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MAD-NG objectives

๏ Long term design: easy to use and extend. 
➡Flexible language ➠ fast, simple, and general purpose scripting language. 
‣ ~70% of the code is written in the scripting language, ~30% in C. 

➡Flexible technologies ➠ self-contained, all-in-one and modular. 
‣ single application, no dependencies (except Gnuplot for plotting). 

➡Efficient & Portable technologies ➠ embeds a Just in Time compiler. 
‣ same results everywhere (LNX, OSX, WIN), extensive unit tests (>8000). 
‣ fast and extremely simple Foreign Function Interface to C, C++, Fortran, etc… 

๏ 6D PTC physics using GTPSA (for DA) and symplectic integrators. 
‣ slicing, combined physics, combined elements, support/development for extensions is easy… 

๏ Development open source. 
➡GitHub https://github.com/MethodicalAcceleratorDesign/MAD 
➡ License GPL V3, User manual (~180p, covers <20%), Programmer Manual (29p).

2
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MAD-NG objectives

๏ Long term design: easy to use and extend. 
➡Flexible language ➠ fast, simple, and general purpose scripting language. 
‣ ~70% of the code is written in the scripting language, ~30% in C. 

➡Flexible technologies ➠ self-contained, all-in-one and modular. 
‣ single application, no dependencies (except Gnuplot for plotting). 

➡Efficient & Portable technologies ➠ embeds a Just in Time compiler. 
‣ same results everywhere (LNX, OSX, WIN), extensive unit tests (>8000). 
‣ fast and extremely simple Foreign Function Interface to C, C++, Fortran, etc… 

๏ 6D PTC physics using GTPSA (for DA) and symplectic integrators. 
‣ slicing, combined physics, combined elements, support/development for extensions is easy… 

๏ Development open source. 
➡GitHub https://github.com/MethodicalAcceleratorDesign/MAD 
➡ License GPL V3, User manual (~180p, covers <20%), Programmer Manual (29p).

2

- intended objective - 

provide a general platform to 

develop tracking and optics codes 

for accelerator beam physics.
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MAD-NG schematic layout

๏ Built from the start as a platform to develop & benchmark physics. 
➡Everything is accessible, modifiable and extensible by users from scripts 

(e.g. even at runtime).

3

User scripts
Classes, Lattices, Studies

Components

Objects, Elements, Sequences, Tables, Maps
Survey, Tracking, Optics, Matching, Normal Forms

Plotting

Linear
Algebra
(ℝ & ℂ)

Generic
Math

(ℝ & ℂ)

Differential
Algebra
(ℝ & ℂ)

Toolboxes
help, tests
I/O, env, ...

Numerics
FFT, OPT
(ℝ & ℂ)
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MAD-NG ecosystem

4

MAD-NG
Core

(VM+JIT+FFI)

Linear ToolBox
Real & Complex
Vector & Matrix

Algorithms
Solvers, Eigen,

FFT, Optimisers

DA Toolbox
Real & Complex

GTPSA

MADX Env

Elements

Sequence

Beam

Object
Model

TablePlot

Commands

Survey

Track

COFind

Match

DA Map

Geometric
3D Maps

Symplectic
Integrators

Unit Tests

Dynamic
6D Maps

Correct

Spin

2022?

Radiation

Normal form 
Optical Funs

Aperture

 A uses B
A            B

A exposes B
A               B

A is-a B
A            B

Legend

TodoDone Dev

Twiss
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4
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MAD-NG ecosystem

4
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MAD-NG ecosystem
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Sequences & elements

5

SPS:    LINE = (6*SUPER);
SUPER:  LINE = (7*P44,INSERT,7*P44);
INSERT: LINE = (P24,2*P00,P42);
P00:    LINE = (QF,DL,QD,DL);
P24:    LINE = (QF,DM,2*B2,DS,PD);
P42:    LINE = (PF,QD,2*B2,DM,DS);
P44:    LINE = (PF,PD);
PD:     LINE = (QD,2*B2,2*B1,DS);
PF:     LINE = (QF,2*B1,2*B2,DS);

pf     = bline {qf,2*b1,2*b2,ds}
pd     = bline {qd,2*b2,2*b1,ds}
p24    = bline {qf,dm,2*b2,ds,pd}
p42    = bline {pf,qd,2*b2,dm,ds}
p00    = bline {qf,dl,qd,dl}
p44    = bline {pf,pd}
insert = bline {p24,2*p00,p42}
super  = bline {7*p44,insert,7*p44}
SPS    = sequence 'SPS' {6*super}

SPS in MAD-X

SPS in MAD-NG

mailto:laurent.deniau@cern.ch
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Sequences & elements

5

๏ Lattices definition as in MAD-X (syntax is very close) 

➡ sequences are both containers (e.g. access elements) and table (store arbitrary objects). 
‣ e.g. to store their beam or their own list of knobs. 

➡ elements are both containers (e.g. access attributes) and table (store arbitrary objects). 
➡ sequence can include subsequences, beam lines and elements (and subelements). 
➡ operator overloading (+, -, *) allows to mix lines and sequences descriptions arbitrarily. 
➡ names are optional and can be non-unique with support for relative or absolute counts. 
‣ positions ‘AT' can be absolute or relative ‘FROM’ names with absolute or relative counts.

SPS:    LINE = (6*SUPER);
SUPER:  LINE = (7*P44,INSERT,7*P44);
INSERT: LINE = (P24,2*P00,P42);
P00:    LINE = (QF,DL,QD,DL);
P24:    LINE = (QF,DM,2*B2,DS,PD);
P42:    LINE = (PF,QD,2*B2,DM,DS);
P44:    LINE = (PF,PD);
PD:     LINE = (QD,2*B2,2*B1,DS);
PF:     LINE = (QF,2*B1,2*B2,DS);

pf     = bline {qf,2*b1,2*b2,ds}
pd     = bline {qd,2*b2,2*b1,ds}
p24    = bline {qf,dm,2*b2,ds,pd}
p42    = bline {pf,qd,2*b2,dm,ds}
p00    = bline {qf,dl,qd,dl}
p44    = bline {pf,pd}
insert = bline {p24,2*p00,p42}
super  = bline {7*p44,insert,7*p44}
SPS    = sequence 'SPS' {6*super}

SPS in MAD-X

SPS in MAD-NG
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Sequences & elements

5

๏ Lattices definition as in MAD-X (syntax is very close) 

➡ sequences are both containers (e.g. access elements) and table (store arbitrary objects). 
‣ e.g. to store their beam or their own list of knobs. 

➡ elements are both containers (e.g. access attributes) and table (store arbitrary objects). 
➡ sequence can include subsequences, beam lines and elements (and subelements). 
➡ operator overloading (+, -, *) allows to mix lines and sequences descriptions arbitrarily. 
➡ names are optional and can be non-unique with support for relative or absolute counts. 
‣ positions ‘AT' can be absolute or relative ‘FROM’ names with absolute or relative counts.

SPS:    LINE = (6*SUPER);
SUPER:  LINE = (7*P44,INSERT,7*P44);
INSERT: LINE = (P24,2*P00,P42);
P00:    LINE = (QF,DL,QD,DL);
P24:    LINE = (QF,DM,2*B2,DS,PD);
P42:    LINE = (PF,QD,2*B2,DM,DS);
P44:    LINE = (PF,PD);
PD:     LINE = (QD,2*B2,2*B1,DS);
PF:     LINE = (QF,2*B1,2*B2,DS);

pf     = bline {qf,2*b1,2*b2,ds}
pd     = bline {qd,2*b2,2*b1,ds}
p24    = bline {qf,dm,2*b2,ds,pd}
p42    = bline {pf,qd,2*b2,dm,ds}
p00    = bline {qf,dl,qd,dl}
p44    = bline {pf,pd}
insert = bline {p24,2*p00,p42}
super  = bline {7*p44,insert,7*p44}
SPS    = sequence 'SPS' {6*super}

SPS in MAD-X

SPS in MAD-NG

unified definitions of 

lines and sequences 

plus extensions
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Sequences & elements

5

๏ Lattices definition as in MAD-X (syntax is very close) 

➡ sequences are both containers (e.g. access elements) and table (store arbitrary objects). 
‣ e.g. to store their beam or their own list of knobs. 

➡ elements are both containers (e.g. access attributes) and table (store arbitrary objects). 
➡ sequence can include subsequences, beam lines and elements (and subelements). 
➡ operator overloading (+, -, *) allows to mix lines and sequences descriptions arbitrarily. 
➡ names are optional and can be non-unique with support for relative or absolute counts. 
‣ positions ‘AT' can be absolute or relative ‘FROM’ names with absolute or relative counts.

๏ Manage arbitrary number of sequences to allow 
simulation of entire accelerators complex. 

➡Shared sequences, e.g. LHCB1 and LHCB2. 
‣ provides few sharing policies. 

➡Chained sequences, e.g. PSB, PS, SPS and BTL. 
➡Conditionally chained sequences (e.g. RaceTrack). 
‣ e.g. Booster ➠ Ring1 if energy > 175 GeV 
‣ based on special s-link element 
‣ connections and conditions are performed 

through an arbitrary user-defined function.

SPS:    LINE = (6*SUPER);
SUPER:  LINE = (7*P44,INSERT,7*P44);
INSERT: LINE = (P24,2*P00,P42);
P00:    LINE = (QF,DL,QD,DL);
P24:    LINE = (QF,DM,2*B2,DS,PD);
P42:    LINE = (PF,QD,2*B2,DM,DS);
P44:    LINE = (PF,PD);
PD:     LINE = (QD,2*B2,2*B1,DS);
PF:     LINE = (QF,2*B1,2*B2,DS);

pf     = bline {qf,2*b1,2*b2,ds}
pd     = bline {qd,2*b2,2*b1,ds}
p24    = bline {qf,dm,2*b2,ds,pd}
p42    = bline {pf,qd,2*b2,dm,ds}
p00    = bline {qf,dl,qd,dl}
p44    = bline {pf,pd}
insert = bline {p24,2*p00,p42}
super  = bline {7*p44,insert,7*p44}
SPS    = sequence 'SPS' {6*super}

SPS in MAD-X

SPS in MAD-NG

unified definitions of 

lines and sequences 

plus extensions
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Sequences conversion (MAD-X to MAD)

6
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Sequences conversion (MAD-X to MAD)

6

๏ MAD-NG loads and convert MAD-X sequences, elements and variables, including 
deferred expressions, on-the-fly into the MADX environment (a MAD-NG context 
that emulates MAD-X global workspace) and/or save conversion to files.

! convert MAD-X files on need, save to MAD file (disk), load to MADX environment (memory)
  MADX:load('lhc_as-built.seq'        , 'lhc_as-built.mad')
  MADX:load(‘opticsfile.22_ctpps2'    , ‘opticsfile.22_ctpps2.mad')
  MADX:load("FCCee_z_213_nosol_18.seq", "FCCee_z_213_nosol_18.mad")

mailto:laurent.deniau@cern.ch
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Sequences conversion (MAD-X to MAD)

6

๏ MAD-NG loads and convert MAD-X sequences, elements and variables, including 
deferred expressions, on-the-fly into the MADX environment (a MAD-NG context 
that emulates MAD-X global workspace) and/or save conversion to files.

