Taylor polynomials of order n in ℝ & ℂ.
➡ Powerful tool for solving differential equations (e.g. motion equations).

Tn
f (x; a) = f(a) + f′ (a)(x − a) +

f′ ′ (a)
2!

(x − a)2 + … +
f (n)(a)

n!
(x − a)n =

n

∑
k=0

f (k)
a

k!
(x − a)k

1 variable x at order n in the neighbourhood of the point a in the domain of the function f :
TPSA coefficients

convergence of the remainder (i.e. truncation error):
lim
n→∞

Rn
f (x; a) = lim

n→∞
f(x) − Tn

f (x; a) = 0 f(x) is an analytic function, is a polynomial approximation
nearby a with radius of convergence h:

Tn
f (x; a)

min
h>0

lim
n→∞

Rn
f (a ± h; a) ≠ 0.

2 variables (x,y) at order 2 nearby (a,b):

T2
f (x, y; a, b) = f(a, b) +

∂f
∂x

(a,b)

(x − a) +
∂f
∂y

(a,b)

(y − b) + …

= f (1)
(a,b)(x − a, y − b)

+
1
2!

∂2f
∂x2

(a,b)

(x − a)2 + 2
∂2f

∂x∂y
(a,b)

(x − a)(y − b) +
∂2f
∂y2

(a,b)

(y − b)2

= f (2)
(a,b)(x − a, y − b)

homogeneous

polynomials
f must not depend on the integration

path, i.e. must derive from a potential!

v variables X at order n nearby A:

Tn
f (X; A) =

n

∑
k=0

f (k)
A

k!
(X; A)k =

n

∑
k=0

1
k! ∑

| ⃗m|=k
(k

⃗m) ∂kf
∂X ⃗m

A

(X; A) ⃗m with (k
⃗m) =

k!
c1! c2! . . . cv!

monomials of order k
multinomial

TPSA coefficients

mailto:laurent.deniau@cern.ch

BE Beams
Department

La
ur

en
t D

en
ia

u,
 C

E
R

N
 B

E
/A

B
P,

 1
21

1
G

en
ev

a
23

, l
au

re
nt

.d
en

ia
u@

ce
rn

.c
h

GTPSA in a nutshell

23

๏ Generalised Truncated Power Series Algebra
➡ Multivariate Taylor polynomials of order n in ℝ & ℂ.
➡ Powerful tool for solving differential equations (e.g. motion equations).

Tn
f (x; a) = f(a) + f′ (a)(x − a) +

f′ ′ (a)
2!

(x − a)2 + … +
f (n)(a)

n!
(x − a)n =

n

∑
k=0

f (k)
a

k!
(x − a)k

1 variable x at order n in the neighbourhood of the point a in the domain of the function f :
TPSA coefficients

convergence of the remainder (i.e. truncation error):
lim
n→∞

Rn
f (x; a) = lim

n→∞
f(x) − Tn

f (x; a) = 0 f(x) is an analytic function, is a polynomial approximation
nearby a with radius of convergence h:

Tn
f (x; a)

min
h>0

lim
n→∞

Rn
f (a ± h; a) ≠ 0.

2 variables (x,y) at order 2 nearby (a,b):

T2
f (x, y; a, b) = f(a, b) +

∂f
∂x

(a,b)

(x − a) +
∂f
∂y

(a,b)

(y − b) + …

= f (1)
(a,b)(x − a, y − b)

+
1
2!

∂2f
∂x2

(a,b)

(x − a)2 + 2
∂2f

∂x∂y
(a,b)

(x − a)(y − b) +
∂2f
∂y2

(a,b)

(y − b)2

= f (2)
(a,b)(x − a, y − b)

homogeneous

polynomials
f must not depend on the integration

path, i.e. must derive from a potential!

v variables X at order n nearby A:

Tn
f (X; A) =

n

∑
k=0

f (k)
A

k!
(X; A)k =

n

∑
k=0

1
k! ∑

| ⃗m|=k
(k

⃗m) ∂kf
∂X ⃗m

A

(X; A) ⃗m with (k
⃗m) =

k!
c1! c2! . . . cv!

monomials of order k
multinomial

TPSA coefficients

IPAC 2015

mailto:laurent.deniau@cern.ch

BE Beams
Department

La
ur

en
t D

en
ia

u,
 C

E
R

N
 B

E
/A

B
P,

 1
21

1
G

en
ev

a
23

, l
au

re
nt

.d
en

ia
u@

ce
rn

.c
h

GTPSA in a nutshell

23

๏ Generalised Truncated Power Series Algebra
➡ Multivariate Taylor polynomials of order n in ℝ & ℂ.
➡ Powerful tool for solving differential equations (e.g. motion equations).

Tn
f (x; a) = f(a) + f′ (a)(x − a) +

f′ ′ (a)
2!

(x − a)2 + … +
f (n)(a)

n!
(x − a)n =

n

∑
k=0

f (k)
a

k!
(x − a)k

1 variable x at order n in the neighbourhood of the point a in the domain of the function f :
TPSA coefficients

convergence of the remainder (i.e. truncation error):
lim
n→∞

Rn
f (x; a) = lim

n→∞
f(x) − Tn

f (x; a) = 0 f(x) is an analytic function, is a polynomial approximation
nearby a with radius of convergence h:

Tn
f (x; a)

min
h>0

lim
n→∞

Rn
f (a ± h; a) ≠ 0.

2 variables (x,y) at order 2 nearby (a,b):

T2
f (x, y; a, b) = f(a, b) +

∂f
∂x

(a,b)

(x − a) +
∂f
∂y

(a,b)

(y − b) + …

= f (1)
(a,b)(x − a, y − b)

+
1
2!

∂2f
∂x2

(a,b)

(x − a)2 + 2
∂2f

∂x∂y
(a,b)

(x − a)(y − b) +
∂2f
∂y2

(a,b)

(y − b)2

= f (2)
(a,b)(x − a, y − b)

homogeneous

polynomials
f must not depend on the integration

path, i.e. must derive from a potential!

v variables X at order n nearby A:

Tn
f (X; A) =

n

∑
k=0

f (k)
A

k!
(X; A)k =

n

∑
k=0

1
k! ∑

| ⃗m|=k
(k

⃗m) ∂kf
∂X ⃗m

A

(X; A) ⃗m with (k
⃗m) =

k!
c1! c2! . . . cv!

monomials of order k
multinomial

TPSA coefficients

IPAC 2015 Github MAD

mailto:laurent.deniau@cern.ch

BE Beams
Department

La
ur

en
t D

en
ia

u,
 C

E
R

N
 B

E
/A

B
P,

 1
21

1
G

en
ev

a
23

, l
au

re
nt

.d
en

ia
u@

ce
rn

.c
h

GTPSA in a nutshell

23

๏ Generalised Truncated Power Series Algebra
➡ Multivariate Taylor polynomials of order n in ℝ & ℂ.
➡ Powerful tool for solving differential equations (e.g. motion equations).

Tn
f (x; a) = f(a) + f′ (a)(x − a) +

f′ ′ (a)
2!

(x − a)2 + … +
f (n)(a)

n!
(x − a)n =

n

∑
k=0

f (k)
a

k!
(x − a)k

1 variable x at order n in the neighbourhood of the point a in the domain of the function f :
TPSA coefficients

convergence of the remainder (i.e. truncation error):
lim
n→∞

Rn
f (x; a) = lim

n→∞
f(x) − Tn

f (x; a) = 0 f(x) is an analytic function, is a polynomial approximation
nearby a with radius of convergence h:

Tn
f (x; a)

min
h>0

lim
n→∞

Rn
f (a ± h; a) ≠ 0.

2 variables (x,y) at order 2 nearby (a,b):

T2
f (x, y; a, b) = f(a, b) +

∂f
∂x

(a,b)

(x − a) +
∂f
∂y

(a,b)

(y − b) + …

= f (1)
(a,b)(x − a, y − b)

+
1
2!

∂2f
∂x2

(a,b)

(x − a)2 + 2
∂2f

∂x∂y
(a,b)

(x − a)(y − b) +
∂2f
∂y2

(a,b)

(y − b)2

= f (2)
(a,b)(x − a, y − b)

homogeneous

polynomials
f must not depend on the integration

path, i.e. must derive from a potential!

v variables X at order n nearby A:

Tn
f (X; A) =

n

∑
k=0

f (k)
A

k!
(X; A)k =

n

∑
k=0

1
k! ∑

| ⃗m|=k
(k

⃗m) ∂kf
∂X ⃗m

A

(X; A) ⃗m with (k
⃗m) =

k!
c1! c2! . . . cv!

monomials of order k
multinomial

TPSA coefficients

IPAC 2015 Github MAD

2017-2018

mailto:laurent.deniau@cern.ch

BE Beams
Department

La
ur

en
t D

en
ia

u,
 C

E
R

N
 B

E
/A

B
P,

 1
21

1
G

en
ev

a
23

, l
au

re
nt

.d
en

ia
u@

ce
rn

.c
h

Accuracy of TPSA (myths and legends)

24

mailto:laurent.deniau@cern.ch

BE Beams
Department

La
ur

en
t D

en
ia

u,
 C

E
R

N
 B

E
/A

B
P,

 1
21

1
G

en
ev

a
23

, l
au

re
nt

.d
en

ia
u@

ce
rn

.c
h

Accuracy of TPSA (myths and legends)

24

๏ GTPSA are exact to machine precision, no approximation for orders 0..n

mailto:laurent.deniau@cern.ch

BE Beams
Department

La
ur

en
t D

en
ia

u,
 C

E
R

N
 B

E
/A

B
P,

 1
21

1
G

en
ev

a
23

, l
au

re
nt

.d
en

ia
u@

ce
rn

.c
h

Accuracy of TPSA (myths and legends)

24

๏ GTPSA are exact to machine precision, no approximation for orders 0..n
➡ derivatives are computed using automatic differentiation (AD).

mailto:laurent.deniau@cern.ch

BE Beams
Department

La
ur

en
t D

en
ia

u,
 C

E
R

N
 B

E
/A

B
P,

 1
21

1
G

en
ev

a
23

, l
au

re
nt

.d
en

ia
u@

ce
rn

.c
h

Accuracy of TPSA (myths and legends)

24

๏ GTPSA are exact to machine precision, no approximation for orders 0..n
➡ derivatives are computed using automatic differentiation (AD).

AD exploits the fact that every computer program, no matter how complicated, executes a sequence of
elementary arithmetic operations (addition, subtraction, multiplication, division, etc.) and elementary
functions (exp, log, sin, cos, etc.). By applying the chain rule repeatedly to these operations, derivatives
of arbitrary order can be computed automatically, accurately to working precision, and using at
most a small constant factor more arithmetic operations than the original program.

Symbolic differentiation can lead to inefficient code and faces the difficulty of converting a computer
program into a single expression, while numerical differentiation can introduce round-off errors in the
discretization process and cancellation. Both classical methods have problems with calculating
higher derivatives, where complexity and errors increase.

from Wikipedia

mailto:laurent.deniau@cern.ch
https://en.wikipedia.org/wiki/Chain_rule
https://en.wikipedia.org/wiki/Round-off_error
https://en.wikipedia.org/wiki/Discretization

BE Beams
Department

La
ur

en
t D

en
ia

u,
 C

E
R

N
 B

E
/A

B
P,

 1
21

1
G

en
ev

a
23

, l
au

re
nt

.d
en

ia
u@

ce
rn

.c
h

Accuracy of TPSA (myths and legends)

24

๏ GTPSA are exact to machine precision, no approximation for orders 0..n
➡ derivatives are computed using automatic differentiation (AD).

๏ MAD-NG includes a complete toolbox (i.e. module) to handle DA using AD…
➡ users have full access to GTPSA and DAmaps from the scripting language.

AD exploits the fact that every computer program, no matter how complicated, executes a sequence of
elementary arithmetic operations (addition, subtraction, multiplication, division, etc.) and elementary
functions (exp, log, sin, cos, etc.). By applying the chain rule repeatedly to these operations, derivatives
of arbitrary order can be computed automatically, accurately to working precision, and using at
most a small constant factor more arithmetic operations than the original program.

Symbolic differentiation can lead to inefficient code and faces the difficulty of converting a computer
program into a single expression, while numerical differentiation can introduce round-off errors in the
discretization process and cancellation. Both classical methods have problems with calculating
higher derivatives, where complexity and errors increase.

from Wikipedia

mailto:laurent.deniau@cern.ch
https://en.wikipedia.org/wiki/Chain_rule
https://en.wikipedia.org/wiki/Round-off_error
https://en.wikipedia.org/wiki/Discretization

BE Beams
Department

La
ur

en
t D

en
ia

u,
 C

E
R

N
 B

E
/A

B
P,

 1
21

1
G

en
ev

a
23

, l
au

re
nt

.d
en

ia
u@

ce
rn

.c
h

Accuracy of TPSA (myths and legends)

24

๏ GTPSA are exact to machine precision, no approximation for orders 0..n
➡ derivatives are computed using automatic differentiation (AD).

๏ MAD-NG includes a complete toolbox (i.e. module) to handle DA using AD…
➡ users have full access to GTPSA and DAmaps from the scripting language.
➡ users can manipulate DAmaps stored in the MTable or the MFlow returned by Track.

AD exploits the fact that every computer program, no matter how complicated, executes a sequence of
elementary arithmetic operations (addition, subtraction, multiplication, division, etc.) and elementary
functions (exp, log, sin, cos, etc.). By applying the chain rule repeatedly to these operations, derivatives
of arbitrary order can be computed automatically, accurately to working precision, and using at
most a small constant factor more arithmetic operations than the original program.

Symbolic differentiation can lead to inefficient code and faces the difficulty of converting a computer
program into a single expression, while numerical differentiation can introduce round-off errors in the
discretization process and cancellation. Both classical methods have problems with calculating
higher derivatives, where complexity and errors increase.

from Wikipedia

mailto:laurent.deniau@cern.ch
https://en.wikipedia.org/wiki/Chain_rule
https://en.wikipedia.org/wiki/Round-off_error
https://en.wikipedia.org/wiki/Discretization

BE Beams
Department

La
ur

en
t D

en
ia

u,
 C

E
R

N
 B

E
/A

B
P,

 1
21

1
G

en
ev

a
23

, l
au

re
nt

.d
en

ia
u@

ce
rn

.c
h

Accuracy of TPSA (myths and legends)

24

๏ GTPSA are exact to machine precision, no approximation for orders 0..n
➡ derivatives are computed using automatic differentiation (AD).

๏ MAD-NG includes a complete toolbox (i.e. module) to handle DA using AD…
➡ users have full access to GTPSA and DAmaps from the scripting language.
➡ users can manipulate DAmaps stored in the MTable or the MFlow returned by Track.

๏ So when DAmap/TPSA introduce errors?