! convert MAD-X files on need, save to MAD file (disk), load to MADX environment (memory)
  MADX:load('lhc_as-built.seq'        , 'lhc_as-built.mad')
  MADX:load(‘opticsfile.22_ctpps2'    , ‘opticsfile.22_ctpps2.mad')
  MADX:load("FCCee_z_213_nosol_18.seq", "FCCee_z_213_nosol_18.mad")

๏ MAD-NG embeds technologies to parse arbitrary language that can be described 
with PEG (parser expression grammar) to generate AST (abstract syntax tree), and 
apply transformations and/or evaluations.

user
script

select
grammar

generate
parser

parse
(build AST)

transform
(AST ➠ AST’)

generate
(AST’ ➠ MAD)

execute
(MAD-NG)

.madx

.xxx
parser 
code

MAD 
script

context 
(e.g. MAD-X dictionary & 

tables columns)
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Sequences conversion (MAD-X to MAD)

6

๏ MAD-NG loads and convert MAD-X sequences, elements and variables, including 
deferred expressions, on-the-fly into the MADX environment (a MAD-NG context 
that emulates MAD-X global workspace) and/or save conversion to files.

! convert MAD-X files on need, save to MAD file (disk), load to MADX environment (memory)
  MADX:load('lhc_as-built.seq'        , 'lhc_as-built.mad')
  MADX:load(‘opticsfile.22_ctpps2'    , ‘opticsfile.22_ctpps2.mad')
  MADX:load("FCCee_z_213_nosol_18.seq", "FCCee_z_213_nosol_18.mad")

๏ MAD-NG embeds technologies to parse arbitrary language that can be described 
with PEG (parser expression grammar) to generate AST (abstract syntax tree), and 
apply transformations and/or evaluations.

user
script

select
grammar

generate
parser

parse
(build AST)

transform
(AST ➠ AST’)

generate
(AST’ ➠ MAD)

execute
(MAD-NG)

.madx

.xxx
parser 
code

MAD 
script

context 
(e.g. MAD-X dictionary & 

tables columns)

These technologies allow 

reading new formats with 

medium efforts, but it does 

not mean that physics will 

be the same!!
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Sequences conversion (MAD-X to MAD)

6

๏ MAD-NG loads and convert MAD-X sequences, elements and variables, including 
deferred expressions, on-the-fly into the MADX environment (a MAD-NG context 
that emulates MAD-X global workspace) and/or save conversion to files.

! convert MAD-X files on need, save to MAD file (disk), load to MADX environment (memory)
  MADX:load('lhc_as-built.seq'        , 'lhc_as-built.mad')
  MADX:load(‘opticsfile.22_ctpps2'    , ‘opticsfile.22_ctpps2.mad')
  MADX:load("FCCee_z_213_nosol_18.seq", "FCCee_z_213_nosol_18.mad")

๏ MAD-NG embeds technologies to parse arbitrary language that can be described 
with PEG (parser expression grammar) to generate AST (abstract syntax tree), and 
apply transformations and/or evaluations.

user
script

select
grammar

generate
parser

parse
(build AST)

transform
(AST ➠ AST’)

generate
(AST’ ➠ MAD)

execute
(MAD-NG)

.madx

.xxx
parser 
code

MAD 
script

context 
(e.g. MAD-X dictionary & 

tables columns)

๏ MAD-NG allows to run MAD-X as a module to convert sequences, elements and 
variables into MADX environment as with CpyMad. But this method does not 
propagate the deferred expressions, i.e. lattice logic is lost (fine for a “static” 
description). Could be propagated with some extra work.

These technologies allow 

reading new formats with 

medium efforts, but it does 

not mean that physics will 

be the same!!
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Sequence plot (LHC 1 & 2 survey)

7
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Sequence plot (LHC 1 & 2 survey)

7
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Sequence plot (LHC 1 & 2 survey)

7

plot {
  sequence = {lhcb1,lhcb2},
  laypos   = "in",
  layonly  = false,
  title    = "Layout in plot",
  prolog   = 'set size ratio -1',
  scrdump  = "plotlhc.gp",
}
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Sequence plot (LHC 1 & 2 survey)

7

plot {
  sequence = {lhcb1,lhcb2},
  laypos   = "in",
  layonly  = false,
  title    = "Layout in plot",
  prolog   = 'set size ratio -1',
  scrdump  = "plotlhc.gp",
}

Gnuplot script (.gp files) 

size is 5 MB & 125000+ lines 

and takes ~1 sec to display. 

All items are tagged 

i.e. moving the mouse over 

show their name and kind

MAD-NG loads the entire 

LHC from converted files 

(.mad files) in ~0.2 s.

MAD-NG loads the entire 

LHC in MAD-X format and 

saved it in files in ~1 s.

MAD-X loads the entire 

LHC definition  in ~1 s. 

(2 beamlines, ~30000 lines)
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Sequence plot (LHC 1 & 2 at IP1 & IP5 layout)

8
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Sequence plot (LHC 1 & 2 at IP1 & IP5 layout)

8

plot {
  sequence = { lhcb1, lhcb2, lhcb1, lhcb2 },
  range    = {
    {“E.DS.L1.B1","S.DS.R1.B1"},{"E.DS.L1.B2","S.DS.R1.B2"},
    {"E.DS.L5.B1","S.DS.R5.B1"},{"E.DS.L5.B2","S.DS.R5.B2"},
  },
  laydisty = {
    lhcb2[“E.DS.L1.B2"].mech_sep,       ! second bline
    -0.4,                               ! third  bline
    -0.4 + lhcb2[‘E.DS.L5.B2'].mech_sep ! fourth bline
  },
  title = "IP1-IP5 two angled beams",
}
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Sequence plot (LHC 1 & 2 at IP1 & IP5 layout)

8

Layout can be at 

top, bottom, middle, inside

plot {
  sequence = { lhcb1, lhcb2, lhcb1, lhcb2 },
  range    = {
    {“E.DS.L1.B1","S.DS.R1.B1"},{"E.DS.L1.B2","S.DS.R1.B2"},
    {"E.DS.L5.B1","S.DS.R5.B1"},{"E.DS.L5.B2","S.DS.R5.B2"},
  },
  laydisty = {
    lhcb2[“E.DS.L1.B2"].mech_sep,       ! second bline
    -0.4,                               ! third  bline
    -0.4 + lhcb2[‘E.DS.L5.B2'].mech_sep ! fourth bline
  },
  title = "IP1-IP5 two angled beams",
}
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Track plot (LHCB1 around IP5)

9
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Track plot (LHCB1 around IP5)

9
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Track plot (LHCB1 around IP5)

9
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local e1, e2 = "E.ARC.45.B1","S.ARC.56.B1"
mtbl:addcol('s5', \i -> mtbl.s[i]-mtbl[e1].s)
plot { -- plot with extracted data around IP5
  title      = "LHCB1 around IP5",
  sequence   = lhcb1,
  range      = {e1,e2},
  table      = mtbl,
  tablerange = {e1,e2},
  x1y1       = {s5={'x','y'}},
  x1y2       = {s5={'R16','R36'}},
  styles     = "lines",
  xlabel     = "s [m]",
  ylabel     = "x,y [m]",
  y2label    = "R16,R36",
  fontsize   = 14,
  output     = “plots/orbit_lhcb1_ip5_da.pdf",
--scrdump    = "plots/orbit_lhcb1_ip5.gp",
}
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Plot survey & twiss (two rings with 𝜷x)
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Plot survey & twiss (two rings with 𝜷x)
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�x/3
local ncell = 25
local mb = sbend      { l=2 }
local mq = quadrupole { l=1 }
local cell = sequence { l=10, refer='entry',
    mq 'mq1' { at=0, k1=0.29601        },
    mb 'mb1' { at=2, angle := pi/ncell },
    mq 'mq2' { at=5, k1=-0.30242       },
    mb 'mb2' { at=7, angle := pi/ncell },
  }
local seq = sequence 'seq' { ncell*cell, beam=beam }
local sv = survey { sequence=seq, nslice=5, atslice=ftrue, mapsave=true }
local tw = twiss  { sequence=seq, nslice=5, atslice=ftrue }
! compute betx in global frame 
local bet11 = { x=vector(#sv), z=vector(#sv) }
local v, scl = vector(3), round(tw.beta11:max()/5)
for i=1,#sv do
  v = sv.W[i] * v:fill{3+tw.beta11[i]/scl, 0, 0}
  bet11.x[i], bet11.z[i] = v[1], v[3]
end
bet11.x = bet11.x+sv.x
bet11.z = bet11.z+sv.z
! plot layout of the ring and the betx 
plot {
  sequence = seq,
  laypos   = "in",
  layonly  = false,
  title    = "Layout in plot with \u{03b2}_x",
  data     = { x=bet11.x, z=bet11.z },
  x1y1     = { x = 'z' },
  styles   = 'lines',
  xlabel   = "x [m]",
  ylabel   = "z [m]",
  legend   = { z = '\u{03b2}_x/'..scl },
}
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Plot survey & twiss (two rings with 𝜷x)
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�x/3
local ncell = 25
local mb = sbend      { l=2 }
local mq = quadrupole { l=1 }
local cell = sequence { l=10, refer='entry',
    mq 'mq1' { at=0, k1=0.29601        },
    mb 'mb1' { at=2, angle := pi/ncell },
    mq 'mq2' { at=5, k1=-0.30242       },
    mb 'mb2' { at=7, angle := pi/ncell },
  }
local seq = sequence 'seq' { ncell*cell, beam=beam }
local sv = survey { sequence=seq, nslice=5, atslice=ftrue, mapsave=true }
local tw = twiss  { sequence=seq, nslice=5, atslice=ftrue }
! compute betx in global frame 
local bet11 = { x=vector(#sv), z=vector(#sv) }
local v, scl = vector(3), round(tw.beta11:max()/5)
for i=1,#sv do
  v = sv.W[i] * v:fill{3+tw.beta11[i]/scl, 0, 0}
  bet11.x[i], bet11.z[i] = v[1], v[3]
end
bet11.x = bet11.x+sv.x
bet11.z = bet11.z+sv.z
! plot layout of the ring and the betx 
plot {
  sequence = seq,
  laypos   = "in",
  layonly  = false,
  title    = "Layout in plot with \u{03b2}_x",
  data     = { x=bet11.x, z=bet11.z },
  x1y1     = { x = 'z' },
  styles   = 'lines',
  xlabel   = "x [m]",
  ylabel   = "z [m]",
  legend   = { z = '\u{03b2}_x/'..scl },
}
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Element tracking: slices, actions & frames

11

atsliceatslice atslice atslice atslice

reference frame reference frame
{ }

atentry atexit0 1 2 3 4 -2

Forward tracking

Backward tracking

-1
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Element tracking: slices, actions & frames
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misalign 2misalign 1 magnet frame  
atsliceatslice atslice atslice atslice

reference frame reference frame
{ }

atentry atexit0 1 2 3 4 -2

Forward tracking

Backward tracking
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Element tracking: slices, actions & frames
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tilt-1tilt tilted frame  

misalign 2misalign 1 magnet frame  
atsliceatslice atslice atslice atslice

reference frame reference frame
{ }

atentry atexit0 1 2 3 4 -2

Forward tracking

Backward tracking
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[fringe]

Element tracking: slices, actions & frames

11

  [radiation] [radiation]

[fringe]
tilt-1tilt tilted frame  

misalign 2misalign 1 magnet frame  
atsliceatslice atslice atslice atslice

reference frame reference frame
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[fringe]

Element tracking: slices, actions & frames
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[fringe]

Element tracking: slices, actions & frames

11

aperture

tilt-1(k,ks)tilt(k,ks) map frame
  [radiation] [radiation]

[fringe]
tilt-1tilt tilted frame  

misalign 2misalign 1 magnet frame  
atsliceatslice atslice atslice atslice

reference frame reference frame
{ }

atentry atexit0 1 2 3 4 -2

Forward tracking

Backward tracking

-1

mailto:laurent.deniau@cern.ch


BE Beams 
Department

La
ur

en
t D

en
ia

u,
 C

E
R

N
 B

E
/A

B
P,

 1
21

1 
G

en
ev

a,
 la

ur
en

t.d
en

ia
u@

ce
rn

.c
h 

[fringe]

Element tracking: slices, actions & frames

11

aperture

tilt-1(k,ks)tilt(k,ks) map frame
  [radiation] [radiation]

[fringe]
tilt-1tilt tilted frame  

misalign 2misalign 1 magnet frame  
atsliceatslice atslice atslice atslice

reference frame reference frame
{ }

atentry atexit0 1 2 3 4 -2

Forward tracking

Backward tracking

  atentry(elm, m,  sdir, -1)
  mis    (elm, m,  sdir)
  rot    (tlt, m,  sdir)
  fringe (elm, m,  sdir)
  track  (elm, m,    1 , thick, thin)
  fringe (elm, m, -sdir)
  rot    (tlt, m, -sdir)
  mis    (elm, m, -sdir)
  atexit (elm, m, -sdir, -2)

-1
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[fringe]

Element tracking: slices, actions & frames

11

aperture

tilt-1(k,ks)tilt(k,ks) map frame
  [radiation] [radiation]

[fringe]
tilt-1tilt tilted frame  

misalign 2misalign 1 magnet frame  
atsliceatslice atslice atslice atslice

reference frame reference frame
{ }

atentry atexit0 1 2 3 4 -2

Forward tracking

Backward tracking

  atentry(elm, m,  sdir, -1)
  mis    (elm, m,  sdir)
  rot    (tlt, m,  sdir)
  fringe (elm, m,  sdir)
  track  (elm, m,    1 , thick, thin)
  fringe (elm, m, -sdir)
  rot    (tlt, m, -sdir)
  mis    (elm, m, -sdir)
  atexit (elm, m, -sdir, -2)

๏ Slicing can be uniform or arbitrary. 
๏ Subelements thick or thin can be inserted at 

arbitrary relative (to parent length) or absolute (from 
parent entry) positions. Subelements define slices. 

๏ Installing elements in sequence automatically 
(user-policy) insert them as subelement upon collision. 

๏ Misalignments (element to sequence) restore the frame on exit. 
Permanent misalignments (element property) don’t (i.e. patches). 
Survey can consider misalignments (user-policy) for superposition inside elements.

-1
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Survey: sbend tilted by 90º — dphi 15º dy 0.1m
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Survey: sbend tilted by 90º — dphi 15º dy 0.1m
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Survey: sbend tilted by 90º — dphi 15º dy 0.1m
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Tracking actions (Survey, Track, Cofind and Twiss)
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Tracking actions (Survey, Track, Cofind and Twiss)

๏ Actions are functions (or objects with function-like semantic). 
➡ MAD-NG functions are first class lexical closures (fun & env) and can do everything… 
‣ i.e. high order functions that can receive and return multiple arguments. 

➡ actions kinds: atentry, atslice, atexit, ataper, atsave. 
➡ mechanism to customise or extend other commands (e.g. Twiss with Track and Cofind).

13
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Tracking actions (Survey, Track, Cofind and Twiss)

๏ Actions are functions (or objects with function-like semantic). 
➡ MAD-NG functions are first class lexical closures (fun & env) and can do everything… 
‣ i.e. high order functions that can receive and return multiple arguments. 

➡ actions kinds: atentry, atslice, atexit, ataper, atsave. 
➡ mechanism to customise or extend other commands (e.g. Twiss with Track and Cofind).

๏ Actions can be combined with combinators (and selectors). 
➡ chain(f1,f2)   ➠ f1() ; return f2().
➡ achain(f1,f2)  ➠ return f1() and f2().
➡ ochain(f1,f2)  ➠ return f1() or f2().
➡ compose(f1,f2) ➠ return f1(f2()).
➡ ftrue, ffalse, fnone.

13
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Tracking actions (Survey, Track, Cofind and Twiss)

๏ Actions are functions (or objects with function-like semantic). 
➡ MAD-NG functions are first class lexical closures (fun & env) and can do everything… 
‣ i.e. high order functions that can receive and return multiple arguments. 

➡ actions kinds: atentry, atslice, atexit, ataper, atsave. 
➡ mechanism to customise or extend other commands (e.g. Twiss with Track and Cofind).

๏ Actions can be combined with combinators (and selectors). 
➡ chain(f1,f2)   ➠ f1() ; return f2().
➡ achain(f1,f2)  ➠ return f1() and f2().
➡ ochain(f1,f2)  ➠ return f1() or f2().
➡ compose(f1,f2) ➠ return f1(f2()).
➡ ftrue, ffalse, fnone.

๏ Actions can be selected by selectors: 
➡ Selectors are functions to enable/disable actions based on some particular criteria 

e.g. slices number or any other user-defined criteria. 
predefined selectors: atall, atentry, atbegin, atbody, atbound, atend, atexit, 
                                  atmid, atins, atstd, actionat, action.

13
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Tracking actions (Survey, Track, Cofind and Twiss)

๏ Actions are functions (or objects with function-like semantic). 
➡ MAD-NG functions are first class lexical closures (fun & env) and can do everything… 
‣ i.e. high order functions that can receive and return multiple arguments. 

➡ actions kinds: atentry, atslice, atexit, ataper, atsave. 
➡ mechanism to customise or extend other commands (e.g. Twiss with Track and Cofind).

๏ Actions can be combined with combinators (and selectors). 
➡ chain(f1,f2)   ➠ f1() ; return f2().
➡ achain(f1,f2)  ➠ return f1() and f2().
➡ ochain(f1,f2)  ➠ return f1() or f2().
➡ compose(f1,f2) ➠ return f1(f2()).
➡ ftrue, ffalse, fnone.

๏ Actions can be selected by selectors: 
➡ Selectors are functions to enable/disable actions based on some particular criteria 

e.g. slices number or any other user-defined criteria. 
predefined selectors: atall, atentry, atbegin, atbody, atbound, atend, atexit, 
                                  atmid, atins, atstd, actionat, action.

13

๏ Actions are triggered by tracking codes (Survey and Track). 
➡ actions are chained so they are independent from each other. 
➡ default for ataper: check for aperture at slice 0 (titled frame). 
➡ default for atsave: save data at exit (reference frame), 

                                 and at slices (titled frame) if atslice = ftrue.
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Tracking actions (Survey, Track, Cofind and Twiss)

๏ Actions are functions (or objects with function-like semantic). 
➡ MAD-NG functions are first class lexical closures (fun & env) and can do everything… 
‣ i.e. high order functions that can receive and return multiple arguments. 

➡ actions kinds: atentry, atslice, atexit, ataper, atsave. 
➡ mechanism to customise or extend other commands (e.g. Twiss with Track and Cofind).

๏ Actions can be combined with combinators (and selectors). 
➡ chain(f1,f2)   ➠ f1() ; return f2().
➡ achain(f1,f2)  ➠ return f1() and f2().
➡ ochain(f1,f2)  ➠ return f1() or f2().
➡ compose(f1,f2) ➠ return f1(f2()).
➡ ftrue, ffalse, fnone.

๏ Actions can be selected by selectors: 
➡ Selectors are functions to enable/disable actions based on some particular criteria 

e.g. slices number or any other user-defined criteria. 
predefined selectors: atall, atentry, atbegin, atbody, atbound, atend, atexit, 
                                  atmid, atins, atstd, actionat, action.

13

๏ Actions are triggered by tracking codes (Survey and Track). 
➡ actions are chained so they are independent from each other. 
➡ default for ataper: check for aperture at slice 0 (titled frame). 
➡ default for atsave: save data at exit (reference frame), 

                                 and at slices (titled frame) if atslice = ftrue.

atslice = ftrue

atbegin and ataper
and ataper (user)

atsave (track)
and atsave (twiss)

and atsave (user)

Order of execution at each slice

Actions are a powerful tool to extend 

tracking codes (survey and track). 

E.g. connect sequences (or beams) 

together; replace, extend or wrap 

computations; add extra physics 

between multi-particules or damaps, 

etc…
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Track in “depth” : user-defined possible extensions

14

Sequence Element Integrator Maps
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Track in “depth” : user-defined possible extensions

14

Track

build mflow 
and mtable

run track 
main loop

Sequence Element Integrator Maps
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Track in “depth” : user-defined possible extensions

14

Track

build mflow 
and mtable

run track 
main loop

track
(method)

retrieve
attributes

model & attributes ➠
thick, thin & fringe maps

model & method ➠ 
integrator

Sequence Element Integrator Maps
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Track in “depth” : user-defined possible extensions

14

Track

build mflow 
and mtable

run track 
main loop

atentry
misalign

tilt, fringe

track
(method)

retrieve
attributes

model & attributes ➠
thick, thin & fringe maps

model & method ➠ 
integrator track through 

(sub)element

Sequence Element Integrator Maps
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Track in “depth” : user-defined possible extensions

14

Track

build mflow 
and mtable

run track 
main loop

atentry
misalign

tilt, fringe

track
(method)

retrieve
attributes

model & attributes ➠
thick, thin & fringe maps

model & method ➠ 
integrator

slicing & atslice ➠
integration steps
(ataper, atsave)

track through 
(sub)element

Integrate 
selected maps & 
scheme: Yoshida, 
Boole, Teapot,…

Sequence Element Integrator Maps
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Track in “depth” : user-defined possible extensions

14

Track

build mflow 
and mtable

run track 
main loop

atentry
misalign

tilt, fringe

track
(method)

retrieve
attributes

model & attributes ➠
thick, thin & fringe maps

model & method ➠ 
integrator

slicing & atslice ➠
integration steps
(ataper, atsave)

track through 
(sub)element

Integrate 
selected maps & 
scheme: Yoshida, 
Boole, Teapot,…

thick

kick

thick

atslice

Sequence Element Integrator Maps
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Track in “depth” : user-defined possible extensions

14

Track

build mflow 
and mtable

run track 
main loop

atentry
misalign

tilt, fringe

track
(method)

retrieve
attributes

model & attributes ➠
thick, thin & fringe maps

model & method ➠ 
integrator

slicing & atslice ➠
integration steps
(ataper, atsave)

track through 
(sub)element

Integrate 
selected maps & 
scheme: Yoshida, 
Boole, Teapot,…

thick

kick

thick

atslice

Sequence Element Integrator Maps

nslice 
times
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Track in “depth” : user-defined possible extensions