AD exploits the fact that every computer program, no matter how complicated, executes a sequence of
elementary arithmetic operations (addition, subtraction, multiplication, division, etc.) and elementary
functions (exp, log, sin, cos, etc.). By applying the chain rule repeatedly to these operations, derivatives
of arbitrary order can be computed automatically, accurately to working precision, and using at
most a small constant factor more arithmetic operations than the original program.

Symbolic differentiation can lead to inefficient code and faces the difficulty of converting a computer
program into a single expression, while numerical differentiation can introduce round-off errors in the
discretization process and cancellation. Both classical methods have problems with calculating
higher derivatives, where complexity and errors increase.

from Wikipedia

mailto:laurent.deniau@cern.ch
https://en.wikipedia.org/wiki/Chain_rule
https://en.wikipedia.org/wiki/Round-off_error
https://en.wikipedia.org/wiki/Discretization

BE Beams
Department

La
ur

en
t D

en
ia

u,
 C

E
R

N
 B

E
/A

B
P,

 1
21

1
G

en
ev

a
23

, l
au

re
nt

.d
en

ia
u@

ce
rn

.c
h

Accuracy of TPSA (myths and legends)

24

๏ GTPSA are exact to machine precision, no approximation for orders 0..n
➡ derivatives are computed using automatic differentiation (AD).

๏ MAD-NG includes a complete toolbox (i.e. module) to handle DA using AD…
➡ users have full access to GTPSA and DAmaps from the scripting language.
➡ users can manipulate DAmaps stored in the MTable or the MFlow returned by Track.

๏ So when DAmap/TPSA introduce errors?
➡ If they are used as functions (e.g. evaluated), instead of DA (e.g. track, twiss).

AD exploits the fact that every computer program, no matter how complicated, executes a sequence of
elementary arithmetic operations (addition, subtraction, multiplication, division, etc.) and elementary
functions (exp, log, sin, cos, etc.). By applying the chain rule repeatedly to these operations, derivatives
of arbitrary order can be computed automatically, accurately to working precision, and using at
most a small constant factor more arithmetic operations than the original program.

Symbolic differentiation can lead to inefficient code and faces the difficulty of converting a computer
program into a single expression, while numerical differentiation can introduce round-off errors in the
discretization process and cancellation. Both classical methods have problems with calculating
higher derivatives, where complexity and errors increase.

from Wikipedia

mailto:laurent.deniau@cern.ch
https://en.wikipedia.org/wiki/Chain_rule
https://en.wikipedia.org/wiki/Round-off_error
https://en.wikipedia.org/wiki/Discretization

BE Beams
Department

La
ur

en
t D

en
ia

u,
 C

E
R

N
 B

E
/A

B
P,

 1
21

1
G

en
ev

a
23

, l
au

re
nt

.d
en

ia
u@

ce
rn

.c
h

Accuracy of TPSA (myths and legends)

24

๏ GTPSA are exact to machine precision, no approximation for orders 0..n
➡ derivatives are computed using automatic differentiation (AD).

๏ MAD-NG includes a complete toolbox (i.e. module) to handle DA using AD…
➡ users have full access to GTPSA and DAmaps from the scripting language.
➡ users can manipulate DAmaps stored in the MTable or the MFlow returned by Track.

๏ So when DAmap/TPSA introduce errors?
➡ If they are used as functions (e.g. evaluated), instead of DA (e.g. track, twiss).
➡ High orders of are used to interpolate at the new position by substitution.

AD exploits the fact that every computer program, no matter how complicated, executes a sequence of
elementary arithmetic operations (addition, subtraction, multiplication, division, etc.) and elementary
functions (exp, log, sin, cos, etc.). By applying the chain rule repeatedly to these operations, derivatives
of arbitrary order can be computed automatically, accurately to working precision, and using at
most a small constant factor more arithmetic operations than the original program.

Symbolic differentiation can lead to inefficient code and faces the difficulty of converting a computer
program into a single expression, while numerical differentiation can introduce round-off errors in the
discretization process and cancellation. Both classical methods have problems with calculating
higher derivatives, where complexity and errors increase.

from Wikipedia

Tn
f (x; a)

mailto:laurent.deniau@cern.ch
https://en.wikipedia.org/wiki/Chain_rule
https://en.wikipedia.org/wiki/Round-off_error
https://en.wikipedia.org/wiki/Discretization

BE Beams
Department

La
ur

en
t D

en
ia

u,
 C

E
R

N
 B

E
/A

B
P,

 1
21

1
G

en
ev

a
23

, l
au

re
nt

.d
en

ia
u@

ce
rn

.c
h

Accuracy of TPSA (myths and legends)

24

๏ GTPSA are exact to machine precision, no approximation for orders 0..n
➡ derivatives are computed using automatic differentiation (AD).

๏ MAD-NG includes a complete toolbox (i.e. module) to handle DA using AD…
➡ users have full access to GTPSA and DAmaps from the scripting language.
➡ users can manipulate DAmaps stored in the MTable or the MFlow returned by Track.

๏ So when DAmap/TPSA introduce errors?
➡ If they are used as functions (e.g. evaluated), instead of DA (e.g. track, twiss).
➡ High orders of are used to interpolate at the new position by substitution.

AD exploits the fact that every computer program, no matter how complicated, executes a sequence of
elementary arithmetic operations (addition, subtraction, multiplication, division, etc.) and elementary
functions (exp, log, sin, cos, etc.). By applying the chain rule repeatedly to these operations, derivatives
of arbitrary order can be computed automatically, accurately to working precision, and using at
most a small constant factor more arithmetic operations than the original program.

Symbolic differentiation can lead to inefficient code and faces the difficulty of converting a computer
program into a single expression, while numerical differentiation can introduce round-off errors in the
discretization process and cancellation. Both classical methods have problems with calculating
higher derivatives, where complexity and errors increase.

from Wikipedia

Tn
f (x; a + h) =

n

∑
k=0

f (k)
a+h

k!
(x − a − h)k

Tn
f (x; a)

mailto:laurent.deniau@cern.ch
https://en.wikipedia.org/wiki/Chain_rule
https://en.wikipedia.org/wiki/Round-off_error
https://en.wikipedia.org/wiki/Discretization

BE Beams
Department

La
ur

en
t D

en
ia

u,
 C

E
R

N
 B

E
/A

B
P,

 1
21

1
G

en
ev

a
23

, l
au

re
nt

.d
en

ia
u@

ce
rn

.c
h

Accuracy of TPSA (myths and legends)

24

๏ GTPSA are exact to machine precision, no approximation for orders 0..n
➡ derivatives are computed using automatic differentiation (AD).

๏ MAD-NG includes a complete toolbox (i.e. module) to handle DA using AD…
➡ users have full access to GTPSA and DAmaps from the scripting language.
➡ users can manipulate DAmaps stored in the MTable or the MFlow returned by Track.

๏ So when DAmap/TPSA introduce errors?
➡ If they are used as functions (e.g. evaluated), instead of DA (e.g. track, twiss).
➡ High orders of are used to interpolate at the new position by substitution.

AD exploits the fact that every computer program, no matter how complicated, executes a sequence of
elementary arithmetic operations (addition, subtraction, multiplication, division, etc.) and elementary
functions (exp, log, sin, cos, etc.). By applying the chain rule repeatedly to these operations, derivatives
of arbitrary order can be computed automatically, accurately to working precision, and using at
most a small constant factor more arithmetic operations than the original program.

Symbolic differentiation can lead to inefficient code and faces the difficulty of converting a computer
program into a single expression, while numerical differentiation can introduce round-off errors in the
discretization process and cancellation. Both classical methods have problems with calculating
higher derivatives, where complexity and errors increase.

from Wikipedia

Tn
f (x; a + h) =

n

∑
k=0

f (k)
a+h

k!
(x − a − h)k ; f(a + h) ≈

n

∑
k=0

f (k)
a

k!
hk

Tn
f (x; a)

mailto:laurent.deniau@cern.ch
https://en.wikipedia.org/wiki/Chain_rule
https://en.wikipedia.org/wiki/Round-off_error
https://en.wikipedia.org/wiki/Discretization

BE Beams
Department

La
ur

en
t D

en
ia

u,
 C

E
R

N
 B

E
/A

B
P,

 1
21

1
G

en
ev

a
23

, l
au

re
nt

.d
en

ia
u@

ce
rn

.c
h

Accuracy of TPSA (myths and legends)

24

๏ GTPSA are exact to machine precision, no approximation for orders 0..n
➡ derivatives are computed using automatic differentiation (AD).

๏ MAD-NG includes a complete toolbox (i.e. module) to handle DA using AD…
➡ users have full access to GTPSA and DAmaps from the scripting language.
➡ users can manipulate DAmaps stored in the MTable or the MFlow returned by Track.

๏ So when DAmap/TPSA introduce errors?
➡ If they are used as functions (e.g. evaluated), instead of DA (e.g. track, twiss).
➡ High orders of are used to interpolate at the new position by substitution.

AD exploits the fact that every computer program, no matter how complicated, executes a sequence of
elementary arithmetic operations (addition, subtraction, multiplication, division, etc.) and elementary
functions (exp, log, sin, cos, etc.). By applying the chain rule repeatedly to these operations, derivatives
of arbitrary order can be computed automatically, accurately to working precision, and using at
most a small constant factor more arithmetic operations than the original program.

Symbolic differentiation can lead to inefficient code and faces the difficulty of converting a computer
program into a single expression, while numerical differentiation can introduce round-off errors in the
discretization process and cancellation. Both classical methods have problems with calculating
higher derivatives, where complexity and errors increase.

from Wikipedia

Tn
f (x; a + h) =

n

∑
k=0

f (k)
a+h

k!
(x − a − h)k ; f(a + h) ≈

n

∑
k=0

f (k)
a

k!
hk

Tn
f (a + h; a)

Tn
f (x; a)

mailto:laurent.deniau@cern.ch
https://en.wikipedia.org/wiki/Chain_rule
https://en.wikipedia.org/wiki/Round-off_error
https://en.wikipedia.org/wiki/Discretization

BE Beams
Department

La
ur

en
t D

en
ia

u,
 C

E
R

N
 B

E
/A

B
P,

 1
21

1
G

en
ev

a
23

, l
au

re
nt

.d
en

ia
u@

ce
rn

.c
h

Accuracy of TPSA (myths and legends)

24

๏ GTPSA are exact to machine precision, no approximation for orders 0..n
➡ derivatives are computed using automatic differentiation (AD).

๏ MAD-NG includes a complete toolbox (i.e. module) to handle DA using AD…
➡ users have full access to GTPSA and DAmaps from the scripting language.
➡ users can manipulate DAmaps stored in the MTable or the MFlow returned by Track.

๏ So when DAmap/TPSA introduce errors?
➡ If they are used as functions (e.g. evaluated), instead of DA (e.g. track, twiss).
➡ High orders of are used to interpolate at the new position by substitution.

AD exploits the fact that every computer program, no matter how complicated, executes a sequence of
elementary arithmetic operations (addition, subtraction, multiplication, division, etc.) and elementary
functions (exp, log, sin, cos, etc.). By applying the chain rule repeatedly to these operations, derivatives
of arbitrary order can be computed automatically, accurately to working precision, and using at
most a small constant factor more arithmetic operations than the original program.

Symbolic differentiation can lead to inefficient code and faces the difficulty of converting a computer
program into a single expression, while numerical differentiation can introduce round-off errors in the
discretization process and cancellation. Both classical methods have problems with calculating
higher derivatives, where complexity and errors increase.

from Wikipedia

Tn
f (x; a + h) =

n

∑
k=0

f (k)
a+h

k!
(x − a − h)k ; f(a + h) ≈

n

∑
k=0

f (k)
a

k!
hk

Tn
f (a + h; a)

Tn
f (x; a)

mailto:laurent.deniau@cern.ch
https://en.wikipedia.org/wiki/Chain_rule
https://en.wikipedia.org/wiki/Round-off_error
https://en.wikipedia.org/wiki/Discretization

BE Beams
Department

La
ur

en
t D

en
ia

u,
 C

E
R

N
 B

E
/A

B
P,

 1
21

1
G

en
ev

a
23

, l
au

re
nt

.d
en

ia
u@

ce
rn

.c
h

Accuracy of TPSA (myths and legends)

24

๏ GTPSA are exact to machine precision, no approximation for orders 0..n
➡ derivatives are computed using automatic differentiation (AD).

๏ MAD-NG includes a complete toolbox (i.e. module) to handle DA using AD…
➡ users have full access to GTPSA and DAmaps from the scripting language.
➡ users can manipulate DAmaps stored in the MTable or the MFlow returned by Track.

๏ So when DAmap/TPSA introduce errors?
➡ If they are used as functions (e.g. evaluated), instead of DA (e.g. track, twiss).
➡ High orders of are used to interpolate at the new position by substitution.

AD exploits the fact that every computer program, no matter how complicated, executes a sequence of
elementary arithmetic operations (addition, subtraction, multiplication, division, etc.) and elementary
functions (exp, log, sin, cos, etc.). By applying the chain rule repeatedly to these operations, derivatives
of arbitrary order can be computed automatically, accurately to working precision, and using at
most a small constant factor more arithmetic operations than the original program.

Symbolic differentiation can lead to inefficient code and faces the difficulty of converting a computer
program into a single expression, while numerical differentiation can introduce round-off errors in the
discretization process and cancellation. Both classical methods have problems with calculating
higher derivatives, where complexity and errors increase.

from Wikipedia

Tn
f (x; a + h) =

n

∑
k=0

f (k)
a+h

k!
(x − a − h)k ; f(a + h) ≈

n

∑
k=0

f (k)
a

k!
hk ; f (k)

a+h ≈
dkTn

f (x; a)
dxk

(a + h)

Tn
f (a + h; a)

Tn
f (x; a)

mailto:laurent.deniau@cern.ch
https://en.wikipedia.org/wiki/Chain_rule
https://en.wikipedia.org/wiki/Round-off_error
https://en.wikipedia.org/wiki/Discretization

BE Beams
Department

La
ur

en
t D

en
ia

u,
 C

E
R

N
 B

E
/A

B
P,

 1
21

1
G

en
ev

a
23

, l
au

re
nt

.d
en

ia
u@

ce
rn

.c
h

Accuracy of TPSA (myths and legends)

24

๏ GTPSA are exact to machine precision, no approximation for orders 0..n
➡ derivatives are computed using automatic differentiation (AD).

๏ MAD-NG includes a complete toolbox (i.e. module) to handle DA using AD…
➡ users have full access to GTPSA and DAmaps from the scripting language.
➡ users can manipulate DAmaps stored in the MTable or the MFlow returned by Track.

๏ So when DAmap/TPSA introduce errors?
➡ If they are used as functions (e.g. evaluated), instead of DA (e.g. track, twiss).
➡ High orders of are used to interpolate at the new position by substitution.