14

Track

build mflow 
and mtable

run track 
main loop

atentry
misalign

tilt, fringe

track
(method)

retrieve
attributes

model & attributes ➠
thick, thin & fringe maps

model & method ➠ 
integrator

slicing & atslice ➠
integration steps
(ataper, atsave)

track through 
(sub)element

Integrate 
selected maps & 
scheme: Yoshida, 
Boole, Teapot,…

thick

kick

thick

atslice

Sequence Element Integrator Maps

nslice 
times
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Track in “depth” : user-defined possible extensions

14

Track

build mflow 
and mtable

run track 
main loop

atentry
misalign

tilt, fringe

track
(method)

fringe, tilt
misalign
atexit

(atsave)

retrieve
attributes

model & attributes ➠
thick, thin & fringe maps

model & method ➠ 
integrator

slicing & atslice ➠
integration steps
(ataper, atsave)

track through 
(sub)element

Integrate 
selected maps & 
scheme: Yoshida, 
Boole, Teapot,…

thick

kick

thick

atslice

Sequence Element Integrator Maps

nslice 
times
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Track in “depth” : user-defined possible extensions

14

Track

build mflow 
and mtable

run track 
main loop

atentry
misalign

tilt, fringe

track
(method)

fringe, tilt
misalign
atexit

(atsave)

retrieve
attributes

model & attributes ➠
thick, thin & fringe maps

model & method ➠ 
integrator

return
results

slicing & atslice ➠
integration steps
(ataper, atsave)

track through 
(sub)element

Integrate 
selected maps & 
scheme: Yoshida, 
Boole, Teapot,…

thick

kick

thick

atslice

Sequence Element Integrator Maps

nslice 
times
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Track in “depth” : user-defined possible extensions

14

Track

build mflow 
and mtable

run track 
main loop

atentry
misalign

tilt, fringe

track
(method)

fringe, tilt
misalign
atexit

(atsave)

retrieve
attributes

model & attributes ➠
thick, thin & fringe maps

model & method ➠ 
integrator

return
results

slicing & atslice ➠
integration steps
(ataper, atsave)

track through 
(sub)element

Integrate 
selected maps & 
scheme: Yoshida, 
Boole, Teapot,…

thick

kick

thick

atslice

Sequence Element Integrator Maps

nslice 
times

Physics can be parametrised and/or 
configured by element attributes and 

commands attributes
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Track in “depth” : user-defined possible extensions

14

Track

build mflow 
and mtable

run track 
main loop

atentry
misalign

tilt, fringe

track
(method)

fringe, tilt
misalign
atexit

(atsave)

retrieve
attributes

model & attributes ➠
thick, thin & fringe maps

model & method ➠ 
integrator

return
results

slicing & atslice ➠
integration steps
(ataper, atsave)

track through 
(sub)element

Integrate 
selected maps & 
scheme: Yoshida, 
Boole, Teapot,…

thick

kick

thick

atslice

Sequence Element Integrator Maps

nslice 
times

Physics can be extended by creating 
new element or modifying existing 

element or subelements track method 
(object oriented approach)

Physics can be parametrised and/or 
configured by element attributes and 

commands attributes
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Track in “depth” : user-defined possible extensions

14

Track

build mflow 
and mtable

run track 
main loop

atentry
misalign

tilt, fringe

track
(method)

fringe, tilt
misalign
atexit

(atsave)

retrieve
attributes

model & attributes ➠
thick, thin & fringe maps

model & method ➠ 
integrator

return
results

slicing & atslice ➠
integration steps
(ataper, atsave)

track through 
(sub)element

Integrate 
selected maps & 
scheme: Yoshida, 
Boole, Teapot,…

thick

kick

thick

atslice

Sequence Element Integrator Maps

nslice 
times

Physics can be extended by creating 
new element or modifying existing 

element or subelements track method 
(object oriented approach)

Physics can be parametrised and/or 
configured by element attributes and 

commands attributes

Physics can be extended by 
providing extra integration methods 

e.g. 3D field maps.
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Track in “depth” : user-defined possible extensions

14

Track

build mflow 
and mtable

run track 
main loop

atentry
misalign

tilt, fringe

track
(method)

fringe, tilt
misalign
atexit

(atsave)

retrieve
attributes

model & attributes ➠
thick, thin & fringe maps

model & method ➠ 
integrator

return
results

slicing & atslice ➠
integration steps
(ataper, atsave)

track through 
(sub)element

Integrate 
selected maps & 
scheme: Yoshida, 
Boole, Teapot,…

thick

kick

thick

atslice

Sequence Element Integrator Maps

nslice 
times

Physics can be extended by creating 
new element or modifying existing 

element or subelements track method 
(object oriented approach)

Physics can be parametrised and/or 
configured by element attributes and 

commands attributes

Physics can be extended by 
providing extra integration methods 

e.g. 3D field maps.

Physics can be extended by 
providing new maps or actions 

e.g. strong beam-beam 
(functional approach)
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Track in “depth” : user-defined possible extensions

14

Track

build mflow 
and mtable

run track 
main loop

atentry
misalign

tilt, fringe

track
(method)

fringe, tilt
misalign
atexit

(atsave)

retrieve
attributes

model & attributes ➠
thick, thin & fringe maps

model & method ➠ 
integrator

return
results

slicing & atslice ➠
integration steps
(ataper, atsave)

track through 
(sub)element

Integrate 
selected maps & 
scheme: Yoshida, 
Boole, Teapot,…

thick

kick

thick

atslice

Sequence Element Integrator Maps

nslice 
times

Physics can be extended by creating 
new element or modifying existing 

element or subelements track method 
(object oriented approach)

Physics can be parametrised and/or 
configured by element attributes and 

commands attributes

Physics can be extended by 
providing extra integration methods 

e.g. 3D field maps.

Physics can be extended by 
providing new maps or actions 

e.g. strong beam-beam 
(functional approach)

All this code is written in the scripting language. 

i.e. ultimately configurable, modifiable and 

extensible, even at runtime by users.
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MAD-NG physics I

15

mailto:laurent.deniau@cern.ch


BE Beams 
Department

La
ur

en
t D

en
ia

u,
 C

E
R

N
 B

E
/A

B
P,

 1
21

1 
G

en
ev

a,
 la

ur
en

t.d
en

ia
u@

ce
rn

.c
h 

MAD-NG physics I

๏ 6D PTC physics using GTPSA (for DA) and symplectic integrators. 
‣ slicing, combined physics & elements, easy support for extensions, etc… 
‣ x4-10 faster than PTC for TPSA tracking, x1-2 slower than MAD-X for most cases.

15
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MAD-NG physics I

๏ 6D PTC physics using GTPSA (for DA) and symplectic integrators. 
‣ slicing, combined physics & elements, easy support for extensions, etc… 
‣ x4-10 faster than PTC for TPSA tracking, x1-2 slower than MAD-X for most cases.

๏ Survey: geometrical tracking 
‣ Survey supports multi-turns, ranged and step-by-step backtracking and reverse 

tracking. Return a Survey table and a Survey map flow (tracked context). 
‣ fully compatible with Track for superposition and observable points (e.g. table output, 

smooth plots, slicing, actions, sub-elements, etc…) 
‣ support exact misalignments and permanent misalignments, and patches.

15
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MAD-NG physics I

๏ 6D PTC physics using GTPSA (for DA) and symplectic integrators. 
‣ slicing, combined physics & elements, easy support for extensions, etc… 
‣ x4-10 faster than PTC for TPSA tracking, x1-2 slower than MAD-X for most cases.

๏ Survey: geometrical tracking 
‣ Survey supports multi-turns, ranged and step-by-step backtracking and reverse 

tracking. Return a Survey table and a Survey map flow (tracked context). 
‣ fully compatible with Track for superposition and observable points (e.g. table output, 

smooth plots, slicing, actions, sub-elements, etc…) 
‣ support exact misalignments and permanent misalignments, and patches.

๏ Track: dynamical tracking 
‣ Track supports multi-particles or multi-damaps, multi-turns, ranged and step-by-

step backtracking and reverse tracking of charged particles to arbitrary DA order 
and arbitrary number of parameters (few thousands). Return a Track table and a 
Track map flow (tracked context). 

‣ fully compatible with Survey for superposition and observable points (same tracking 
engine). 

‣ support exact misalignments, permanent misalignments, multipoles & field errors 
for all elements. Can be combined freely with patches. 

‣ symplectic tracking up to 8th order on 5D (delta-p) and 6D (delta-rf) phase space 
(exact=true, time=true, totalpath e.g. for thick RF). 

‣ provides true thick lens and thin lens tracking model, radiation with photons 
tracking (disabled in twiss), fringe fields (hard edge for all elements, including 
solenoid), mutable particles (multiple beams), exact patches (translations, rotations 
& time-energy), 4D weak-strong beam-beam (sixtracklib), apertures (all kinds). 

‣ may search for the closed orbit to support relative initial coordinates. 15
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MAD-NG physics II

16
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MAD-NG physics II

๏ Cofind: fix point search 
‣ Newton-based optimiser running Track with 1st order DA map or 7 particles. 
‣ support final coordinates translation. 
‣ extend Track with actions.

16
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MAD-NG physics II

๏ Cofind: fix point search 
‣ Newton-based optimiser running Track with 1st order DA map or 7 particles. 
‣ support final coordinates translation. 
‣ extend Track with actions.

๏ Twiss: optics tracking 
‣ runs Cofind (closed orbit) - Track (one-turn map) - Normal - Track (optics) - post 

processing. 
‣ extend Track with actions to compute on-the-fly optics and fill twiss table (extended 

track table). 
‣ support coupled optics, dispersions, tunes, chromaticities, synchrotron integrals, 

momentum compaction factor, phase slip factor, energy gamma transition, etc… 
support chrom option to compute chromatic derivatives of previous quantities 
(e.g. Montaigue functions).

16
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MAD-NG physics II

๏ Cofind: fix point search 
‣ Newton-based optimiser running Track with 1st order DA map or 7 particles. 
‣ support final coordinates translation. 
‣ extend Track with actions.

๏ Twiss: optics tracking 
‣ runs Cofind (closed orbit) - Track (one-turn map) - Normal - Track (optics) - post 

processing. 
‣ extend Track with actions to compute on-the-fly optics and fill twiss table (extended 

track table). 
‣ support coupled optics, dispersions, tunes, chromaticities, synchrotron integrals, 

momentum compaction factor, phase slip factor, energy gamma transition, etc… 
support chrom option to compute chromatic derivatives of previous quantities 
(e.g. Montaigue functions).

๏ Match: highly configurable optimiser 
‣ on the model of MAD-X use_macro approach, i.e. arbitrary user’s setups & runs. 
‣ provides all kinds of local & global, linear & non-linear, optimiser (~20 algorithms). 
‣ very flexible, highly configurable with many physics-oriented setups (not just a 

penalty-function to minimise).
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MAD-NG physics II

๏ Cofind: fix point search 
‣ Newton-based optimiser running Track with 1st order DA map or 7 particles. 
‣ support final coordinates translation. 
‣ extend Track with actions.

๏ Twiss: optics tracking 
‣ runs Cofind (closed orbit) - Track (one-turn map) - Normal - Track (optics) - post 

processing. 
‣ extend Track with actions to compute on-the-fly optics and fill twiss table (extended 

track table). 
‣ support coupled optics, dispersions, tunes, chromaticities, synchrotron integrals, 

momentum compaction factor, phase slip factor, energy gamma transition, etc… 
support chrom option to compute chromatic derivatives of previous quantities 
(e.g. Montaigue functions).

๏ Match: highly configurable optimiser 
‣ on the model of MAD-X use_macro approach, i.e. arbitrary user’s setups & runs. 
‣ provides all kinds of local & global, linear & non-linear, optimiser (~20 algorithms). 
‣ very flexible, highly configurable with many physics-oriented setups (not just a 

penalty-function to minimise).
๏ Correct: orbit correction 

‣ provides few algorithms (e.g. SVD, Micado) to correct orbit using BPMs and 
Kickers. Supports many options.
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MAD-NG physics II

๏ Cofind: fix point search 
‣ Newton-based optimiser running Track with 1st order DA map or 7 particles. 
‣ support final coordinates translation. 
‣ extend Track with actions.

๏ Twiss: optics tracking 
‣ runs Cofind (closed orbit) - Track (one-turn map) - Normal - Track (optics) - post 

processing. 
‣ extend Track with actions to compute on-the-fly optics and fill twiss table (extended 

track table). 
‣ support coupled optics, dispersions, tunes, chromaticities, synchrotron integrals, 

momentum compaction factor, phase slip factor, energy gamma transition, etc… 
support chrom option to compute chromatic derivatives of previous quantities 
(e.g. Montaigue functions).

๏ Match: highly configurable optimiser 
‣ on the model of MAD-X use_macro approach, i.e. arbitrary user’s setups & runs. 
‣ provides all kinds of local & global, linear & non-linear, optimiser (~20 algorithms). 
‣ very flexible, highly configurable with many physics-oriented setups (not just a 

penalty-function to minimise).
๏ Correct: orbit correction 

‣ provides few algorithms (e.g. SVD, Micado) to correct orbit using BPMs and 
Kickers. Supports many options.

๏ Normal: normal forms analysis (under validation) 
‣ provides linear and non-linear parametric normal forms on DA map (used by twiss) 

to extract RDTs. Can be applied at observable points in Track to track RDTs, either 
on-the-fly with actions or through post processing of DA maps saved in Track table.
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MAD-NG review
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MAD-NG review

๏ Performed from Oct. 2020 to Mar. 2021.

17
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MAD-NG review

๏ Performed from Oct. 2020 to Mar. 2021.
๏ Run simple studies on CERN machines and compare results vs 

MAD-X and MADX-PTC (listed in reverse time order, from last to first). 

➡Clic 380 GeV BDS optimisation (Andrii Pastushenko, 2 presentations) 

‣ twiss, high order maps generation, beam size comparison. 

➡MAD-NG outlook for LHC and HL-LHC (Riccardo De Maria) 

➡MAD-NG in Gantries (Cedric Hernalsteens, not presented) 

➡Experience with FCC-ee Lattice in MAD-NG (Leon van Riesen-Haupt) 

‣ linear optics, momentum detuning, amplitude detuning, radiation integrals. 

➡Experience for LHC coupling with MAD-NG (Tobias Persson). 

‣ example in the next slide 

➡Experience of MAD-NG with the PS (Alexander Huschauer). 

‣ linear optics, dispersions, tunes, chromaticities. 

‣ exploration of model and integration methods. 

➡Translating MAD-X scripts to MAD-NG (Laurent Deniau).

17
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MAD-NG studies - LHC coupling with param. maps

18
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MAD-NG studies - LHC coupling with param. maps

18

print(“strengths before matching coupling correctors:")
print("sk1r=", MADX.sk1r)
print("sk2r=", MADX.sk2r)
print("sk3r=", MADX.sk3r)
print("sk4r=", MADX.sk4r)

local X0 = damap {mo=2, nv=6, nk=4, ko=1,
                  vn={‘x','px','y','py','t','pt',
                      ‘sk1r','sk2r','sk3r','sk4r'}}

-- set knobs: scalar + TPSA -> TPSA
MADX.sk1r = MADX.sk1r + X0.sk1r
MADX.sk2r = MADX.sk2r + X0.sk2r
MADX.sk3r = MADX.sk3r + X0.sk3r
MADX.sk4r = MADX.sk4r + X0.sk4r

local mjac = { ---> variables & knobs
  { var='x' ,'0010001','00100001','001000001','0010000001' }, --    |
  { var='x' ,'0001001','00010001','000100001','0001000001' }, --    |
  { var='px','0010001','00100001','001000001','0010000001' }, --    v
  { var='px','0001001','00010001','000100001','0001000001' }, -- constraints
}

status, fmin, ncall = match {
  command := track {sequence=lhcb1, X0=X0, observe=1, savemap=true},
…
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MAD-NG studies - LHC coupling with param. maps

18

print(“strengths before matching coupling correctors:")
print("sk1r=", MADX.sk1r)
print("sk2r=", MADX.sk2r)
print("sk3r=", MADX.sk3r)
print("sk4r=", MADX.sk4r)

local X0 = damap {mo=2, nv=6, nk=4, ko=1,
                  vn={‘x','px','y','py','t','pt',
                      ‘sk1r','sk2r','sk3r','sk4r'}}

-- set knobs: scalar + TPSA -> TPSA
MADX.sk1r = MADX.sk1r + X0.sk1r
MADX.sk2r = MADX.sk2r + X0.sk2r
MADX.sk3r = MADX.sk3r + X0.sk3r
MADX.sk4r = MADX.sk4r + X0.sk4r

local mjac = { ---> variables & knobs
  { var='x' ,'0010001','00100001','001000001','0010000001' }, --    |
  { var='x' ,'0001001','00010001','000100001','0001000001' }, --    |
  { var='px','0010001','00100001','001000001','0010000001' }, --    v
  { var='px','0001001','00010001','000100001','0001000001' }, -- constraints
}

status, fmin, ncall = match {
  command := track {sequence=lhcb1, X0=X0, observe=1, savemap=true},
…

status, fmin, ncall = match {
  command := track {sequence=lhcb1, X0=X0, observe=1, savemap=true},

  jacobian = \t,grd,jac => -- gradient not used, fill only jacobian
    jac:setrow(1.. 8, t['S.DS.L2.B1'].__map:getm(mjac) )
    jac:setrow(9..16, t['E.DS.L2.B1'].__map:getm(mjac) )
  end,

  variables = { rtol=1e-6, -- 1 ppm
    { name='sk1r', get := MADX.sk1r:get0(), set = \x -> MADX.sk1r:set0(x) },
    { name='sk2r', get := MADX.sk2r:get0(), set = \x -> MADX.sk2r:set0(x) },
    { name='sk3r', get := MADX.sk3r:get0(), set = \x -> MADX.sk3r:set0(x) },
    { name='sk4r', get := MADX.sk4r:get0(), set = \x -> MADX.sk4r:set0(x) },
  },

  equalities = {
    { expr = \t -> t['S.DS.L2.B1'].__map.x :get'0010', name='S.R11.x' },
    { expr = \t -> t['S.DS.L2.B1'].__map.x :get'0001', name='S.R12.x' },
    { expr = \t -> t['S.DS.L2.B1'].__map.px:get'0010', name='S.R21.x' },
    { expr = \t -> t['S.DS.L2.B1'].__map.px:get'0001', name='S.R22.x' },

    { expr = \t -> t['E.DS.L2.B1'].__map.x :get'0010', name='E.R11.x' },
    { expr = \t -> t['E.DS.L2.B1'].__map.x :get'0001', name='E.R12.x' },
    { expr = \t -> t['E.DS.L2.B1'].__map.px:get'0010', name='E.R21.x' },
    { expr = \t -> t['E.DS.L2.B1'].__map.px:get'0001', name='E.R22.x' },
 },
  objective = { fmin=1e-12 },
  maxcall=100, info=2
}

-- reset knobs: extract scalar values from TPSA
MADX.sk1r = MADX.sk1r:get0()
MADX.sk2r = MADX.sk2r:get0()
MADX.sk3r = MADX.sk3r:get0()
MADX.sk4r = MADX.sk4r:get0()

print("status=", status, "fmin=", fmin, "ncall=", ncall)
print("strengths after matching coupling correctors:")
print("sk1r=" , MADX.sk1r )
print("sk2r=" , MADX.sk2r )
print("sk3r=" , MADX.sk3r )
print("sk4r=" , MADX.sk4r )
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MAD-NG studies - LHC coupling with param. maps

18

Timing summary and links to codes: 
MAD-X using matrix 1m55 
MAD-NG using matrix 55s (15s) 
MAD-NG using matrix & knobs 40s (4.5s) 
MADX-PTC using alphas-betas >40m

print(“strengths before matching coupling correctors:")
print("sk1r=", MADX.sk1r)
print("sk2r=", MADX.sk2r)
print("sk3r=", MADX.sk3r)
print("sk4r=", MADX.sk4r)

local X0 = damap {mo=2, nv=6, nk=4, ko=1,
                  vn={‘x','px','y','py','t','pt',
                      ‘sk1r','sk2r','sk3r','sk4r'}}

-- set knobs: scalar + TPSA -> TPSA
MADX.sk1r = MADX.sk1r + X0.sk1r
MADX.sk2r = MADX.sk2r + X0.sk2r
MADX.sk3r = MADX.sk3r + X0.sk3r
MADX.sk4r = MADX.sk4r + X0.sk4r

local mjac = { ---> variables & knobs
  { var='x' ,'0010001','00100001','001000001','0010000001' }, --    |
  { var='x' ,'0001001','00010001','000100001','0001000001' }, --    |
  { var='px','0010001','00100001','001000001','0010000001' }, --    v
  { var='px','0001001','00010001','000100001','0001000001' }, -- constraints
}

status, fmin, ncall = match {
  command := track {sequence=lhcb1, X0=X0, observe=1, savemap=true},
…

status, fmin, ncall = match {
  command := track {sequence=lhcb1, X0=X0, observe=1, savemap=true},

  jacobian = \t,grd,jac => -- gradient not used, fill only jacobian
    jac:setrow(1.. 8, t['S.DS.L2.B1'].__map:getm(mjac) )
    jac:setrow(9..16, t['E.DS.L2.B1'].__map:getm(mjac) )
  end,

  variables = { rtol=1e-6, -- 1 ppm
    { name='sk1r', get := MADX.sk1r:get0(), set = \x -> MADX.sk1r:set0(x) },
    { name='sk2r', get := MADX.sk2r:get0(), set = \x -> MADX.sk2r:set0(x) },
    { name='sk3r', get := MADX.sk3r:get0(), set = \x -> MADX.sk3r:set0(x) },
    { name='sk4r', get := MADX.sk4r:get0(), set = \x -> MADX.sk4r:set0(x) },
  },

  equalities = {
    { expr = \t -> t['S.DS.L2.B1'].__map.x :get'0010', name='S.R11.x' },
    { expr = \t -> t['S.DS.L2.B1'].__map.x :get'0001', name='S.R12.x' },
    { expr = \t -> t['S.DS.L2.B1'].__map.px:get'0010', name='S.R21.x' },
    { expr = \t -> t['S.DS.L2.B1'].__map.px:get'0001', name='S.R22.x' },