AD exploits the fact that every computer program, no matter how complicated, executes a sequence of
elementary arithmetic operations (addition, subtraction, multiplication, division, etc.) and elementary
functions (exp, log, sin, cos, etc.). By applying the chain rule repeatedly to these operations, derivatives
of arbitrary order can be computed automatically, accurately to working precision, and using at
most a small constant factor more arithmetic operations than the original program.

Symbolic differentiation can lead to inefficient code and faces the difficulty of converting a computer
program into a single expression, while numerical differentiation can introduce round-off errors in the
discretization process and cancellation. Both classical methods have problems with calculating
higher derivatives, where complexity and errors increase.

from Wikipedia

Tn
f (x; a + h) =

n

∑
k=0

f (k)
a+h

k!
(x − a − h)k ; f(a + h) ≈

n

∑
k=0

f (k)
a

k!
hk ; f (k)

a+h ≈
dkTn

f (x; a)
dxk

(a + h)

Tn
f (a + h; a)

Tn
f (x; a)

mailto:laurent.deniau@cern.ch
https://en.wikipedia.org/wiki/Chain_rule
https://en.wikipedia.org/wiki/Round-off_error
https://en.wikipedia.org/wiki/Discretization

BE Beams
Department

La
ur

en
t D

en
ia

u,
 C

E
R

N
 B

E
/A

B
P,

 1
21

1
G

en
ev

a
23

, l
au

re
nt

.d
en

ia
u@

ce
rn

.c
h

Accuracy of TPSA (myths and legends)

24

๏ GTPSA are exact to machine precision, no approximation for orders 0..n
➡ derivatives are computed using automatic differentiation (AD).

๏ MAD-NG includes a complete toolbox (i.e. module) to handle DA using AD…
➡ users have full access to GTPSA and DAmaps from the scripting language.
➡ users can manipulate DAmaps stored in the MTable or the MFlow returned by Track.

๏ So when DAmap/TPSA introduce errors?
➡ If they are used as functions (e.g. evaluated), instead of DA (e.g. track, twiss).
➡ High orders of are used to interpolate at the new position by substitution.

AD exploits the fact that every computer program, no matter how complicated, executes a sequence of
elementary arithmetic operations (addition, subtraction, multiplication, division, etc.) and elementary
functions (exp, log, sin, cos, etc.). By applying the chain rule repeatedly to these operations, derivatives
of arbitrary order can be computed automatically, accurately to working precision, and using at
most a small constant factor more arithmetic operations than the original program.

Symbolic differentiation can lead to inefficient code and faces the difficulty of converting a computer
program into a single expression, while numerical differentiation can introduce round-off errors in the
discretization process and cancellation. Both classical methods have problems with calculating
higher derivatives, where complexity and errors increase.

from Wikipedia

Tn
f (x; a + h) =

n

∑
k=0

f (k)
a+h

k!
(x − a − h)k ; f(a + h) ≈

n

∑
k=0

f (k)
a

k!
hk ; f (k)

a+h ≈
dkTn

f (x; a)
dxk

(a + h)

Tn
f (a + h; a)

Tn
f (x; a)

order n is constant

order n-1 is linear in h

mailto:laurent.deniau@cern.ch
https://en.wikipedia.org/wiki/Chain_rule
https://en.wikipedia.org/wiki/Round-off_error
https://en.wikipedia.org/wiki/Discretization

BE Beams
Department

La
ur

en
t D

en
ia

u,
 C

E
R

N
 B

E
/A

B
P,

 1
21

1
G

en
ev

a
23

, l
au

re
nt

.d
en

ia
u@

ce
rn

.c
h

Accuracy of TPSA (myths and legends)

24

๏ GTPSA are exact to machine precision, no approximation for orders 0..n
➡ derivatives are computed using automatic differentiation (AD).

๏ MAD-NG includes a complete toolbox (i.e. module) to handle DA using AD…
➡ users have full access to GTPSA and DAmaps from the scripting language.
➡ users can manipulate DAmaps stored in the MTable or the MFlow returned by Track.

๏ So when DAmap/TPSA introduce errors?
➡ If they are used as functions (e.g. evaluated), instead of DA (e.g. track, twiss).
➡ High orders of are used to interpolate at the new position by substitution.

AD exploits the fact that every computer program, no matter how complicated, executes a sequence of
elementary arithmetic operations (addition, subtraction, multiplication, division, etc.) and elementary
functions (exp, log, sin, cos, etc.). By applying the chain rule repeatedly to these operations, derivatives
of arbitrary order can be computed automatically, accurately to working precision, and using at
most a small constant factor more arithmetic operations than the original program.

Symbolic differentiation can lead to inefficient code and faces the difficulty of converting a computer
program into a single expression, while numerical differentiation can introduce round-off errors in the
discretization process and cancellation. Both classical methods have problems with calculating
higher derivatives, where complexity and errors increase.

from Wikipedia

Tn
f (x; a + h) =

n

∑
k=0

f (k)
a+h

k!
(x − a − h)k ; f(a + h) ≈

n

∑
k=0

f (k)
a

k!
hk ; f (k)

a+h ≈
dkTn

f (x; a)
dxk

(a + h)

Tn
f (a + h; a)

Tn
f (x; a)

Matrix codes

don’t do better! order n is constant

order n-1 is linear in h

mailto:laurent.deniau@cern.ch
https://en.wikipedia.org/wiki/Chain_rule
https://en.wikipedia.org/wiki/Round-off_error
https://en.wikipedia.org/wiki/Discretization

BE Beams
Department

La
ur

en
t D

en
ia

u,
 C

E
R

N
 B

E
/A

B
P,

 1
21

1
G

en
ev

a
23

, l
au

re
nt

.d
en

ia
u@

ce
rn

.c
h

Accuracy of TPSA (myths and legends)

24

๏ GTPSA are exact to machine precision, no approximation for orders 0..n
➡ derivatives are computed using automatic differentiation (AD).

๏ MAD-NG includes a complete toolbox (i.e. module) to handle DA using AD…
➡ users have full access to GTPSA and DAmaps from the scripting language.
➡ users can manipulate DAmaps stored in the MTable or the MFlow returned by Track.

๏ So when DAmap/TPSA introduce errors?
➡ If they are used as functions (e.g. evaluated), instead of DA (e.g. track, twiss).
➡ High orders of are used to interpolate at the new position by substitution.

AD exploits the fact that every computer program, no matter how complicated, executes a sequence of
elementary arithmetic operations (addition, subtraction, multiplication, division, etc.) and elementary
functions (exp, log, sin, cos, etc.). By applying the chain rule repeatedly to these operations, derivatives
of arbitrary order can be computed automatically, accurately to working precision, and using at
most a small constant factor more arithmetic operations than the original program.

Symbolic differentiation can lead to inefficient code and faces the difficulty of converting a computer
program into a single expression, while numerical differentiation can introduce round-off errors in the
discretization process and cancellation. Both classical methods have problems with calculating
higher derivatives, where complexity and errors increase.

from Wikipedia

Tn
f (x; a + h) =

n

∑
k=0

f (k)
a+h

k!
(x − a − h)k ; f(a + h) ≈

n

∑
k=0

f (k)
a

k!
hk ; f (k)

a+h ≈
dkTn

f (x; a)
dxk

(a + h)

Tn
f (a + h; a)

Tn
f (x; a)

Matrix codes

don’t do better! order n is constant

order n-1 is linear in h

sin x and its Taylor approximations nearby 0 by
polynomials of degree 1, 3, 5, 7, 9, 11 and 13.

mailto:laurent.deniau@cern.ch
https://en.wikipedia.org/wiki/Chain_rule
https://en.wikipedia.org/wiki/Round-off_error
https://en.wikipedia.org/wiki/Discretization

BE Beams
Department

La
ur

en
t D

en
ia

u,
 C

E
R

N
 B

E
/A

B
P,

 1
21

1
G

en
ev

a
23

, l
au

re
nt

.d
en

ia
u@

ce
rn

.c
h

Accuracy of TPSA (myths and legends)

24

๏ GTPSA are exact to machine precision, no approximation for orders 0..n
➡ derivatives are computed using automatic differentiation (AD).

๏ MAD-NG includes a complete toolbox (i.e. module) to handle DA using AD…
➡ users have full access to GTPSA and DAmaps from the scripting language.
➡ users can manipulate DAmaps stored in the MTable or the MFlow returned by Track.

๏ So when DAmap/TPSA introduce errors?
➡ If they are used as functions (e.g. evaluated), instead of DA (e.g. track, twiss).
➡ High orders of are used to interpolate at the new position by substitution.

AD exploits the fact that every computer program, no matter how complicated, executes a sequence of
elementary arithmetic operations (addition, subtraction, multiplication, division, etc.) and elementary
functions (exp, log, sin, cos, etc.). By applying the chain rule repeatedly to these operations, derivatives
of arbitrary order can be computed automatically, accurately to working precision, and using at
most a small constant factor more arithmetic operations than the original program.

Symbolic differentiation can lead to inefficient code and faces the difficulty of converting a computer
program into a single expression, while numerical differentiation can introduce round-off errors in the
discretization process and cancellation. Both classical methods have problems with calculating
higher derivatives, where complexity and errors increase.

from Wikipedia

Tn
f (x; a + h) =

n

∑
k=0

f (k)
a+h

k!
(x − a − h)k ; f(a + h) ≈

n

∑
k=0

f (k)
a

k!
hk ; f (k)

a+h ≈
dkTn

f (x; a)
dxk

(a + h)

Tn
f (a + h; a)

Tn
f (x; a)

Matrix codes

don’t do better! order n is constant

order n-1 is linear in h

sin x and its Taylor approximations nearby 0 by
polynomials of degree 1, 3, 5, 7, 9, 11 and 13.

Functions of TPSAs ≠ TPSAs as functions

 exact ≠ approximate

mailto:laurent.deniau@cern.ch
https://en.wikipedia.org/wiki/Chain_rule
https://en.wikipedia.org/wiki/Round-off_error
https://en.wikipedia.org/wiki/Discretization

BE Beams
Department

La
ur

en
t D

en
ia

u,
 C

E
R

N
 B

E
/A

B
P,

 1
21

1
G

en
ev

a
23

, l
au

re
nt

.d
en

ia
u@

ce
rn

.c
h

DA map

25

mailto:laurent.deniau@cern.ch

BE Beams
Department

La
ur

en
t D

en
ia

u,
 C

E
R

N
 B

E
/A

B
P,

 1
21

1
G

en
ev

a
23

, l
au

re
nt

.d
en

ia
u@

ce
rn

.c
h

DA map

25

๏ Differential Algebra maps

mailto:laurent.deniau@cern.ch

BE Beams
Department

La
ur

en
t D

en
ia

u,
 C

E
R

N
 B

E
/A

B
P,

 1
21

1
G

en
ev

a
23

, l
au

re
nt

.d
en

ia
u@

ce
rn

.c
h

DA map

25

๏ Differential Algebra maps
➡ Tuple of GTPSA, e.g. 6D phase space uses 6 GTPSA.

mailto:laurent.deniau@cern.ch

BE Beams
Department

La
ur

en
t D

en
ia

u,
 C

E
R

N
 B

E
/A

B
P,

 1
21

1
G

en
ev

a
23

, l
au

re
nt

.d
en

ia
u@

ce
rn

.c
h

DA map

25

๏ Differential Algebra maps
➡ Tuple of GTPSA, e.g. 6D phase space uses 6 GTPSA.
➡ Handles user defined parameters.

mailto:laurent.deniau@cern.ch

BE Beams
Department

La
ur

en
t D

en
ia

u,
 C

E
R

N
 B

E
/A

B
P,

 1
21

1
G

en
ev

a
23

, l
au

re
nt

.d
en

ia
u@

ce
rn

.c
h

DA map

25

๏ Differential Algebra maps
➡ Tuple of GTPSA, e.g. 6D phase space uses 6 GTPSA.
➡ Handles user defined parameters.
➡ Behaves like particles for the scalar part (orbit).

mailto:laurent.deniau@cern.ch

BE Beams
Department

La
ur

en
t D

en
ia

u,
 C

E
R

N
 B

E
/A

B
P,

 1
21

1
G

en
ev

a
23

, l
au

re
nt

.d
en

ia
u@

ce
rn

.c
h

DA map

25

๏ Differential Algebra maps
➡ Tuple of GTPSA, e.g. 6D phase space uses 6 GTPSA.
➡ Handles user defined parameters.
➡ Behaves like particles for the scalar part (orbit).

x

px

y

py

t

pt

DA map of 6 variables at order 2 (e.g. MAD-X twiss)

mailto:laurent.deniau@cern.ch

BE Beams
Department

La
ur

en
t D

en
ia

u,
 C

E
R

N
 B

E
/A

B
P,

 1
21

1
G

en
ev

a
23

, l
au

re
nt

.d
en

ia
u@

ce
rn

.c
h

DA map

25

๏ Differential Algebra maps
➡ Tuple of GTPSA, e.g. 6D phase space uses 6 GTPSA.
➡ Handles user defined parameters.
➡ Behaves like particles for the scalar part (orbit).

x

px

y

py

t

pt

DA map of 6 variables at order 2 (e.g. MAD-X twiss)

GTPSA

mailto:laurent.deniau@cern.ch

BE Beams
Department

La
ur

en
t D

en
ia

u,
 C

E
R

N
 B

E
/A

B
P,

 1
21

1
G

en
ev

a
23

, l
au

re
nt

.d
en

ia
u@

ce
rn

.c
h

DA map

25

๏ Differential Algebra maps
➡ Tuple of GTPSA, e.g. 6D phase space uses 6 GTPSA.
➡ Handles user defined parameters.
➡ Behaves like particles for the scalar part (orbit).

x

px

y

py

t

pt

DA map of 6 variables at order 2 (e.g. MAD-X twiss)

GTPSA

mailto:laurent.deniau@cern.ch

BE Beams
Department

La
ur

en
t D

en
ia

u,
 C

E
R

N
 B

E
/A

B
P,

 1
21

1
G

en
ev

a
23

, l
au

re
nt

.d
en

ia
u@

ce
rn

.c
h

DA map

25

๏ Differential Algebra maps
➡ Tuple of GTPSA, e.g. 6D phase space uses 6 GTPSA.
➡ Handles user defined parameters.
➡ Behaves like particles for the scalar part (orbit).

x

px

y

py

t

pt

DA map of 6 variables at order 2 (e.g. MAD-X twiss)

GTPSA
f (0)
A : E (orbit)

mailto:laurent.deniau@cern.ch

BE Beams
Department

La
ur

en
t D

en
ia

u,
 C

E
R

N
 B

E
/A

B
P,

 1
21

1
G

en
ev

a
23

, l
au

re
nt

.d
en

ia
u@

ce
rn

.c
h

DA map

25

๏ Differential Algebra maps
➡ Tuple of GTPSA, e.g. 6D phase space uses 6 GTPSA.
➡ Handles user defined parameters.
➡ Behaves like particles for the scalar part (orbit).

x

px

y

py

t

pt

DA map of 6 variables at order 2 (e.g. MAD-X twiss)