    { expr = \t -> t['E.DS.L2.B1'].__map.x :get'0010', name='E.R11.x' },
    { expr = \t -> t['E.DS.L2.B1'].__map.x :get'0001', name='E.R12.x' },
    { expr = \t -> t['E.DS.L2.B1'].__map.px:get'0010', name='E.R21.x' },
    { expr = \t -> t['E.DS.L2.B1'].__map.px:get'0001', name='E.R22.x' },
 },
  objective = { fmin=1e-12 },
  maxcall=100, info=2
}

-- reset knobs: extract scalar values from TPSA
MADX.sk1r = MADX.sk1r:get0()
MADX.sk2r = MADX.sk2r:get0()
MADX.sk3r = MADX.sk3r:get0()
MADX.sk4r = MADX.sk4r:get0()

print("status=", status, "fmin=", fmin, "ncall=", ncall)
print("strengths after matching coupling correctors:")
print("sk1r=" , MADX.sk1r )
print("sk2r=" , MADX.sk2r )
print("sk3r=" , MADX.sk3r )
print("sk4r=" , MADX.sk4r )

mailto:laurent.deniau@cern.ch
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MAD-NG studies - LHC coupling with param. maps

18

Timing summary and links to codes: 
MAD-X using matrix 1m55 
MAD-NG using matrix 55s (15s) 
MAD-NG using matrix & knobs 40s (4.5s) 
MADX-PTC using alphas-betas >40m

print(“strengths before matching coupling correctors:")
print("sk1r=", MADX.sk1r)
print("sk2r=", MADX.sk2r)
print("sk3r=", MADX.sk3r)
print("sk4r=", MADX.sk4r)

local X0 = damap {mo=2, nv=6, nk=4, ko=1,
                  vn={‘x','px','y','py','t','pt',
                      ‘sk1r','sk2r','sk3r','sk4r'}}

-- set knobs: scalar + TPSA -> TPSA
MADX.sk1r = MADX.sk1r + X0.sk1r
MADX.sk2r = MADX.sk2r + X0.sk2r
MADX.sk3r = MADX.sk3r + X0.sk3r
MADX.sk4r = MADX.sk4r + X0.sk4r

local mjac = { ---> variables & knobs
  { var='x' ,'0010001','00100001','001000001','0010000001' }, --    |
  { var='x' ,'0001001','00010001','000100001','0001000001' }, --    |
  { var='px','0010001','00100001','001000001','0010000001' }, --    v
  { var='px','0001001','00010001','000100001','0001000001' }, -- constraints
}

status, fmin, ncall = match {
  command := track {sequence=lhcb1, X0=X0, observe=1, savemap=true},
…

status, fmin, ncall = match {
  command := track {sequence=lhcb1, X0=X0, observe=1, savemap=true},

  jacobian = \t,grd,jac => -- gradient not used, fill only jacobian
    jac:setrow(1.. 8, t['S.DS.L2.B1'].__map:getm(mjac) )
    jac:setrow(9..16, t['E.DS.L2.B1'].__map:getm(mjac) )
  end,

  variables = { rtol=1e-6, -- 1 ppm
    { name='sk1r', get := MADX.sk1r:get0(), set = \x -> MADX.sk1r:set0(x) },
    { name='sk2r', get := MADX.sk2r:get0(), set = \x -> MADX.sk2r:set0(x) },
    { name='sk3r', get := MADX.sk3r:get0(), set = \x -> MADX.sk3r:set0(x) },
    { name='sk4r', get := MADX.sk4r:get0(), set = \x -> MADX.sk4r:set0(x) },
  },

  equalities = {
    { expr = \t -> t['S.DS.L2.B1'].__map.x :get'0010', name='S.R11.x' },
    { expr = \t -> t['S.DS.L2.B1'].__map.x :get'0001', name='S.R12.x' },
    { expr = \t -> t['S.DS.L2.B1'].__map.px:get'0010', name='S.R21.x' },
    { expr = \t -> t['S.DS.L2.B1'].__map.px:get'0001', name='S.R22.x' },

    { expr = \t -> t['E.DS.L2.B1'].__map.x :get'0010', name='E.R11.x' },
    { expr = \t -> t['E.DS.L2.B1'].__map.x :get'0001', name='E.R12.x' },
    { expr = \t -> t['E.DS.L2.B1'].__map.px:get'0010', name='E.R21.x' },
    { expr = \t -> t['E.DS.L2.B1'].__map.px:get'0001', name='E.R22.x' },
 },
  objective = { fmin=1e-12 },
  maxcall=100, info=2
}

-- reset knobs: extract scalar values from TPSA
MADX.sk1r = MADX.sk1r:get0()
MADX.sk2r = MADX.sk2r:get0()
MADX.sk3r = MADX.sk3r:get0()
MADX.sk4r = MADX.sk4r:get0()

print("status=", status, "fmin=", fmin, "ncall=", ncall)
print("strengths after matching coupling correctors:")
print("sk1r=" , MADX.sk1r )
print("sk2r=" , MADX.sk2r )
print("sk3r=" , MADX.sk3r )
print("sk4r=" , MADX.sk4r )

Match command performs a Principal 

Component Analysis on the Jacobian 

and tags useless constraints and 

variables, i.e. starting with oversized 

set of knobs or constrains does not 

harm when using parametric maps!
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Conclusions

๏ MAD-NG is reaching the end of its development process.
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Conclusions

๏ MAD-NG is reaching the end of its development process.
๏ 2022 will focus on participation to real studies and consolidation. 

‣ bottom-top validation for the physics of real case studies. 

‣ add missing physics on demand (e.g. tapering, spin, generalised multipoles). 

‣ complete unit tests & manual. 

‣ improve performance (room for x3-x5 in speed). 

‣ simplify some aspects, “simpler is better” (e.g. object model).
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Conclusions

๏ MAD-NG is reaching the end of its development process.
๏ 2022 will focus on participation to real studies and consolidation. 

‣ bottom-top validation for the physics of real case studies. 

‣ add missing physics on demand (e.g. tapering, spin, generalised multipoles). 

‣ complete unit tests & manual. 

‣ improve performance (room for x3-x5 in speed). 

‣ simplify some aspects, “simpler is better” (e.g. object model).
๏ On some aspects, MAD-NG is more mature than MAD-X 

‣ better code architecture and structure. 

‣ more flexible and extensible for the physics (new features require day(s)). 

‣ less surprises when combining features (e.g. misalignments and slicing). 

‣ main stream programming language for scripting (save user time!) & many toolboxes. 

‣ mature technologies, syntax error, backtrace, debugger, profiler, JIT (save user time!). 

‣ some features have been back ported to MAD-X (e.g. permanent misalignment, 
patches) or will be (fringe fields, combined/overlapping elements). 

‣ support backtracking, charged particles, parallel sequences, useful for e.g. matching 
IPs, no need for reverse sequence, etc…
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๏ MAD-NG is reaching the end of its development process.
๏ 2022 will focus on participation to real studies and consolidation. 

‣ bottom-top validation for the physics of real case studies. 

‣ add missing physics on demand (e.g. tapering, spin, generalised multipoles). 

‣ complete unit tests & manual. 

‣ improve performance (room for x3-x5 in speed). 

‣ simplify some aspects, “simpler is better” (e.g. object model).
๏ On some aspects, MAD-NG is more mature than MAD-X 

‣ better code architecture and structure. 

‣ more flexible and extensible for the physics (new features require day(s)). 

‣ less surprises when combining features (e.g. misalignments and slicing). 

‣ main stream programming language for scripting (save user time!) & many toolboxes. 

‣ mature technologies, syntax error, backtrace, debugger, profiler, JIT (save user time!). 

‣ some features have been back ported to MAD-X (e.g. permanent misalignment, 
patches) or will be (fringe fields, combined/overlapping elements). 

‣ support backtracking, charged particles, parallel sequences, useful for e.g. matching 
IPs, no need for reverse sequence, etc…
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Do not hesitate to ask me some help!
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Thank YOU for your attention
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Lua overview (http://www.lua.org)

21

MAD scripting language is based on Lua 5.1+ (it is a superset of)

mailto:laurent.deniau@cern.ch
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Lua overview (http://www.lua.org)

21

As old as Python (~25 years) 
Community is Python/10

MAD scripting language is based on Lua 5.1+ (it is a superset of)
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Lua overview (http://www.lua.org)

21

Lua is a powerful, fast, lightweight, embeddable scripting language.

Lua combines simple procedural syntax with powerful data description constructs based on associative arrays and 
extensible semantics. Lua is dynamically typed, runs by interpreting bytecode for a register-based virtual machine, 
and has automatic memory management with incremental garbage collection, making it ideal for configuration, 
scripting, and rapid prototyping.

Lua has been used in many industrial applications (e.g., Adobe's Photoshop Lightroom), with an emphasis on 
embedded systems (e.g., the Ginga middleware for digital TV in Brazil) and games (e.g., World of Warcraft and Angry 
Birds). Lua is currently the leading scripting language in games. Lua has a solid reference manual and there are 
several books about it. Several versions of Lua have been released and used in real applications since its creation in 
1993. Lua featured in HOPL  III, the Third ACM SIGPLAN History of Programming Languages Conference, in June 
2007. Lua won the Front Line Award 2011 from the Game Developers Magazine.

As old as Python (~25 years) 
Community is Python/10

MAD scripting language is based on Lua 5.1+ (it is a superset of)
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Lua overview (http://www.lua.org)

21

Lua is a powerful, fast, lightweight, embeddable scripting language.

Lua combines simple procedural syntax with powerful data description constructs based on associative arrays and 
extensible semantics. Lua is dynamically typed, runs by interpreting bytecode for a register-based virtual machine, 
and has automatic memory management with incremental garbage collection, making it ideal for configuration, 
scripting, and rapid prototyping.

Lua has been used in many industrial applications (e.g., Adobe's Photoshop Lightroom), with an emphasis on 
embedded systems (e.g., the Ginga middleware for digital TV in Brazil) and games (e.g., World of Warcraft and Angry 
Birds). Lua is currently the leading scripting language in games. Lua has a solid reference manual and there are 
several books about it. Several versions of Lua have been released and used in real applications since its creation in 
1993. Lua featured in HOPL  III, the Third ACM SIGPLAN History of Programming Languages Conference, in June 
2007. Lua won the Front Line Award 2011 from the Game Developers Magazine.

Reference manual is 29 pages!

As old as Python (~25 years) 
Community is Python/10

MAD scripting language is based on Lua 5.1+ (it is a superset of)
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LuaJIT overview (http://www.luajit.org)

22

LuaJIT has been successfully used as a 
scripting middleware in games, 
appliances, network and graphics apps, 
numerical simulations, trading platforms 
and many other specialty applications. It 
scales from embedded devices, 
smartphones, desktops up to server farms. 
It combines high flexibility with high 
performance and an unmatched low 
memory footprint. 

LuaJIT has been in continuous development 
since 2005. It's widely considered to be one 
of the fastest dynamic language 
implementations. It has outperformed 
other dynamic languages on many cross-
language benchmarks since its first release 
— often by a substantial margin. 
For LuaJIT 2.0, the whole VM has been 
rewritten from the ground up and 
relentlessly optimised for performance. It 
combines a high-speed interpreter, 
written in assembler, with a state-of-the-
art JIT compiler. 

An innovative trace compiler is integrated 
with advanced, SSA-based optimisations 
and highly tuned code generation backends. 
A substantial reduction of the overhead 
associated with dynamic languages allows it 
to break into the performance range 
traditionally reserved for offline, static 
language compilers.

mailto:laurent.deniau@cern.ch
http://www.luajit.org
http://luajit.org/performance.html
http://luajit.org/performance.html
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LuaJIT overview (http://www.luajit.org)

22

LuaJIT has been successfully used as a 
scripting middleware in games, 
appliances, network and graphics apps, 
numerical simulations, trading platforms 
and many other specialty applications. It 
scales from embedded devices, 
smartphones, desktops up to server farms. 
It combines high flexibility with high 
performance and an unmatched low 
memory footprint. 

LuaJIT has been in continuous development 
since 2005. It's widely considered to be one 
of the fastest dynamic language 
implementations. It has outperformed 
other dynamic languages on many cross-
language benchmarks since its first release 
— often by a substantial margin. 
For LuaJIT 2.0, the whole VM has been 
rewritten from the ground up and 
relentlessly optimised for performance. It 
combines a high-speed interpreter, 
written in assembler, with a state-of-the-
art JIT compiler. 

An innovative trace compiler is integrated 
with advanced, SSA-based optimisations 
and highly tuned code generation backends. 
A substantial reduction of the overhead 
associated with dynamic languages allows it 
to break into the performance range 
traditionally reserved for offline, static 
language compilers.

From M. Pall website, author of LuaJIT
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LuaJIT overview (http://www.luajit.org)

22

LuaJIT has been successfully used as a 
scripting middleware in games, 
appliances, network and graphics apps, 
numerical simulations, trading platforms 
and many other specialty applications. It 
scales from embedded devices, 
smartphones, desktops up to server farms. 
It combines high flexibility with high 
performance and an unmatched low 
memory footprint. 

LuaJIT has been in continuous development 
since 2005. It's widely considered to be one 
of the fastest dynamic language 
implementations. It has outperformed 
other dynamic languages on many cross-
language benchmarks since its first release 
— often by a substantial margin. 
For LuaJIT 2.0, the whole VM has been 
rewritten from the ground up and 
relentlessly optimised for performance. It 
combines a high-speed interpreter, 
written in assembler, with a state-of-the-
art JIT compiler. 

An innovative trace compiler is integrated 
with advanced, SSA-based optimisations 
and highly tuned code generation backends. 
A substantial reduction of the overhead 
associated with dynamic languages allows it 
to break into the performance range 
traditionally reserved for offline, static 
language compilers.

From M. Pall website, author of LuaJIT
As old as PyPy (~10 years) 
Community is ~PyPy
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LuaJIT has been successfully used as a 
scripting middleware in games, 
appliances, network and graphics apps, 
numerical simulations, trading platforms 
and many other specialty applications. It 
scales from embedded devices, 
smartphones, desktops up to server farms. 
It combines high flexibility with high 
performance and an unmatched low 
memory footprint. 

LuaJIT has been in continuous development 
since 2005. It's widely considered to be one 
of the fastest dynamic language 
implementations. It has outperformed 
other dynamic languages on many cross-
language benchmarks since its first release 
— often by a substantial margin. 
For LuaJIT 2.0, the whole VM has been 
rewritten from the ground up and 
relentlessly optimised for performance. It 
combines a high-speed interpreter, 
written in assembler, with a state-of-the-
art JIT compiler. 

An innovative trace compiler is integrated 
with advanced, SSA-based optimisations 
and highly tuned code generation backends. 
A substantial reduction of the overhead 
associated with dynamic languages allows it 
to break into the performance range 
traditionally reserved for offline, static 
language compilers.

From M. Pall website, author of LuaJIT
As old as PyPy (~10 years) 
Community is ~PyPy
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GTPSA in a nutshell
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GTPSA in a nutshell

23

๏ Generalised Truncated Power Series Algebra
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GTPSA in a nutshell

23

๏ Generalised Truncated Power Series Algebra
➡ Multivariate Taylor polynomials of order n in ℝ & ℂ.
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GTPSA in a nutshell

23

๏ Generalised Truncated Power Series Algebra
➡ Multivariate Taylor polynomials of order n in ℝ & ℂ.
➡ Powerful tool for solving differential equations (e.g. motion equations).
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GTPSA in a nutshell

23

๏ Generalised Truncated Power Series Algebra
➡ Multivariate Taylor polynomials of order n in ℝ & ℂ.
➡ Powerful tool for solving differential equations (e.g. motion equations).

Tn
f (x; a) = f(a) + f′ (a)(x − a) +

f′ ′ (a)
2!

(x − a)2 + … +
f (n)(a)

n!
(x − a)n =

n

∑
k=0

f (k)
a

k!
(x − a)k

1 variable x at order n in the neighbourhood of the point a in the domain of the function f :
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23

๏ Generalised Truncated Power Series Algebra
➡ Multivariate Taylor polynomials of order n in ℝ & ℂ.
➡ Powerful tool for solving differential equations (e.g. motion equations).

Tn
f (x; a) = f(a) + f′ (a)(x − a) +

f′ ′ (a)
2!

(x − a)2 + … +
f (n)(a)

n!
(x − a)n =

n

∑
k=0

f (k)
a

k!
(x − a)k

1 variable x at order n in the neighbourhood of the point a in the domain of the function f :
TPSA coefficients
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GTPSA in a nutshell

23

๏ Generalised Truncated Power Series Algebra
➡ Multivariate Taylor polynomials of order n in ℝ & ℂ.
➡ Powerful tool for solving differential equations (e.g. motion equations).

Tn
f (x; a) = f(a) + f′ (a)(x − a) +

f′ ′ (a)
2!

(x − a)2 + … +
f (n)(a)

n!
(x − a)n =

n

∑
k=0

f (k)
a

k!
(x − a)k

1 variable x at order n in the neighbourhood of the point a in the domain of the function f :
TPSA coefficients

convergence of the remainder (i.e. truncation error):
lim
n→∞

Rn
f (x; a) = lim

n→∞
f(x) − Tn

f (x; a) = 0
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GTPSA in a nutshell

23

๏ Generalised Truncated Power Series Algebra
➡ Multivariate Taylor polynomials of order n in ℝ & ℂ.
➡ Powerful tool for solving differential equations (e.g. motion equations).

Tn
f (x; a) = f(a) + f′ (a)(x − a) +

f′ ′ (a)
2!

(x − a)2 + … +
f (n)(a)

n!
(x − a)n =

n

∑
k=0

f (k)
a

k!
(x − a)k

1 variable x at order n in the neighbourhood of the point a in the domain of the function f :
TPSA coefficients

convergence of the remainder (i.e. truncation error):
lim
n→∞

Rn
f (x; a) = lim

n→∞
f(x) − Tn

f (x; a) = 0 f(x) is an analytic function,            is a polynomial approximation  
nearby a with radius of convergence h: 
 

Tn
f (x; a)

min
h>0

lim
n→∞

Rn
f (a ± h; a) ≠ 0.
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GTPSA in a nutshell

23

๏ Generalised Truncated Power Series Algebra
➡ Multivariate Taylor polynomials of order n in ℝ & ℂ.
➡ Powerful tool for solving differential equations (e.g. motion equations).

Tn
f (x; a) = f(a) + f′ (a)(x − a) +

f′ ′ (a)
2!

(x − a)2 + … +
f (n)(a)

n!
(x − a)n =

n

∑
k=0

f (k)
a

k!
(x − a)k

1 variable x at order n in the neighbourhood of the point a in the domain of the function f :
TPSA coefficients

convergence of the remainder (i.e. truncation error):
lim
n→∞

Rn
f (x; a) = lim

n→∞
f(x) − Tn

f (x; a) = 0 f(x) is an analytic function,            is a polynomial approximation  
nearby a with radius of convergence h: 
 

Tn
f (x; a)

min
h>0

lim
n→∞

Rn
f (a ± h; a) ≠ 0.

2 variables (x,y) at order 2 nearby (a,b):

T2
f (x, y; a, b) = f(a, b) +

∂f
∂x

(a,b)

(x − a) +
∂f
∂y

(a,b)

(y − b) + …
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GTPSA in a nutshell

23

๏ Generalised Truncated Power Series Algebra
➡ Multivariate Taylor polynomials of order n in ℝ & ℂ.
➡ Powerful tool for solving differential equations (e.g. motion equations).

Tn
f (x; a) = f(a) + f′ (a)(x − a) +

f′ ′ (a)
2!

(x − a)2 + … +
f (n)(a)

n!
(x − a)n =

n

∑
k=0

f (k)
a

k!
(x − a)k

1 variable x at order n in the neighbourhood of the point a in the domain of the function f :
TPSA coefficients

convergence of the remainder (i.e. truncation error):
lim
n→∞

Rn
f (x; a) = lim

n→∞
f(x) − Tn

f (x; a) = 0 f(x) is an analytic function,            is a polynomial approximation  
nearby a with radius of convergence h: 
 

Tn
f (x; a)

min
h>0

lim
n→∞

Rn
f (a ± h; a) ≠ 0.

2 variables (x,y) at order 2 nearby (a,b):

T2
f (x, y; a, b) = f(a, b) +

∂f
∂x

(a,b)

(x − a) +
∂f
∂y

(a,b)

(y − b) + …

= f (1)
(a,b)(x − a, y − b)
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๏ Generalised Truncated Power Series Algebra
➡ Multivariate Taylor polynomials of order n in ℝ & ℂ.
➡ Powerful tool for solving differential equations (e.g. motion equations).

Tn
f (x; a) = f(a) + f′ (a)(x − a) +

f′ ′ (a)
2!

(x − a)2 + … +
f (n)(a)

n!
(x − a)n =

n

∑
k=0

f (k)
a

k!
(x − a)k

1 variable x at order n in the neighbourhood of the point a in the domain of the function f :
TPSA coefficients

convergence of the remainder (i.e. truncation error):
lim
n→∞

Rn
f (x; a) = lim

n→∞
f(x) − Tn

f (x; a) = 0 f(x) is an analytic function,            is a polynomial approximation  
nearby a with radius of convergence h: 
 

Tn
f (x; a)

min
h>0

lim
n→∞

Rn
f (a ± h; a) ≠ 0.