GTPSA
f (0)
A : E (orbit)

mailto:laurent.deniau@cern.ch

BE Beams
Department

La
ur

en
t D

en
ia

u,
 C

E
R

N
 B

E
/A

B
P,

 1
21

1
G

en
ev

a
23

, l
au

re
nt

.d
en

ia
u@

ce
rn

.c
h

DA map

25

๏ Differential Algebra maps
➡ Tuple of GTPSA, e.g. 6D phase space uses 6 GTPSA.
➡ Handles user defined parameters.
➡ Behaves like particles for the scalar part (orbit).

x

px

y

py

t

pt

DA map of 6 variables at order 2 (e.g. MAD-X twiss)

GTPSA
f (0)
A : E (orbit) f (1)

A : R (matrix)

mailto:laurent.deniau@cern.ch

BE Beams
Department

La
ur

en
t D

en
ia

u,
 C

E
R

N
 B

E
/A

B
P,

 1
21

1
G

en
ev

a
23

, l
au

re
nt

.d
en

ia
u@

ce
rn

.c
h

DA map

25

๏ Differential Algebra maps
➡ Tuple of GTPSA, e.g. 6D phase space uses 6 GTPSA.
➡ Handles user defined parameters.
➡ Behaves like particles for the scalar part (orbit).

x

px

y

py

t

pt

DA map of 6 variables at order 2 (e.g. MAD-X twiss)

GTPSA
f (0)
A : E (orbit) f (1)

A : R (matrix)

mailto:laurent.deniau@cern.ch

BE Beams
Department

La
ur

en
t D

en
ia

u,
 C

E
R

N
 B

E
/A

B
P,

 1
21

1
G

en
ev

a
23

, l
au

re
nt

.d
en

ia
u@

ce
rn

.c
h

DA map

25

๏ Differential Algebra maps
➡ Tuple of GTPSA, e.g. 6D phase space uses 6 GTPSA.
➡ Handles user defined parameters.
➡ Behaves like particles for the scalar part (orbit).

x

px

y

py

t

pt

DA map of 6 variables at order 2 (e.g. MAD-X twiss)

GTPSA
f (0)
A : E (orbit) f (1)

A : R (matrix) f (2)
A : T* (folded tensor)

mailto:laurent.deniau@cern.ch

BE Beams
Department

La
ur

en
t D

en
ia

u,
 C

E
R

N
 B

E
/A

B
P,

 1
21

1
G

en
ev

a
23

, l
au

re
nt

.d
en

ia
u@

ce
rn

.c
h

DA map

25

๏ Differential Algebra maps
➡ Tuple of GTPSA, e.g. 6D phase space uses 6 GTPSA.
➡ Handles user defined parameters.
➡ Behaves like particles for the scalar part (orbit).

x

px

y

py

t

pt

DA map of 6 variables at order 2 (e.g. MAD-X twiss)

GTPSA
f (0)
A : E (orbit) f (1)

A : R (matrix) f (2)
A : T* (folded tensor)

pa
ra

m
et

er
s

∂px

∂k1

mailto:laurent.deniau@cern.ch

BE Beams
Department

La
ur

en
t D

en
ia

u,
 C

E
R

N
 B

E
/A

B
P,

 1
21

1
G

en
ev

a
23

, l
au

re
nt

.d
en

ia
u@

ce
rn

.c
h

DA map

25

๏ Differential Algebra maps
➡ Tuple of GTPSA, e.g. 6D phase space uses 6 GTPSA.
➡ Handles user defined parameters.
➡ Behaves like particles for the scalar part (orbit).

x

px

y

py

t

pt

DA map of 6 variables at order 2 (e.g. MAD-X twiss)

GTPSA
f (0)
A : E (orbit) f (1)

A : R (matrix) f (2)
A : T* (folded tensor)

pa
ra

m
et

er
s

∂px

∂k1

∂2px

∂k2
1

∂2px

∂x∂k1

mailto:laurent.deniau@cern.ch

BE Beams
Department

La
ur

en
t D

en
ia

u,
 C

E
R

N
 B

E
/A

B
P,

 1
21

1
G

en
ev

a
23

, l
au

re
nt

.d
en

ia
u@

ce
rn

.c
h

DA map

25

๏ Differential Algebra maps
➡ Tuple of GTPSA, e.g. 6D phase space uses 6 GTPSA.
➡ Handles user defined parameters.
➡ Behaves like particles for the scalar part (orbit).

x

px

y

py

t

pt

DA map of 6 variables at order 2 (e.g. MAD-X twiss)

GTPSA
f (0)
A : E (orbit) f (1)

A : R (matrix) f (2)
A : T* (folded tensor)

pa
ra

m
et

er
s

∂px

∂k1

∂2px

∂k2
1

∂2px

∂x∂k1

0 0 0 0 0 0 1 knob k1 in “user scope”k1

mailto:laurent.deniau@cern.ch

BE Beams
Department

La
ur

en
t D

en
ia

u,
 C

E
R

N
 B

E
/A

B
P,

 1
21

1
G

en
ev

a
23

, l
au

re
nt

.d
en

ia
u@

ce
rn

.c
h

DA map

25

๏ Differential Algebra maps
➡ Tuple of GTPSA, e.g. 6D phase space uses 6 GTPSA.
➡ Handles user defined parameters.
➡ Behaves like particles for the scalar part (orbit).

x

px

y

py

t

pt

DA map of 6 variables at order 2 (e.g. MAD-X twiss)

GTPSA
f (0)
A : E (orbit) f (1)

A : R (matrix) f (2)
A : T* (folded tensor)

pa
ra

m
et

er
s

∂px

∂k1

∂2px

∂k2
1

∂2px

∂x∂k1

0 0 0 0 0 0 1 knob k1 in “user scope”k1

 TPSA: homogeneous polynomials are dense (i.e. R is squared)

GTPSA: homogeneous polynomials are NOT dense or include knobs

mailto:laurent.deniau@cern.ch

BE Beams
Department

La
ur

en
t D

en
ia

u,
 C

E
R

N
 B

E
/A

B
P,

 1
21

1
G

en
ev

a
23

, l
au

re
nt

.d
en

ia
u@

ce
rn

.c
h

DAmap vs. Matrix sizes

26

mailto:laurent.deniau@cern.ch

BE Beams
Department

La
ur

en
t D

en
ia

u,
 C

E
R

N
 B

E
/A

B
P,

 1
21

1
G

en
ev

a
23

, l
au

re
nt

.d
en

ia
u@

ce
rn

.c
h

DAmap vs. Matrix sizes

26

TPSA: homogeneous polynomials are dense with coefficients (n + v
v) =

(n + v)!
n! v!

mailto:laurent.deniau@cern.ch

BE Beams
Department

La
ur

en
t D

en
ia

u,
 C

E
R

N
 B

E
/A

B
P,

 1
21

1
G

en
ev

a
23

, l
au

re
nt

.d
en

ia
u@

ce
rn

.c
h

DAmap vs. Matrix sizes

26

TPSA: homogeneous polynomials are dense with coefficients (n + v
v) =

(n + v)!
n! v!

GTPSA: homogeneous polynomials are NOT dense (no direct formula, only upper bound)

mailto:laurent.deniau@cern.ch

BE Beams
Department

La
ur

en
t D

en
ia

u,
 C

E
R

N
 B

E
/A

B
P,

 1
21

1
G

en
ev

a
23

, l
au

re
nt

.d
en

ia
u@

ce
rn

.c
h

DAmap vs. Matrix sizes

26

TPSA: homogeneous polynomials are dense with coefficients (n + v
v) =

(n + v)!
n! v!

GTPSA: homogeneous polynomials are NOT dense (no direct formula, only upper bound)

v \ n 1 2 3 4 5 6 7 8 9 10 11 12
1 2 3 4 5 6 7 8 9 10 11 12 13
2 6 12 20 30 42 56 72 90 110 132 156 182
3 12 30 60 105 168 252 360 495 660 858 1092 1365
4 20 60 140 280 504 840 1320 1980 2860 4004 5460 7280
5 30 105 280 630 1260 2310 3960 6435 10010 15015 21840 30940
6 42 168 504 1260 2772 5544 10296 18018 30030 48048 74256 111384
7 56 252 840 2310 5544 12012 24024 45045 80080 136136 222768 352716
8 72 360 1320 3960 10296 24024 51480 102960 194480 350064 604656 1007760

mailto:laurent.deniau@cern.ch

BE Beams
Department

La
ur

en
t D

en
ia

u,
 C

E
R

N
 B

E
/A

B
P,

 1
21

1
G

en
ev

a
23

, l
au

re
nt

.d
en

ia
u@

ce
rn

.c
h

DAmap vs. Matrix sizes

26

TPSA: homogeneous polynomials are dense with coefficients (n + v
v) =

(n + v)!
n! v!

GTPSA: homogeneous polynomials are NOT dense (no direct formula, only upper bound)

v \ n 1 2 3 4 5 6 7 8 9 10 11 12
1 2 3 4 5 6 7 8 9 10 11 12 13
2 6 12 20 30 42 56 72 90 110 132 156 182
3 12 30 60 105 168 252 360 495 660 858 1092 1365
4 20 60 140 280 504 840 1320 1980 2860 4004 5460 7280
5 30 105 280 630 1260 2310 3960 6435 10010 15015 21840 30940
6 42 168 504 1260 2772 5544 10296 18018 30030 48048 74256 111384
7 56 252 840 2310 5544 12012 24024 45045 80080 136136 222768 352716
8 72 360 1320 3960 10296 24024 51480 102960 194480 350064 604656 1007760

DA map: v (n + v
v)

mailto:laurent.deniau@cern.ch

BE Beams
Department

La
ur

en
t D

en
ia

u,
 C

E
R

N
 B

E
/A

B
P,

 1
21

1
G

en
ev

a
23

, l
au

re
nt

.d
en

ia
u@

ce
rn

.c
h

DAmap vs. Matrix sizes

26

TPSA: homogeneous polynomials are dense with coefficients (n + v
v) =

(n + v)!
n! v!

GTPSA: homogeneous polynomials are NOT dense (no direct formula, only upper bound)

v \ n 1 2 3 4 5 6 7 8 9 10 11 12
1 2 3 4 5 6 7 8 9 10 11 12 13
2 6 12 20 30 42 56 72 90 110 132 156 182
3 12 30 60 105 168 252 360 495 660 858 1092 1365
4 20 60 140 280 504 840 1320 1980 2860 4004 5460 7280
5 30 105 280 630 1260 2310 3960 6435 10010 15015 21840 30940
6 42 168 504 1260 2772 5544 10296 18018 30030 48048 74256 111384
7 56 252 840 2310 5544 12012 24024 45045 80080 136136 222768 352716
8 72 360 1320 3960 10296 24024 51480 102960 194480 350064 604656 1007760

DA map: v (n + v
v)

v \ n 1 2 3 4 5 6 7 8 9 10 11 12
1 2 3 4 5 6 7 8 9 10 11 12 13
2 6 14 30 62 126 254 510 1022 2046 4094 8190 16382
3 12 39 120 363 1092 3279 9840 29523 88572 265719 797160 2391483
4 20 84 340 1364 5460 21844 87380 349524 1398100 5592404 22369620 89478484
5 30 155 780 3905 19530 97655 488280 2441405 12207030 61035155 305175780 1525878905
6 42 258 1554 9330 55986 335922 2015538 12093234 72559410 435356466 2612138802 15672832818
7 56 399 2800 19607 137256 960799 6725600 47079207 329554456 2306881199 16148168400 113037178807
8 72 584 4680 37448 299592 2396744 19173960 153391688 1227133512 9817068104 78536544840 628292358728

mailto:laurent.deniau@cern.ch

BE Beams
Department

La
ur

en
t D

en
ia

u,
 C

E
R

N
 B

E
/A

B
P,

 1
21

1
G

en
ev

a
23

, l
au

re
nt

.d
en

ia
u@

ce
rn

.c
h

DAmap vs. Matrix sizes

26

TPSA: homogeneous polynomials are dense with coefficients (n + v
v) =

(n + v)!
n! v!

GTPSA: homogeneous polynomials are NOT dense (no direct formula, only upper bound)

v \ n 1 2 3 4 5 6 7 8 9 10 11 12
1 2 3 4 5 6 7 8 9 10 11 12 13
2 6 12 20 30 42 56 72 90 110 132 156 182
3 12 30 60 105 168 252 360 495 660 858 1092 1365
4 20 60 140 280 504 840 1320 1980 2860 4004 5460 7280
5 30 105 280 630 1260 2310 3960 6435 10010 15015 21840 30940
6 42 168 504 1260 2772 5544 10296 18018 30030 48048 74256 111384
7 56 252 840 2310 5544 12012 24024 45045 80080 136136 222768 352716
8 72 360 1320 3960 10296 24024 51480 102960 194480 350064 604656 1007760

DA map: v (n + v
v)

v \ n 1 2 3 4 5 6 7 8 9 10 11 12
1 2 3 4 5 6 7 8 9 10 11 12 13
2 6 14 30 62 126 254 510 1022 2046 4094 8190 16382
3 12 39 120 363 1092 3279 9840 29523 88572 265719 797160 2391483
4 20 84 340 1364 5460 21844 87380 349524 1398100 5592404 22369620 89478484
5 30 155 780 3905 19530 97655 488280 2441405 12207030 61035155 305175780 1525878905
6 42 258 1554 9330 55986 335922 2015538 12093234 72559410 435356466 2612138802 15672832818
7 56 399 2800 19607 137256 960799 6725600 47079207 329554456 2306881199 16148168400 113037178807
8 72 584 4680 37448 299592 2396744 19173960 153391688 1227133512 9817068104 78536544840 628292358728

Matrix:
n

∑
k=0

vk+1 =
v(vn+1 − 1)

v − 1

mailto:laurent.deniau@cern.ch

BE Beams
Department

La
ur

en
t D

en
ia

u,
 C

E
R

N
 B

E
/A

B
P,

 1
21

1
G

en
ev

a
23

, l
au

re
nt

.d
en

ia
u@

ce
rn

.c
h

DAmap vs. Matrix sizes

26

TPSA: homogeneous polynomials are dense with coefficients (n + v
v) =

(n + v)!
n! v!

GTPSA: homogeneous polynomials are NOT dense (no direct formula, only upper bound)

v \ n 1 2 3 4 5 6 7 8 9 10 11 12
1 2 3 4 5 6 7 8 9 10 11 12 13
2 6 12 20 30 42 56 72 90 110 132 156 182
3 12 30 60 105 168 252 360 495 660 858 1092 1365
4 20 60 140 280 504 840 1320 1980 2860 4004 5460 7280
5 30 105 280 630 1260 2310 3960 6435 10010 15015 21840 30940
6 42 168 504 1260 2772 5544 10296 18018 30030 48048 74256 111384
7 56 252 840 2310 5544 12012 24024 45045 80080 136136 222768 352716
8 72 360 1320 3960 10296 24024 51480 102960 194480 350064 604656 1007760

DA map: v (n + v
v)

v \ n 1 2 3 4 5 6 7 8 9 10 11 12
1 2 3 4 5 6 7 8 9 10 11 12 13
2 6 14 30 62 126 254 510 1022 2046 4094 8190 16382
3 12 39 120 363 1092 3279 9840 29523 88572 265719 797160 2391483
4 20 84 340 1364 5460 21844 87380 349524 1398100 5592404 22369620 89478484
5 30 155 780 3905 19530 97655 488280 2441405 12207030 61035155 305175780 1525878905
6 42 258 1554 9330 55986 335922 2015538 12093234 72559410 435356466 2612138802 15672832818
7 56 399 2800 19607 137256 960799 6725600 47079207 329554456 2306881199 16148168400 113037178807
8 72 584 4680 37448 299592 2396744 19173960 153391688 1227133512 9817068104 78536544840 628292358728

Matrix:
n

∑
k=0

vk+1 =
v(vn+1 − 1)

v − 1

mailto:laurent.deniau@cern.ch

BE Beams
Department

La
ur

en
t D

en
ia

u,
 C

E
R

N
 B

E
/A

B
P,

 1
21

1
G

en
ev

a
23

, l
au

re
nt

.d
en

ia
u@

ce
rn

.c
h

DAmap vs. Matrix sizes

26

TPSA: homogeneous polynomials are dense with coefficients (n + v
v) =

(n + v)!
n! v!

GTPSA: homogeneous polynomials are NOT dense (no direct formula, only upper bound)

v \ n 1 2 3 4 5 6 7 8 9 10 11 12
1 2 3 4 5 6 7 8 9 10 11 12 13
2 6 12 20 30 42 56 72 90 110 132 156 182
3 12 30 60 105 168 252 360 495 660 858 1092 1365
4 20 60 140 280 504 840 1320 1980 2860 4004 5460 7280
5 30 105 280 630 1260 2310 3960 6435 10010 15015 21840 30940
6 42 168 504 1260 2772 5544 10296 18018 30030 48048 74256 111384
7 56 252 840 2310 5544 12012 24024 45045 80080 136136 222768 352716
8 72 360 1320 3960 10296 24024 51480 102960 194480 350064 604656 1007760

DA map: v (n + v
v)

v \ n 1 2 3 4 5 6 7 8 9 10 11 12
1 2 3 4 5 6 7 8 9 10 11 12 13
2 6 14 30 62 126 254 510 1022 2046 4094 8190 16382
3 12 39 120 363 1092 3279 9840 29523 88572 265719 797160 2391483
4 20 84 340 1364 5460 21844 87380 349524 1398100 5592404 22369620 89478484
5 30 155 780 3905 19530 97655 488280 2441405 12207030 61035155 305175780 1525878905
6 42 258 1554 9330 55986 335922 2015538 12093234 72559410 435356466 2612138802 15672832818
7 56 399 2800 19607 137256 960799 6725600 47079207 329554456 2306881199 16148168400 113037178807
8 72 584 4680 37448 299592 2396744 19173960 153391688 1227133512 9817068104 78536544840 628292358728

Matrix:
n

∑
k=0

vk+1 =
v(vn+1 − 1)

v − 1

mailto:laurent.deniau@cern.ch

BE Beams
Department

La
ur

en
t D

en
ia

u,
 C

E
R

N
 B

E
/A

B
P,

 1
21

1
G

en
ev

a
23

, l
au

re
nt

.d
en

ia
u@

ce
rn

.c
h

DAmap vs. Matrix sizes

26

TPSA: homogeneous polynomials are dense with coefficients (n + v
v) =

(n + v)!
n! v!

GTPSA: homogeneous polynomials are NOT dense (no direct formula, only upper bound)

v \ n 1 2 3 4 5 6 7 8 9 10 11 12
1 2 3 4 5 6 7 8 9 10 11 12 13
2 6 12 20 30 42 56 72 90 110 132 156 182
3 12 30 60 105 168 252 360 495 660 858 1092 1365
4 20 60 140 280 504 840 1320 1980 2860 4004 5460 7280
5 30 105 280 630 1260 2310 3960 6435 10010 15015 21840 30940
6 42 168 504 1260 2772 5544 10296 18018 30030 48048 74256 111384
7 56 252 840 2310 5544 12012 24024 45045 80080 136136 222768 352716
8 72 360 1320 3960 10296 24024 51480 102960 194480 350064 604656 1007760

DA map: v (n + v
v)

v \ n 1 2 3 4 5 6 7 8 9 10 11 12
1 2 3 4 5 6 7 8 9 10 11 12 13
2 6 14 30 62 126 254 510 1022 2046 4094 8190 16382
3 12 39 120 363 1092 3279 9840 29523 88572 265719 797160 2391483
4 20 84 340 1364 5460 21844 87380 349524 1398100 5592404 22369620 89478484
5 30 155 780 3905 19530 97655 488280 2441405 12207030 61035155 305175780 1525878905
6 42 258 1554 9330 55986 335922 2015538 12093234 72559410 435356466 2612138802 15672832818
7 56 399 2800 19607 137256 960799 6725600 47079207 329554456 2306881199 16148168400 113037178807
8 72 584 4680 37448 299592 2396744 19173960 153391688 1227133512 9817068104 78536544840 628292358728

Matrix:
n

∑
k=0

vk+1 =
v(vn+1 − 1)

v − 1

TPSA manipulate

only numbers!

mailto:laurent.deniau@cern.ch

BE Beams
Department

La
ur

en
t D

en
ia

u,
 C

E
R

N
 B

E
/A

B
P,

 1
21

1
G

en
ev

a
23

, l
au

re
nt

.d
en

ia
u@

ce
rn

.c
h

DAmap vs. Matrix sizes

26

TPSA: homogeneous polynomials are dense with coefficients (n + v
v) =

(n + v)!
n! v!

GTPSA: homogeneous polynomials are NOT dense (no direct formula, only upper bound)

v \ n 1 2 3 4 5 6 7 8 9 10 11 12
1 2 3 4 5 6 7 8 9 10 11 12 13
2 6 12 20 30 42 56 72 90 110 132 156 182
3 12 30 60 105 168 252 360 495 660 858 1092 1365
4 20 60 140 280 504 840 1320 1980 2860 4004 5460 7280
5 30 105 280 630 1260 2310 3960 6435 10010 15015 21840 30940
6 42 168 504 1260 2772 5544 10296 18018 30030 48048 74256 111384
7 56 252 840 2310 5544 12012 24024 45045 80080 136136 222768 352716
8 72 360 1320 3960 10296 24024 51480 102960 194480 350064 604656 1007760

DA map: v (n + v
v)

v \ n 1 2 3 4 5 6 7 8 9 10 11 12
1 2 3 4 5 6 7 8 9 10 11 12 13
2 6 14 30 62 126 254 510 1022 2046 4094 8190 16382
3 12 39 120 363 1092 3279 9840 29523 88572 265719 797160 2391483
4 20 84 340 1364 5460 21844 87380 349524 1398100 5592404 22369620 89478484
5 30 155 780 3905 19530 97655 488280 2441405 12207030 61035155 305175780 1525878905
6 42 258 1554 9330 55986 335922 2015538 12093234 72559410 435356466 2612138802 15672832818
7 56 399 2800 19607 137256 960799 6725600 47079207 329554456 2306881199 16148168400 113037178807
8 72 584 4680 37448 299592 2396744 19173960 153391688 1227133512 9817068104 78536544840 628292358728

TPSA are the only suitable

solutions for high orders!

Matrix:
n

∑
k=0

vk+1 =
v(vn+1 − 1)

v − 1

TPSA manipulate

only numbers!

mailto:laurent.deniau@cern.ch

BE Beams
Department

La
ur

en
t D

en
ia

u,
 C

E
R

N
 B

E
/A

B
P,

 1
21

1
G

en
ev

a
23

, l
au

re
nt

.d
en

ia
u@

ce
rn

.c
h

GTPSA performance (vs. Berz and Yang)

27

Generalised Truncated Power Series Algebra
For Fast Particle Accelerator Transport Maps
Laurent Deniau, Ciprian Tomoiagă, CERN, Switzerland
Abstract
A new Generalised Truncated Power Series Alge-
bra (GTPSA) has been developed for extending,
simplifying and optimising the transport maps
used by particle accelerator simulation codes.
TPSA are intensively used in optics code to de-
scribe transport maps of the elements constitut-
ing the particle accelerator to any order. GTPSA
extend the degrees to inhomogeneous ones, where
separate degrees can be specified for each vari-
able and constrained by two total orders, one
for map variables and one for ordinary variables.
This allows tracking inhomogeneous planes of the
6D phase space with many extra variables.
A complete set of new formulas and data struc-
tures have been derived to address the problem of
memory consumption required for efficient com-
putation of high order TPSA, including gener-
alised indexing, multiplication and composition
of inhomogeneous multivariate polynomials. The
implementation has been benchmarked against
well established libraries for the common subset
with TPSA, and outperforms all of them for sup-
ported differential algebra operators on low and
high orders, and high number of variables.

Generalised TPSA
The GTPSA extends the TPSA by making a dis-
tinction between the map variables ~x and the
knob variables ~k, based on their physical mean-
ing, where the knobs can appear in the GTPSA,
but never in the map (fig. 1). It also allows to
specify a maximum order dj , 0 < j n for each
variable in ~x or ~k and two total orders dx and dk.

Fig. 1: Representation of a 4D map with knobs.

Unification of studies
The GTPSA extensions are useful for unifying
different kinds of studies using the same equa-
tions of motion. The following maps specifica-
tions are of particular interest, assuming a 6D
phase space ~x = {x, px, y, py, s, ps}:

~x = {0, 0, 0, 0, 0, 0} corresponds to 6D zero
order particle tracking, i.e. particles orbits,
where the map is simply a vector of six
scalars. In this case, dx = 0, dk = 0 and
~k = ~0.
~x = {2, 2, 2, 2, 0, 0} corresponds to 6D with
second order transverse beam dynamics
and zero order longitudinal beam dynam-
ics, which emulates 4D beam dynamics. In
this case, dx = 2, dk = 0 and ~k = ~0.
~x = {1, 1, 1, 1, 4, 4} and ~k = {1, . . . , 1}
corresponds to 6D with first order trans-
verse beam dynamics and fourth order
longitudinal beam dynamics with n � v

(few hundreds) first order knobs in the
GTPSA (e.g. strength of orbit correctors).
In this case, dx = 4 so mixed high order
terms like @

4
ps/(@x@px@y@py) exist and

dk = 1, meaning that terms like @x/@kj

and @y/@kj also exist and can be used di-
rectly by orbit correction algorithms.

A fast indexing function

Fig. 2: Relative performance of indexing functions.

The monomials of a TPSA are sorted by two cri-
teria, depending on the application. For indexing,
the order by variables (Table 1a) is used along with
the H matrix (Fig. 3) to efficiently compute the
index of a correct monomial (Table 1b) or to dis-
card an incorrect one. The unique GTPSA index
ti of the i-th monomial can be calculated from the
monomial’s orders {↵ij} using the formula:

ti =
nX

j=1

H(j, sj)�H(j, sj+1), sj =
nX

k�j

↵ik

Fig. 3: An example of
the H matrix. The
dots represent for-
bidden monomials

H,x = {1, 1, 3, 1}
(j,i) 0 1 2 3 4
1 0 1 2 3 4
2 0 2 4 6 8
3 0 4 8 12 15
4 0 15 · · ·

Tbl. 1: Monomials ordered by variables and by orders.

index x y z order
0 0 0 0 0
1 1 0 0 1
2 2 0 0 2
3 3 0 0 3
4 0 1 0 1
5 1 1 0 2
6 2 1 0 3
7 0 2 0 2
8 1 2 0 3
9 0 3 0 3
10 0 0 1 1
11 1 0 1 2
12 2 0 1 3
13 0 1 1 2
14 1 1 1 3
15 0 2 1 3
16 0 0 2 2
17 1 0 2 3
18 0 1 2 3
19 0 0 3 3

Good for indexing
(a) Sorted by product of
univariate polynomials

index x y z order
0 0 0 0 0
1 1 0 0 1
2 0 1 0 1
3 0 0 1 1
4 2 0 0 2
5 1 1 0 2
6 0 2 0 2
7 1 0 1 2
8 0 1 1 2
9 0 0 2 2
10 3 0 0 3
11 2 1 0 3
12 1 2 0 3
13 0 3 0 3
14 2 0 1 3
15 1 1 1 3
16 0 2 1 3
17 1 0 2 3
18 0 1 2 3
19 0 0 3 3

Good for operations
(b) Sorted by sum of
homogeneous multivariate
polynomials

Multiplication and composition
Since brute force is still the fastest multiplication
algorithm for truncated multivariate polynomi-
als, with O(n2) complexity, only linear improve-
ments can be obtained. The choice of the data
structure is crucial, so the monomials are ordered
by homogeneous polynomials (Table 1b), which
gives the following advantages:

the good locality of the data ensures cache
friendly loops over the GTPSA;
the destination indexes can be precom-
puted for each pair of homogeneous poly-
nomials Pi ⇥Qj ;
the computation is symmetric in
terms of homogeneous polynomials,
i.e. Ri+j = Pi ⇥Qj = Pj ⇥Qi so memory
consumption is halved;
the resulting homogeneous polynomials
Ri+j are independent of each other, so par-
alellisation can be employed when the com-
putation load is big enough (i + j � 12).
The highest order is split into two tasks, as
it represents by itself about half the size of
the total calculation.

For composition, the monomials are computed
recursively in a tree-like manner which results in
only v⇥N multiplications for a full map of v vari-
ables with N coefficients each. This is optimal
and avoids the calculation and memory overhead
of additional data structures.

Fig. 4: Relative performance of multiplication at or-
der 2 when using GTPSA with 6 variables and
many knobs vs. homogeneous TPSA.

Fig. 5: Relative performance of the multiplications.

Fig. 6: Relative performance of the compositions.

Conclusions and future work
We have provided a Generalised TPSA package which

provides a common interface for different types of studies;
offers much more flexibility for computation of maps in beam dynamics and complex maps in
normal form analysis;
outperforms well-known high performance packages, despite apparent complexity.

Future work will focus on improving efficiency of sparse element maps through a mixed representation
of dense and sparse homogeneous polynomials.

Generalised Truncated Power Series Algebra
For Fast Particle Accelerator Transport Maps
Laurent Deniau, Ciprian Tomoiagă, CERN, Switzerland
Abstract
A new Generalised Truncated Power Series Alge-
bra (GTPSA) has been developed for extending,
simplifying and optimising the transport maps
used by particle accelerator simulation codes.
TPSA are intensively used in optics code to de-
scribe transport maps of the elements constitut-
ing the particle accelerator to any order. GTPSA
extend the degrees to inhomogeneous ones, where
separate degrees can be specified for each vari-
able and constrained by two total orders, one
for map variables and one for ordinary variables.
This allows tracking inhomogeneous planes of the
6D phase space with many extra variables.
A complete set of new formulas and data struc-
tures have been derived to address the problem of
memory consumption required for efficient com-
putation of high order TPSA, including gener-
alised indexing, multiplication and composition
of inhomogeneous multivariate polynomials. The
implementation has been benchmarked against
well established libraries for the common subset
with TPSA, and outperforms all of them for sup-
ported differential algebra operators on low and
high orders, and high number of variables.

Generalised TPSA
The GTPSA extends the TPSA by making a dis-
tinction between the map variables ~x and the
knob variables ~k, based on their physical mean-
ing, where the knobs can appear in the GTPSA,
but never in the map (fig. 1). It also allows to
specify a maximum order dj , 0 < j n for each
variable in ~x or ~k and two total orders dx and dk.

Fig. 1: Representation of a 4D map with knobs.

Unification of studies
The GTPSA extensions are useful for unifying
different kinds of studies using the same equa-
tions of motion. The following maps specifica-
tions are of particular interest, assuming a 6D
phase space ~x = {x, px, y, py, s, ps}:

~x = {0, 0, 0, 0, 0, 0} corresponds to 6D zero
order particle tracking, i.e. particles orbits,
where the map is simply a vector of six
scalars. In this case, dx = 0, dk = 0 and
~k = ~0.
~x = {2, 2, 2, 2, 0, 0} corresponds to 6D with
second order transverse beam dynamics
and zero order longitudinal beam dynam-
ics, which emulates 4D beam dynamics. In
this case, dx = 2, dk = 0 and ~k = ~0.
~x = {1, 1, 1, 1, 4, 4} and ~k = {1, . . . , 1}
corresponds to 6D with first order trans-
verse beam dynamics and fourth order
longitudinal beam dynamics with n � v

(few hundreds) first order knobs in the
GTPSA (e.g. strength of orbit correctors).
In this case, dx = 4 so mixed high order
terms like @

4
ps/(@x@px@y@py) exist and

dk = 1, meaning that terms like @x/@kj

and @y/@kj also exist and can be used di-
rectly by orbit correction algorithms.

A fast indexing function

Fig. 2: Relative performance of indexing functions.

The monomials of a TPSA are sorted by two cri-
teria, depending on the application. For indexing,
the order by variables (Table 1a) is used along with
the H matrix (Fig. 3) to efficiently compute the
index of a correct monomial (Table 1b) or to dis-
card an incorrect one. The unique GTPSA index
ti of the i-th monomial can be calculated from the
monomial’s orders {↵ij} using the formula:

ti =
nX

j=1

H(j, sj)�H(j, sj+1), sj =
nX

k�j

↵ik

Fig. 3: An example of
the H matrix. The
dots represent for-
bidden monomials

H,x = {1, 1, 3, 1}
(j,i) 0 1 2 3 4
1 0 1 2 3 4
2 0 2 4 6 8
3 0 4 8 12 15
4 0 15 · · ·

Tbl. 1: Monomials ordered by variables and by orders.

index x y z order
0 0 0 0 0
1 1 0 0 1
2 2 0 0 2
3 3 0 0 3
4 0 1 0 1
5 1 1 0 2
6 2 1 0 3
7 0 2 0 2
8 1 2 0 3
9 0 3 0 3
10 0 0 1 1
11 1 0 1 2
12 2 0 1 3
13 0 1 1 2
14 1 1 1 3
15 0 2 1 3
16 0 0 2 2
17 1 0 2 3
18 0 1 2 3
19 0 0 3 3

Good for indexing
(a) Sorted by product of
univariate polynomials

index x y z order
0 0 0 0 0
1 1 0 0 1
2 0 1 0 1
3 0 0 1 1
4 2 0 0 2
5 1 1 0 2
6 0 2 0 2
7 1 0 1 2
8 0 1 1 2
9 0 0 2 2
10 3 0 0 3
11 2 1 0 3
12 1 2 0 3
13 0 3 0 3
14 2 0 1 3
15 1 1 1 3
16 0 2 1 3
17 1 0 2 3
18 0 1 2 3
19 0 0 3 3

Good for operations
(b) Sorted by sum of
homogeneous multivariate
polynomials

Multiplication and composition
Since brute force is still the fastest multiplication
algorithm for truncated multivariate polynomi-
als, with O(n2) complexity, only linear improve-
ments can be obtained. The choice of the data
structure is crucial, so the monomials are ordered
by homogeneous polynomials (Table 1b), which
gives the following advantages:

the good locality of the data ensures cache
friendly loops over the GTPSA;
the destination indexes can be precom-
puted for each pair of homogeneous poly-
nomials Pi ⇥Qj ;
the computation is symmetric in
terms of homogeneous polynomials,
i.e. Ri+j = Pi ⇥Qj = Pj ⇥Qi so memory
consumption is halved;
the resulting homogeneous polynomials
Ri+j are independent of each other, so par-
alellisation can be employed when the com-
putation load is big enough (i + j � 12).
The highest order is split into two tasks, as
it represents by itself about half the size of
the total calculation.

For composition, the monomials are computed
recursively in a tree-like manner which results in
only v⇥N multiplications for a full map of v vari-
ables with N coefficients each. This is optimal
and avoids the calculation and memory overhead
of additional data structures.

Fig. 4: Relative performance of multiplication at or-
der 2 when using GTPSA with 6 variables and
many knobs vs. homogeneous TPSA.

Fig. 5: Relative performance of the multiplications.

Fig. 6: Relative performance of the compositions.

Conclusions and future work
We have provided a Generalised TPSA package which

provides a common interface for different types of studies;
offers much more flexibility for computation of maps in beam dynamics and complex maps in
normal form analysis;
outperforms well-known high performance packages, despite apparent complexity.

Future work will focus on improving efficiency of sparse element maps through a mixed representation
of dense and sparse homogeneous polynomials.

Generalised Truncated Power Series Algebra
For Fast Particle Accelerator Transport Maps
Laurent Deniau, Ciprian Tomoiagă, CERN, Switzerland
Abstract
A new Generalised Truncated Power Series Alge-
bra (GTPSA) has been developed for extending,
simplifying and optimising the transport maps
used by particle accelerator simulation codes.
TPSA are intensively used in optics code to de-
scribe transport maps of the elements constitut-
ing the particle accelerator to any order. GTPSA
extend the degrees to inhomogeneous ones, where
separate degrees can be specified for each vari-
able and constrained by two total orders, one
for map variables and one for ordinary variables.
This allows tracking inhomogeneous planes of the
6D phase space with many extra variables.
A complete set of new formulas and data struc-
tures have been derived to address the problem of
memory consumption required for efficient com-
putation of high order TPSA, including gener-
alised indexing, multiplication and composition
of inhomogeneous multivariate polynomials. The
implementation has been benchmarked against
well established libraries for the common subset
with TPSA, and outperforms all of them for sup-
ported differential algebra operators on low and
high orders, and high number of variables.

Generalised TPSA
The GTPSA extends the TPSA by making a dis-
tinction between the map variables ~x and the
knob variables ~k, based on their physical mean-
ing, where the knobs can appear in the GTPSA,
but never in the map (fig. 1). It also allows to
specify a maximum order dj , 0 < j n for each
variable in ~x or ~k and two total orders dx and dk.

Fig. 1: Representation of a 4D map with knobs.

Unification of studies
The GTPSA extensions are useful for unifying
different kinds of studies using the same equa-
tions of motion. The following maps specifica-
tions are of particular interest, assuming a 6D
phase space ~x = {x, px, y, py, s, ps}:

~x = {0, 0, 0, 0, 0, 0} corresponds to 6D zero
order particle tracking, i.e. particles orbits,
where the map is simply a vector of six
scalars. In this case, dx = 0, dk = 0 and
~k = ~0.
~x = {2, 2, 2, 2, 0, 0} corresponds to 6D with
second order transverse beam dynamics
and zero order longitudinal beam dynam-
ics, which emulates 4D beam dynamics. In
this case, dx = 2, dk = 0 and ~k = ~0.
~x = {1, 1, 1, 1, 4, 4} and ~k = {1, . . . , 1}
corresponds to 6D with first order trans-
verse beam dynamics and fourth order
longitudinal beam dynamics with n � v

(few hundreds) first order knobs in the
GTPSA (e.g. strength of orbit correctors).
In this case, dx = 4 so mixed high order
terms like @

4
ps/(@x@px@y@py) exist and

dk = 1, meaning that terms like @x/@kj

and @y/@kj also exist and can be used di-
rectly by orbit correction algorithms.

A fast indexing function

Fig. 2: Relative performance of indexing functions.

The monomials of a TPSA are sorted by two cri-
teria, depending on the application. For indexing,
the order by variables (Table 1a) is used along with
the H matrix (Fig. 3) to efficiently compute the
index of a correct monomial (Table 1b) or to dis-
card an incorrect one. The unique GTPSA index
ti of the i-th monomial can be calculated from the
monomial’s orders {↵ij} using the formula:

ti =
nX

j=1

H(j, sj)�H(j, sj+1), sj =
nX

k�j

↵ik

Fig. 3: An example of
the H matrix. The
dots represent for-
bidden monomials

H,x = {1, 1, 3, 1}
(j,i) 0 1 2 3 4
1 0 1 2 3 4
2 0 2 4 6 8
3 0 4 8 12 15
4 0 15 · · ·

Tbl. 1: Monomials ordered by variables and by orders.

index x y z order
0 0 0 0 0
1 1 0 0 1
2 2 0 0 2
3 3 0 0 3
4 0 1 0 1
5 1 1 0 2
6 2 1 0 3
7 0 2 0 2
8 1 2 0 3
9 0 3 0 3
10 0 0 1 1
11 1 0 1 2
12 2 0 1 3
13 0 1 1 2
14 1 1 1 3
15 0 2 1 3
16 0 0 2 2
17 1 0 2 3
18 0 1 2 3
19 0 0 3 3

Good for indexing
(a) Sorted by product of
univariate polynomials

index x y z order
0 0 0 0 0
1 1 0 0 1
2 0 1 0 1
3 0 0 1 1
4 2 0 0 2
5 1 1 0 2
6 0 2 0 2
7 1 0 1 2
8 0 1 1 2
9 0 0 2 2
10 3 0 0 3
11 2 1 0 3
12 1 2 0 3
13 0 3 0 3
14 2 0 1 3
15 1 1 1 3
16 0 2 1 3
17 1 0 2 3
18 0 1 2 3
19 0 0 3 3

Good for operations
(b) Sorted by sum of
homogeneous multivariate
polynomials

Multiplication and composition
Since brute force is still the fastest multiplication
algorithm for truncated multivariate polynomi-
als, with O(n2) complexity, only linear improve-
ments can be obtained. The choice of the data
structure is crucial, so the monomials are ordered
by homogeneous polynomials (Table 1b), which
gives the following advantages:

the good locality of the data ensures cache
friendly loops over the GTPSA;
the destination indexes can be precom-
puted for each pair of homogeneous poly-
nomials Pi ⇥Qj ;
the computation is symmetric in
terms of homogeneous polynomials,
i.e. Ri+j = Pi ⇥Qj = Pj ⇥Qi so memory
consumption is halved;
the resulting homogeneous polynomials
Ri+j are independent of each other, so par-
alellisation can be employed when the com-
putation load is big enough (i + j � 12).
The highest order is split into two tasks, as
it represents by itself about half the size of
the total calculation.

For composition, the monomials are computed
recursively in a tree-like manner which results in
only v⇥N multiplications for a full map of v vari-
ables with N coefficients each. This is optimal
and avoids the calculation and memory overhead
of additional data structures.

Fig. 4: Relative performance of multiplication at or-
der 2 when using GTPSA with 6 variables and
many knobs vs. homogeneous TPSA.

Fig. 5: Relative performance of the multiplications.

Fig. 6: Relative performance of the compositions.

Conclusions and future work
We have provided a Generalised TPSA package which

provides a common interface for different types of studies;
offers much more flexibility for computation of maps in beam dynamics and complex maps in
normal form analysis;
outperforms well-known high performance packages, despite apparent complexity.

Future work will focus on improving efficiency of sparse element maps through a mixed representation
of dense and sparse homogeneous polynomials.

Generalised Truncated Power Series Algebra
For Fast Particle Accelerator Transport Maps
Laurent Deniau, Ciprian Tomoiagă, CERN, Switzerland
Abstract
A new Generalised Truncated Power Series Alge-
bra (GTPSA) has been developed for extending,
simplifying and optimising the transport maps
used by particle accelerator simulation codes.
TPSA are intensively used in optics code to de-
scribe transport maps of the elements constitut-
ing the particle accelerator to any order. GTPSA
extend the degrees to inhomogeneous ones, where
separate degrees can be specified for each vari-
able and constrained by two total orders, one
for map variables and one for ordinary variables.
This allows tracking inhomogeneous planes of the
6D phase space with many extra variables.
A complete set of new formulas and data struc-
tures have been derived to address the problem of
memory consumption required for efficient com-
putation of high order TPSA, including gener-
alised indexing, multiplication and composition
of inhomogeneous multivariate polynomials. The
implementation has been benchmarked against
well established libraries for the common subset
with TPSA, and outperforms all of them for sup-
ported differential algebra operators on low and
high orders, and high number of variables.

Generalised TPSA
The GTPSA extends the TPSA by making a dis-
tinction between the map variables ~x and the
knob variables ~k, based on their physical mean-
ing, where the knobs can appear in the GTPSA,
but never in the map (fig. 1). It also allows to
specify a maximum order dj , 0 < j n for each
variable in ~x or ~k and two total orders dx and dk.

Fig. 1: Representation of a 4D map with knobs.

Unification of studies
The GTPSA extensions are useful for unifying
different kinds of studies using the same equa-
tions of motion. The following maps specifica-
tions are of particular interest, assuming a 6D
phase space ~x = {x, px, y, py, s, ps}:

~x = {0, 0, 0, 0, 0, 0} corresponds to 6D zero
order particle tracking, i.e. particles orbits,
where the map is simply a vector of six
scalars. In this case, dx = 0, dk = 0 and
~k = ~0.
~x = {2, 2, 2, 2, 0, 0} corresponds to 6D with
second order transverse beam dynamics
and zero order longitudinal beam dynam-
ics, which emulates 4D beam dynamics. In
this case, dx = 2, dk = 0 and ~k = ~0.
~x = {1, 1, 1, 1, 4, 4} and ~k = {1, . . . , 1}
corresponds to 6D with first order trans-
verse beam dynamics and fourth order
longitudinal beam dynamics with n � v

(few hundreds) first order knobs in the
GTPSA (e.g. strength of orbit correctors).
In this case, dx = 4 so mixed high order
terms like @

4
ps/(@x@px@y@py) exist and

dk = 1, meaning that terms like @x/@kj

and @y/@kj also exist and can be used di-
rectly by orbit correction algorithms.

A fast indexing function

Fig. 2: Relative performance of indexing functions.

The monomials of a TPSA are sorted by two cri-
teria, depending on the application. For indexing,
the order by variables (Table 1a) is used along with
the H matrix (Fig. 3) to efficiently compute the
index of a correct monomial (Table 1b) or to dis-
card an incorrect one. The unique GTPSA index
ti of the i-th monomial can be calculated from the
monomial’s orders {↵ij} using the formula:

ti =
nX

j=1

H(j, sj)�H(j, sj+1), sj =
nX

k�j

↵ik

Fig. 3: An example of
the H matrix. The
dots represent for-
bidden monomials

H,x = {1, 1, 3, 1}
(j,i) 0 1 2 3 4
1 0 1 2 3 4
2 0 2 4 6 8
3 0 4 8 12 15
4 0 15 · · ·

Tbl. 1: Monomials ordered by variables and by orders.

index x y z order
0 0 0 0 0
1 1 0 0 1
2 2 0 0 2
3 3 0 0 3
4 0 1 0 1
5 1 1 0 2
6 2 1 0 3
7 0 2 0 2
8 1 2 0 3
9 0 3 0 3
10 0 0 1 1
11 1 0 1 2
12 2 0 1 3
13 0 1 1 2
14 1 1 1 3
15 0 2 1 3
16 0 0 2 2
17 1 0 2 3
18 0 1 2 3
19 0 0 3 3

Good for indexing
(a) Sorted by product of
univariate polynomials

index x y z order
0 0 0 0 0
1 1 0 0 1
2 0 1 0 1
3 0 0 1 1
4 2 0 0 2
5 1 1 0 2
6 0 2 0 2
7 1 0 1 2
8 0 1 1 2
9 0 0 2 2
10 3 0 0 3
11 2 1 0 3
12 1 2 0 3
13 0 3 0 3
14 2 0 1 3
15 1 1 1 3
16 0 2 1 3
17 1 0 2 3
18 0 1 2 3
19 0 0 3 3

Good for operations
(b) Sorted by sum of
homogeneous multivariate
polynomials

Multiplication and composition
Since brute force is still the fastest multiplication
algorithm for truncated multivariate polynomi-
als, with O(n2) complexity, only linear improve-
ments can be obtained. The choice of the data
structure is crucial, so the monomials are ordered
by homogeneous polynomials (Table 1b), which
gives the following advantages:

the good locality of the data ensures cache
friendly loops over the GTPSA;
the destination indexes can be precom-
puted for each pair of homogeneous poly-
nomials Pi ⇥Qj ;
the computation is symmetric in
terms of homogeneous polynomials,
i.e. Ri+j = Pi ⇥Qj = Pj ⇥Qi so memory
consumption is halved;
the resulting homogeneous polynomials
Ri+j are independent of each other, so par-
alellisation can be employed when the com-
putation load is big enough (i + j � 12).
The highest order is split into two tasks, as
it represents by itself about half the size of
the total calculation.

For composition, the monomials are computed
recursively in a tree-like manner which results in
only v⇥N multiplications for a full map of v vari-
ables with N coefficients each. This is optimal
and avoids the calculation and memory overhead
of additional data structures.

Fig. 4: Relative performance of multiplication at or-
der 2 when using GTPSA with 6 variables and
many knobs vs. homogeneous TPSA.

Fig. 5: Relative performance of the multiplications.

Fig. 6: Relative performance of the compositions.

Conclusions and future work
We have provided a Generalised TPSA package which

provides a common interface for different types of studies;
offers much more flexibility for computation of maps in beam dynamics and complex maps in
normal form analysis;
outperforms well-known high performance packages, despite apparent complexity.

Future work will focus on improving efficiency of sparse element maps through a mixed representation
of dense and sparse homogeneous polynomials.

mailto:laurent.deniau@cern.ch

BE Beams
Department

La
ur

en
t D

en
ia

u,
 C

E
R

N
 B

E
/A

B
P,

 1
21

1
G

en
ev

a
23

, l
au

re
nt

.d
en

ia
u@

ce
rn

.c
h

GTPSA performance (vs. Berz and Yang)

27

Generalised Truncated Power Series Algebra
For Fast Particle Accelerator Transport Maps
Laurent Deniau, Ciprian Tomoiagă, CERN, Switzerland
Abstract
A new Generalised Truncated Power Series Alge-
bra (GTPSA) has been developed for extending,
simplifying and optimising the transport maps
used by particle accelerator simulation codes.
TPSA are intensively used in optics code to de-
scribe transport maps of the elements constitut-
ing the particle accelerator to any order. GTPSA
extend the degrees to inhomogeneous ones, where
separate degrees can be specified for each vari-
able and constrained by two total orders, one
for map variables and one for ordinary variables.
This allows tracking inhomogeneous planes of the
6D phase space with many extra variables.
A complete set of new formulas and data struc-
tures have been derived to address the problem of
memory consumption required for efficient com-
putation of high order TPSA, including gener-
alised indexing, multiplication and composition
of inhomogeneous multivariate polynomials. The
implementation has been benchmarked against
well established libraries for the common subset
with TPSA, and outperforms all of them for sup-
ported differential algebra operators on low and
high orders, and high number of variables.

Generalised TPSA
The GTPSA extends the TPSA by making a dis-
tinction between the map variables ~x and the
knob variables ~k, based on their physical mean-
ing, where the knobs can appear in the GTPSA,
but never in the map (fig. 1). It also allows to
specify a maximum order dj , 0 < j n for each
variable in ~x or ~k and two total orders dx and dk.

Fig. 1: Representation of a 4D map with knobs.

Unification of studies
The GTPSA extensions are useful for unifying
different kinds of studies using the same equa-
tions of motion. The following maps specifica-
tions are of particular interest, assuming a 6D
phase space ~x = {x, px, y, py, s, ps}:

~x = {0, 0, 0, 0, 0, 0} corresponds to 6D zero
order particle tracking, i.e. particles orbits,
where the map is simply a vector of six
scalars. In this case, dx = 0, dk = 0 and
~k = ~0.
~x = {2, 2, 2, 2, 0, 0} corresponds to 6D with
second order transverse beam dynamics
and zero order longitudinal beam dynam-
ics, which emulates 4D beam dynamics. In
this case, dx = 2, dk = 0 and ~k = ~0.
~x = {1, 1, 1, 1, 4, 4} and ~k = {1, . . . , 1}
corresponds to 6D with first order trans-
verse beam dynamics and fourth order
longitudinal beam dynamics with n � v

(few hundreds) first order knobs in the
GTPSA (e.g. strength of orbit correctors).
In this case, dx = 4 so mixed high order
terms like @

4
ps/(@x@px@y@py) exist and

dk = 1, meaning that terms like @x/@kj

and @y/@kj also exist and can be used di-
rectly by orbit correction algorithms.

A fast indexing function

Fig. 2: Relative performance of indexing functions.

The monomials of a TPSA are sorted by two cri-
teria, depending on the application. For indexing,
the order by variables (Table 1a) is used along with
the H matrix (Fig. 3) to efficiently compute the
index of a correct monomial (Table 1b) or to dis-
card an incorrect one. The unique GTPSA index
ti of the i-th monomial can be calculated from the
monomial’s orders {↵ij} using the formula:

ti =
nX

j=1

H(j, sj)�H(j, sj+1), sj =
nX

k�j

↵ik

Fig. 3: An example of
the H matrix. The
dots represent for-
bidden monomials

H,x = {1, 1, 3, 1}
(j,i) 0 1 2 3 4
1 0 1 2 3 4
2 0 2 4 6 8
3 0 4 8 12 15
4 0 15 · · ·

Tbl. 1: Monomials ordered by variables and by orders.

index x y z order
0 0 0 0 0
1 1 0 0 1
2 2 0 0 2
3 3 0 0 3
4 0 1 0 1
5 1 1 0 2
6 2 1 0 3
7 0 2 0 2
8 1 2 0 3
9 0 3 0 3
10 0 0 1 1
11 1 0 1 2
12 2 0 1 3
13 0 1 1 2
14 1 1 1 3
15 0 2 1 3
16 0 0 2 2
17 1 0 2 3
18 0 1 2 3
19 0 0 3 3

Good for indexing
(a) Sorted by product of
univariate polynomials

index x y z order
0 0 0 0 0
1 1 0 0 1
2 0 1 0 1
3 0 0 1 1
4 2 0 0 2
5 1 1 0 2
6 0 2 0 2
7 1 0 1 2
8 0 1 1 2
9 0 0 2 2
10 3 0 0 3
11 2 1 0 3
12 1 2 0 3
13 0 3 0 3
14 2 0 1 3
15 1 1 1 3
16 0 2 1 3
17 1 0 2 3
18 0 1 2 3
19 0 0 3 3

Good for operations
(b) Sorted by sum of
homogeneous multivariate
polynomials

Multiplication and composition
Since brute force is still the fastest multiplication
algorithm for truncated multivariate polynomi-
als, with O(n2) complexity, only linear improve-
ments can be obtained. The choice of the data
structure is crucial, so the monomials are ordered
by homogeneous polynomials (Table 1b), which
gives the following advantages:

the good locality of the data ensures cache
friendly loops over the GTPSA;
the destination indexes can be precom-
puted for each pair of homogeneous poly-
nomials Pi ⇥Qj ;
the computation is symmetric in
terms of homogeneous polynomials,
i.e. Ri+j = Pi ⇥Qj = Pj ⇥Qi so memory
consumption is halved;
the resulting homogeneous polynomials
Ri+j are independent of each other, so par-
alellisation can be employed when the com-
putation load is big enough (i + j � 12).
The highest order is split into two tasks, as
it represents by itself about half the size of
the total calculation.

For composition, the monomials are computed
recursively in a tree-like manner which results in
only v⇥N multiplications for a full map of v vari-
ables with N coefficients each. This is optimal
and avoids the calculation and memory overhead
of additional data structures.

Fig. 4: Relative performance of multiplication at or-
der 2 when using GTPSA with 6 variables and
many knobs vs. homogeneous TPSA.

Fig. 5: Relative performance of the multiplications.

Fig. 6: Relative performance of the compositions.

Conclusions and future work
We have provided a Generalised TPSA package which

provides a common interface for different types of studies;
offers much more flexibility for computation of maps in beam dynamics and complex maps in
normal form analysis;
outperforms well-known high performance packages, despite apparent complexity.

Future work will focus on improving efficiency of sparse element maps through a mixed representation
of dense and sparse homogeneous polynomials.

Generalised Truncated Power Series Algebra
For Fast Particle Accelerator Transport Maps
Laurent Deniau, Ciprian Tomoiagă, CERN, Switzerland
Abstract
A new Generalised Truncated Power Series Alge-
bra (GTPSA) has been developed for extending,
simplifying and optimising the transport maps
used by particle accelerator simulation codes.
TPSA are intensively used in optics code to de-
scribe transport maps of the elements constitut-
ing the particle accelerator to any order. GTPSA
extend the degrees to inhomogeneous ones, where
separate degrees can be specified for each vari-
able and constrained by two total orders, one
for map variables and one for ordinary variables.
This allows tracking inhomogeneous planes of the
6D phase space with many extra variables.
A complete set of new formulas and data struc-
tures have been derived to address the problem of
memory consumption required for efficient com-
putation of high order TPSA, including gener-
alised indexing, multiplication and composition
of inhomogeneous multivariate polynomials. The
implementation has been benchmarked against
well established libraries for the common subset
with TPSA, and outperforms all of them for sup-
ported differential algebra operators on low and
high orders, and high number of variables.

Generalised TPSA
The GTPSA extends the TPSA by making a dis-
tinction between the map variables ~x and the
knob variables ~k, based on their physical mean-
ing, where the knobs can appear in the GTPSA,
but never in the map (fig. 1). It also allows to
specify a maximum order dj , 0 < j n for each
variable in ~x or ~k and two total orders dx and dk.

Fig. 1: Representation of a 4D map with knobs.

Unification of studies
The GTPSA extensions are useful for unifying
different kinds of studies using the same equa-
tions of motion. The following maps specifica-
tions are of particular interest, assuming a 6D
phase space ~x = {x, px, y, py, s, ps}:

~x = {0, 0, 0, 0, 0, 0} corresponds to 6D zero
order particle tracking, i.e. particles orbits,
where the map is simply a vector of six
scalars. In this case, dx = 0, dk = 0 and
~k = ~0.
~x = {2, 2, 2, 2, 0, 0} corresponds to 6D with
second order transverse beam dynamics
and zero order longitudinal beam dynam-
ics, which emulates 4D beam dynamics. In
this case, dx = 2, dk = 0 and ~k = ~0.
~x = {1, 1, 1, 1, 4, 4} and ~k = {1, . . . , 1}
corresponds to 6D with first order trans-
verse beam dynamics and fourth order
longitudinal beam dynamics with n � v

(few hundreds) first order knobs in the
GTPSA (e.g. strength of orbit correctors).
In this case, dx = 4 so mixed high order
terms like @

4
ps/(@x@px@y@py) exist and

dk = 1, meaning that terms like @x/@kj

and @y/@kj also exist and can be used di-
rectly by orbit correction algorithms.

A fast indexing function

Fig. 2: Relative performance of indexing functions.

The monomials of a TPSA are sorted by two cri-
teria, depending on the application. For indexing,
the order by variables (Table 1a) is used along with
the H matrix (Fig. 3) to efficiently compute the
index of a correct monomial (Table 1b) or to dis-
card an incorrect one. The unique GTPSA index
ti of the i-th monomial can be calculated from the
monomial’s orders {↵ij} using the formula:

ti =
nX

j=1

H(j, sj)�H(j, sj+1), sj =
nX

k�j

↵ik

Fig. 3: An example of
the H matrix. The
dots represent for-
bidden monomials

H,x = {1, 1, 3, 1}
(j,i) 0 1 2 3 4
1 0 1 2 3 4
2 0 2 4 6 8
3 0 4 8 12 15
4 0 15 · · ·

Tbl. 1: Monomials ordered by variables and by orders.

index x y z order
0 0 0 0 0
1 1 0 0 1
2 2 0 0 2
3 3 0 0 3
4 0 1 0 1
5 1 1 0 2
6 2 1 0 3
7 0 2 0 2
8 1 2 0 3
9 0 3 0 3
10 0 0 1 1
11 1 0 1 2
12 2 0 1 3
13 0 1 1 2
14 1 1 1 3
15 0 2 1 3
16 0 0 2 2
17 1 0 2 3
18 0 1 2 3
19 0 0 3 3

Good for indexing
(a) Sorted by product of
univariate polynomials

index x y z order
0 0 0 0 0
1 1 0 0 1
2 0 1 0 1
3 0 0 1 1
4 2 0 0 2
5 1 1 0 2
6 0 2 0 2
7 1 0 1 2
8 0 1 1 2
9 0 0 2 2
10 3 0 0 3
11 2 1 0 3
12 1 2 0 3
13 0 3 0 3
14 2 0 1 3
15 1 1 1 3
16 0 2 1 3
17 1 0 2 3
18 0 1 2 3
19 0 0 3 3

Good for operations
(b) Sorted by sum of
homogeneous multivariate
polynomials

Multiplication and composition
Since brute force is still the fastest multiplication
algorithm for truncated multivariate polynomi-
als, with O(n2) complexity, only linear improve-
ments can be obtained. The choice of the data
structure is crucial, so the monomials are ordered
by homogeneous polynomials (Table 1b), which
gives the following advantages:

the good locality of the data ensures cache
friendly loops over the GTPSA;
the destination indexes can be precom-
puted for each pair of homogeneous poly-
nomials Pi ⇥Qj ;
the computation is symmetric in
terms of homogeneous polynomials,
i.e. Ri+j = Pi ⇥Qj = Pj ⇥Qi so memory
consumption is halved;
the resulting homogeneous polynomials
Ri+j are independent of each other, so par-
alellisation can be employed when the com-
putation load is big enough (i + j � 12).
The highest order is split into two tasks, as
it represents by itself about half the size of
the total calculation.

For composition, the monomials are computed
recursively in a tree-like manner which results in
only v⇥N multiplications for a full map of v vari-
ables with N coefficients each. This is optimal
and avoids the calculation and memory overhead
of additional data structures.

Fig. 4: Relative performance of multiplication at or-
der 2 when using GTPSA with 6 variables and
many knobs vs. homogeneous TPSA.

Fig. 5: Relative performance of the multiplications.

Fig. 6: Relative performance of the compositions.

Conclusions and future work
We have provided a Generalised TPSA package which

provides a common interface for different types of studies;
offers much more flexibility for computation of maps in beam dynamics and complex maps in
normal form analysis;
outperforms well-known high performance packages, despite apparent complexity.

Future work will focus on improving efficiency of sparse element maps through a mixed representation
of dense and sparse homogeneous polynomials.

Generalised Truncated Power Series Algebra
For Fast Particle Accelerator Transport Maps
Laurent Deniau, Ciprian Tomoiagă, CERN, Switzerland
Abstract
A new Generalised Truncated Power Series Alge-
bra (GTPSA) has been developed for extending,
simplifying and optimising the transport maps
used by particle accelerator simulation codes.
TPSA are intensively used in optics code to de-
scribe transport maps of the elements constitut-
ing the particle accelerator to any order. GTPSA
extend the degrees to inhomogeneous ones, where
separate degrees can be specified for each vari-
able and constrained by two total orders, one
for map variables and one for ordinary variables.
This allows tracking inhomogeneous planes of the
6D phase space with many extra variables.
A complete set of new formulas and data struc-
tures have been derived to address the problem of
memory consumption required for efficient com-
putation of high order TPSA, including gener-
alised indexing, multiplication and composition
of inhomogeneous multivariate polynomials. The
implementation has been benchmarked against
well established libraries for the common subset
with TPSA, and outperforms all of them for sup-
ported differential algebra operators on low and
high orders, and high number of variables.

Generalised TPSA
The GTPSA extends the TPSA by making a dis-
tinction between the map variables ~x and the
knob variables ~k, based on their physical mean-
ing, where the knobs can appear in the GTPSA,
but never in the map (fig. 1). It also allows to
specify a maximum order dj , 0 < j n for each
variable in ~x or ~k and two total orders dx and dk.

Fig. 1: Representation of a 4D map with knobs.

Unification of studies
The GTPSA extensions are useful for unifying
different kinds of studies using the same equa-
tions of motion. The following maps specifica-
tions are of particular interest, assuming a 6D
phase space ~x = {x, px, y, py, s, ps}:

~x = {0, 0, 0, 0, 0, 0} corresponds to 6D zero
order particle tracking, i.e. particles orbits,
where the map is simply a vector of six
scalars. In this case, dx = 0, dk = 0 and
~k = ~0.
~x = {2, 2, 2, 2, 0, 0} corresponds to 6D with
second order transverse beam dynamics
and zero order longitudinal beam dynam-
ics, which emulates 4D beam dynamics. In
this case, dx = 2, dk = 0 and ~k = ~0.
~x = {1, 1, 1, 1, 4, 4} and ~k = {1, . . . , 1}
corresponds to 6D with first order trans-
verse beam dynamics and fourth order
longitudinal beam dynamics with n � v

(few hundreds) first order knobs in the
GTPSA (e.g. strength of orbit correctors).
In this case, dx = 4 so mixed high order
terms like @

4
ps/(@x@px@y@py) exist and

dk = 1, meaning that terms like @x/@kj

and @y/@kj also exist and can be used di-
rectly by orbit correction algorithms.

A fast indexing function

Fig. 2: Relative performance of indexing functions.

The monomials of a TPSA are sorted by two cri-
teria, depending on the application. For indexing,
the order by variables (Table 1a) is used along with
the H matrix (Fig. 3) to efficiently compute the
index of a correct monomial (Table 1b) or to dis-
card an incorrect one. The unique GTPSA index
ti of the i-th monomial can be calculated from the
monomial’s orders {↵ij} using the formula:

ti =
nX

j=1

H(j, sj)�H(j, sj+1), sj =
nX

k�j

↵ik

Fig. 3: An example of
the H matrix. The
dots represent for-
bidden monomials

H,x = {1, 1, 3, 1}
(j,i) 0 1 2 3 4
1 0 1 2 3 4
2 0 2 4 6 8
3 0 4 8 12 15
4 0 15 · · ·

Tbl. 1: Monomials ordered by variables and by orders.

index x y z order
0 0 0 0 0
1 1 0 0 1
2 2 0 0 2
3 3 0 0 3
4 0 1 0 1
5 1 1 0 2
6 2 1 0 3
7 0 2 0 2
8 1 2 0 3
9 0 3 0 3
10 0 0 1 1
11 1 0 1 2
12 2 0 1 3
13 0 1 1 2
14 1 1 1 3
15 0 2 1 3
16 0 0 2 2
17 1 0 2 3
18 0 1 2 3
19 0 0 3 3

Good for indexing
(a) Sorted by product of
univariate polynomials

index x y z order
0 0 0 0 0
1 1 0 0 1
2 0 1 0 1
3 0 0 1 1
4 2 0 0 2
5 1 1 0 2
6 0 2 0 2
7 1 0 1 2
8 0 1 1 2
9 0 0 2 2
10 3 0 0 3
11 2 1 0 3
12 1 2 0 3
13 0 3 0 3
14 2 0 1 3
15 1 1 1 3
16 0 2 1 3
17 1 0 2 3
18 0 1 2 3
19 0 0 3 3

Good for operations
(b) Sorted by sum of
homogeneous multivariate
polynomials

Multiplication and composition
Since brute force is still the fastest multiplication
algorithm for truncated multivariate polynomi-
als, with O(n2) complexity, only linear improve-
ments can be obtained. The choice of the data
structure is crucial, so the monomials are ordered
by homogeneous polynomials (Table 1b), which
gives the following advantages:

the good locality of the data ensures cache
friendly loops over the GTPSA;
the destination indexes can be precom-
puted for each pair of homogeneous poly-
nomials Pi ⇥Qj ;
the computation is symmetric in
terms of homogeneous polynomials,
i.e. Ri+j = Pi ⇥Qj = Pj ⇥Qi so memory
consumption is halved;
the resulting homogeneous polynomials
Ri+j are independent of each other, so par-
alellisation can be employed when the com-
putation load is big enough (i + j � 12).
The highest order is split into two tasks, as
it represents by itself about half the size of
the total calculation.

For composition, the monomials are computed
recursively in a tree-like manner which results in
only v⇥N multiplications for a full map of v vari-
ables with N coefficients each. This is optimal
and avoids the calculation and memory overhead
of additional data structures.

Fig. 4: Relative performance of multiplication at or-
der 2 when using GTPSA with 6 variables and
many knobs vs. homogeneous TPSA.

Fig. 5: Relative performance of the multiplications.

Fig. 6: Relative performance of the compositions.

Conclusions and future work
We have provided a Generalised TPSA package which

provides a common interface for different types of studies;
offers much more flexibility for computation of maps in beam dynamics and complex maps in
normal form analysis;
outperforms well-known high performance packages, despite apparent complexity.

Future work will focus on improving efficiency of sparse element maps through a mixed representation
of dense and sparse homogeneous polynomials.

Generalised Truncated Power Series Algebra
For Fast Particle Accelerator Transport Maps
Laurent Deniau, Ciprian Tomoiagă, CERN, Switzerland
Abstract
A new Generalised Truncated Power Series Alge-
bra (GTPSA) has been developed for extending,
simplifying and optimising the transport maps
used by particle accelerator simulation codes.
TPSA are intensively used in optics code to de-
scribe transport maps of the elements constitut-
ing the particle accelerator to any order. GTPSA
extend the degrees to inhomogeneous ones, where
separate degrees can be specified for each vari-
able and constrained by two total orders, one
for map variables and one for ordinary variables.
This allows tracking inhomogeneous planes of the
6D phase space with many extra variables.
A complete set of new formulas and data struc-
tures have been derived to address the problem of
memory consumption required for efficient com-
putation of high order TPSA, including gener-
alised indexing, multiplication and composition
of inhomogeneous multivariate polynomials. The
implementation has been benchmarked against
well established libraries for the common subset
with TPSA, and outperforms all of them for sup-
ported differential algebra operators on low and
high orders, and high number of variables.

Generalised TPSA
The GTPSA extends the TPSA by making a dis-
tinction between the map variables ~x and the
knob variables ~k, based on their physical mean-
ing, where the knobs can appear in the GTPSA,
but never in the map (fig. 1). It also allows to
specify a maximum order dj , 0 < j n for each
variable in ~x or ~k and two total orders dx and dk.

Fig. 1: Representation of a 4D map with knobs.

Unification of studies
The GTPSA extensions are useful for unifying
different kinds of studies using the same equa-
tions of motion. The following maps specifica-
tions are of particular interest, assuming a 6D
phase space ~x = {x, px, y, py, s, ps}:

~x = {0, 0, 0, 0, 0, 0} corresponds to 6D zero
order particle tracking, i.e. particles orbits,
where the map is simply a vector of six
scalars. In this case, dx = 0, dk = 0 and
~k = ~0.
~x = {2, 2, 2, 2, 0, 0} corresponds to 6D with
second order transverse beam dynamics
and zero order longitudinal beam dynam-
ics, which emulates 4D beam dynamics. In
this case, dx = 2, dk = 0 and ~k = ~0.
~x = {1, 1, 1, 1, 4, 4} and ~k = {1, . . . , 1}
corresponds to 6D with first order trans-
verse beam dynamics and fourth order
longitudinal beam dynamics with n � v

(few hundreds) first order knobs in the
GTPSA (e.g. strength of orbit correctors).
In this case, dx = 4 so mixed high order
terms like @

4
ps/(@x@px@y@py) exist and

dk = 1, meaning that terms like @x/@kj

and @y/@kj also exist and can be used di-
rectly by orbit correction algorithms.

A fast indexing function

Fig. 2: Relative performance of indexing functions.

The monomials of a TPSA are sorted by two cri-
teria, depending on the application. For indexing,
the order by variables (Table 1a) is used along with
the H matrix (Fig. 3) to efficiently compute the
index of a correct monomial (Table 1b) or to dis-
card an incorrect one. The unique GTPSA index
ti of the i-th monomial can be calculated from the
monomial’s orders {↵ij} using the formula:

ti =
nX

j=1

H(j, sj)�H(j, sj+1), sj =
nX

k�j

↵ik

Fig. 3: An example of
the H matrix. The
dots represent for-
bidden monomials

H,x = {1, 1, 3, 1}
(j,i) 0 1 2 3 4
1 0 1 2 3 4
2 0 2 4 6 8
3 0 4 8 12 15
4 0 15 · · ·

Tbl. 1: Monomials ordered by variables and by orders.

index x y z order
0 0 0 0 0
1 1 0 0 1
2 2 0 0 2
3 3 0 0 3
4 0 1 0 1
5 1 1 0 2
6 2 1 0 3
7 0 2 0 2
8 1 2 0 3
9 0 3 0 3
10 0 0 1 1
11 1 0 1 2
12 2 0 1 3
13 0 1 1 2
14 1 1 1 3
15 0 2 1 3
16 0 0 2 2
17 1 0 2 3
18 0 1 2 3
19 0 0 3 3

Good for indexing
(a) Sorted by product of
univariate polynomials

index x y z order
0 0 0 0 0
1 1 0 0 1
2 0 1 0 1
3 0 0 1 1
4 2 0 0 2
5 1 1 0 2
6 0 2 0 2
7 1 0 1 2
8 0 1 1 2
9 0 0 2 2
10 3 0 0 3
11 2 1 0 3
12 1 2 0 3
13 0 3 0 3
14 2 0 1 3
15 1 1 1 3
16 0 2 1 3
17 1 0 2 3
18 0 1 2 3
19 0 0 3 3

Good for operations
(b) Sorted by sum of
homogeneous multivariate
polynomials

Multiplication and composition
Since brute force is still the fastest multiplication
algorithm for truncated multivariate polynomi-
als, with O(n2) complexity, only linear improve-
ments can be obtained. The choice of the data
structure is crucial, so the monomials are ordered
by homogeneous polynomials (Table 1b), which
gives the following advantages:

the good locality of the data ensures cache
friendly loops over the GTPSA;
the destination indexes can be precom-
puted for each pair of homogeneous poly-
nomials Pi ⇥Qj ;
the computation is symmetric in
terms of homogeneous polynomials,
i.e. Ri+j = Pi ⇥Qj = Pj ⇥Qi so memory
consumption is halved;
the resulting homogeneous polynomials
Ri+j are independent of each other, so par-
alellisation can be employed when the com-
putation load is big enough (i + j � 12).
The highest order is split into two tasks, as
it represents by itself about half the size of
the total calculation.

For composition, the monomials are computed
recursively in a tree-like manner which results in
only v⇥N multiplications for a full map of v vari-
ables with N coefficients each. This is optimal
and avoids the calculation and memory overhead
of additional data structures.

Fig. 4: Relative performance of multiplication at or-
der 2 when using GTPSA with 6 variables and
many knobs vs. homogeneous TPSA.

Fig. 5: Relative performance of the multiplications.

Fig. 6: Relative performance of the compositions.

Conclusions and future work
We have provided a Generalised TPSA package which

provides a common interface for different types of studies;
offers much more flexibility for computation of maps in beam dynamics and complex maps in
normal form analysis;
outperforms well-known high performance packages, despite apparent complexity.

Future work will focus on improving efficiency of sparse element maps through a mixed representation
of dense and sparse homogeneous polynomials.

The smaller the better!

mailto:laurent.deniau@cern.ch