2 variables (x,y) at order 2 nearby (a,b):

T2
f (x, y; a, b) = f(a, b) +

∂f
∂x

(a,b)

(x − a) +
∂f
∂y

(a,b)

(y − b) + …

= f (1)
(a,b)(x − a, y − b)
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➡ Multivariate Taylor polynomials of order n in ℝ & ℂ.
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➡ Multivariate Taylor polynomials of order n in ℝ & ℂ.
➡ Powerful tool for solving differential equations (e.g. motion equations).
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f (x; a) = f(a) + f′ (a)(x − a) +
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(x − a)2 + … +
f (n)(a)
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(x − a)n =

n

∑
k=0
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(x − a)k

1 variable x at order n in the neighbourhood of the point a in the domain of the function f :
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convergence of the remainder (i.e. truncation error):
lim
n→∞
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f (x; a) = lim

n→∞
f(x) − Tn
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nearby a with radius of convergence h: 
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min
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lim
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๏ Generalised Truncated Power Series Algebra
➡ Multivariate Taylor polynomials of order n in ℝ & ℂ.
➡ Powerful tool for solving differential equations (e.g. motion equations).
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f (x; a) = f(a) + f′ (a)(x − a) +

f′ ′ (a)
2!

(x − a)2 + … +
f (n)(a)

n!
(x − a)n =

n

∑
k=0

f (k)
a

k!
(x − a)k

1 variable x at order n in the neighbourhood of the point a in the domain of the function f :
TPSA coefficients

convergence of the remainder (i.e. truncation error):
lim
n→∞

Rn
f (x; a) = lim

n→∞
f(x) − Tn

f (x; a) = 0 f(x) is an analytic function,            is a polynomial approximation  
nearby a with radius of convergence h: 
 

Tn
f (x; a)

min
h>0

lim
n→∞

Rn
f (a ± h; a) ≠ 0.

2 variables (x,y) at order 2 nearby (a,b):
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f (x, y; a, b) = f(a, b) +
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∂x
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(x − a) +
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homogeneous 

polynomials
f must not depend on the integration 

path, i.e. must derive from a potential!
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➡ Powerful tool for solving differential equations (e.g. motion equations).
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f (x; a) = f(a) + f′ (a)(x − a) +

f′ ′ (a)
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(x − a)2 + … +
f (n)(a)

n!
(x − a)n =
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∑
k=0

f (k)
a
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(x − a)k

1 variable x at order n in the neighbourhood of the point a in the domain of the function f :
TPSA coefficients

convergence of the remainder (i.e. truncation error):
lim
n→∞

Rn
f (x; a) = lim

n→∞
f(x) − Tn

f (x; a) = 0 f(x) is an analytic function,            is a polynomial approximation  
nearby a with radius of convergence h: 
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f (x; a)

min
h>0

lim
n→∞

Rn
f (a ± h; a) ≠ 0.

2 variables (x,y) at order 2 nearby (a,b):
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f (x, y; a, b) = f(a, b) +
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∂x
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(x − a) +
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polynomials
f must not depend on the integration 

path, i.e. must derive from a potential!

v variables X at order n nearby A:
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f (X; A) =
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k=0

f (k)
A
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(X; A)k =
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∑
k=0
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k! ∑

| ⃗m|=k
( k

⃗m) ∂kf
∂X ⃗m

A

(X; A) ⃗m with ( k
⃗m) =

k!
c1! c2! . . . cv!
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f (x; a) = f(a) + f′ (a)(x − a) +

f′ ′ (a)
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(x − a)2 + … +
f (n)(a)

n!
(x − a)n =
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∑
k=0

f (k)
a

k!
(x − a)k

1 variable x at order n in the neighbourhood of the point a in the domain of the function f :
TPSA coefficients

convergence of the remainder (i.e. truncation error):
lim
n→∞
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f (x; a) = lim

n→∞
f(x) − Tn

f (x; a) = 0 f(x) is an analytic function,            is a polynomial approximation  
nearby a with radius of convergence h: 
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f (x; a)

min
h>0

lim
n→∞

Rn
f (a ± h; a) ≠ 0.

2 variables (x,y) at order 2 nearby (a,b):
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f (x, y; a, b) = f(a, b) +

∂f
∂x
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(x − a) +
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∂y
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= f (1)
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(x − a)(y − b) +
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(a,b)(x − a, y − b)
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f must not depend on the integration 

path, i.e. must derive from a potential!
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monomials of order k
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2!

(x − a)2 + … +
f (n)(a)

n!
(x − a)n =
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∑
k=0

f (k)
a

k!
(x − a)k

1 variable x at order n in the neighbourhood of the point a in the domain of the function f :
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convergence of the remainder (i.e. truncation error):
lim
n→∞
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f (x; a) = lim

n→∞
f(x) − Tn

f (x; a) = 0 f(x) is an analytic function,            is a polynomial approximation  
nearby a with radius of convergence h: 
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f (x; a)

min
h>0

lim
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Rn
f (a ± h; a) ≠ 0.

2 variables (x,y) at order 2 nearby (a,b):
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(x − a)n =
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∑
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1 variable x at order n in the neighbourhood of the point a in the domain of the function f :
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f (x; a) = lim
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nearby a with radius of convergence h: 
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min
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lim
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(a,b)(x − a, y − b)
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polynomials
f must not depend on the integration 

path, i.e. must derive from a potential!

v variables X at order n nearby A:

Tn
f (X; A) =
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Tn
f (x; a) = f(a) + f′ (a)(x − a) +
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(x − a)2 + … +
f (n)(a)
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(x − a)n =

n

∑
k=0

f (k)
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(x − a)k

1 variable x at order n in the neighbourhood of the point a in the domain of the function f :
TPSA coefficients

convergence of the remainder (i.e. truncation error):
lim
n→∞
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f (x; a) = lim

n→∞
f(x) − Tn

f (x; a) = 0 f(x) is an analytic function,            is a polynomial approximation  
nearby a with radius of convergence h: 
 

Tn
f (x; a)

min
h>0

lim
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Rn
f (a ± h; a) ≠ 0.

2 variables (x,y) at order 2 nearby (a,b):

T2
f (x, y; a, b) = f(a, b) +
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∂2f
∂y2

(a,b)

(y − b)2

= f (2)
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➡ Powerful tool for solving differential equations (e.g. motion equations).
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f (x; a) = f(a) + f′ (a)(x − a) +

f′ ′ (a)
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(x − a)2 + … +
f (n)(a)

n!
(x − a)n =
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∑
k=0

f (k)
a

k!
(x − a)k

1 variable x at order n in the neighbourhood of the point a in the domain of the function f :
TPSA coefficients

convergence of the remainder (i.e. truncation error):
lim
n→∞

Rn
f (x; a) = lim

n→∞
f(x) − Tn

f (x; a) = 0 f(x) is an analytic function,            is a polynomial approximation  
nearby a with radius of convergence h: 
 

Tn
f (x; a)

min
h>0

lim
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Rn
f (a ± h; a) ≠ 0.
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polynomials
f must not depend on the integration 

path, i.e. must derive from a potential!

v variables X at order n nearby A:
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A
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๏ GTPSA are exact to machine precision, no approximation for orders 0..n
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๏ GTPSA are exact to machine precision, no approximation for orders 0..n
➡ derivatives are computed using automatic differentiation (AD).
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๏ GTPSA are exact to machine precision, no approximation for orders 0..n
➡ derivatives are computed using automatic differentiation (AD).

AD exploits the fact that every computer program, no matter how complicated, executes a sequence of 
elementary arithmetic operations (addition, subtraction, multiplication, division, etc.) and elementary 
functions (exp, log, sin, cos, etc.). By applying the chain rule repeatedly to these operations, derivatives 
of arbitrary order can be computed automatically, accurately to working precision, and using at 
most a small constant factor more arithmetic operations than the original program.

Symbolic differentiation can lead to inefficient code and faces the difficulty of converting a computer 
program into a single expression, while numerical differentiation can introduce round-off errors in the 
discretization process and cancellation. Both classical methods have problems with calculating 
higher derivatives, where complexity and errors increase.

from Wikipedia
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๏ MAD-NG includes a complete toolbox (i.e. module) to handle DA using AD…
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AD exploits the fact that every computer program, no matter how complicated, executes a sequence of 
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most a small constant factor more arithmetic operations than the original program.
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➡ derivatives are computed using automatic differentiation (AD).

๏ MAD-NG includes a complete toolbox (i.e. module) to handle DA using AD…
➡ users have full access to GTPSA and DAmaps from the scripting language.
➡ users can manipulate DAmaps stored in the MTable or the MFlow returned by Track.

๏ So when DAmap/TPSA introduce errors?
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of arbitrary order can be computed automatically, accurately to working precision, and using at 
most a small constant factor more arithmetic operations than the original program.

Symbolic differentiation can lead to inefficient code and faces the difficulty of converting a computer 
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๏ MAD-NG includes a complete toolbox (i.e. module) to handle DA using AD…
➡ users have full access to GTPSA and DAmaps from the scripting language.
➡ users can manipulate DAmaps stored in the MTable or the MFlow returned by Track.

๏ So when DAmap/TPSA introduce errors?
➡ If they are used as functions (e.g. evaluated), instead of DA (e.g. track, twiss).

AD exploits the fact that every computer program, no matter how complicated, executes a sequence of 
elementary arithmetic operations (addition, subtraction, multiplication, division, etc.) and elementary 
functions (exp, log, sin, cos, etc.). By applying the chain rule repeatedly to these operations, derivatives 
of arbitrary order can be computed automatically, accurately to working precision, and using at 
most a small constant factor more arithmetic operations than the original program.

Symbolic differentiation can lead to inefficient code and faces the difficulty of converting a computer 
program into a single expression, while numerical differentiation can introduce round-off errors in the 
discretization process and cancellation. Both classical methods have problems with calculating 
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๏ GTPSA are exact to machine precision, no approximation for orders 0..n
➡ derivatives are computed using automatic differentiation (AD).

๏ MAD-NG includes a complete toolbox (i.e. module) to handle DA using AD…
➡ users have full access to GTPSA and DAmaps from the scripting language.
➡ users can manipulate DAmaps stored in the MTable or the MFlow returned by Track.

๏ So when DAmap/TPSA introduce errors?
➡ If they are used as functions (e.g. evaluated), instead of DA (e.g. track, twiss).
➡ High orders of             are used to interpolate at the new position by substitution.

AD exploits the fact that every computer program, no matter how complicated, executes a sequence of 
elementary arithmetic operations (addition, subtraction, multiplication, division, etc.) and elementary 
functions (exp, log, sin, cos, etc.). By applying the chain rule repeatedly to these operations, derivatives 
of arbitrary order can be computed automatically, accurately to working precision, and using at 
most a small constant factor more arithmetic operations than the original program.

Symbolic differentiation can lead to inefficient code and faces the difficulty of converting a computer 
program into a single expression, while numerical differentiation can introduce round-off errors in the 
discretization process and cancellation. Both classical methods have problems with calculating 
higher derivatives, where complexity and errors increase.
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๏ GTPSA are exact to machine precision, no approximation for orders 0..n
➡ derivatives are computed using automatic differentiation (AD).

๏ MAD-NG includes a complete toolbox (i.e. module) to handle DA using AD…
➡ users have full access to GTPSA and DAmaps from the scripting language.
➡ users can manipulate DAmaps stored in the MTable or the MFlow returned by Track.

๏ So when DAmap/TPSA introduce errors?
➡ If they are used as functions (e.g. evaluated), instead of DA (e.g. track, twiss).
➡ High orders of             are used to interpolate at the new position by substitution.

AD exploits the fact that every computer program, no matter how complicated, executes a sequence of 
elementary arithmetic operations (addition, subtraction, multiplication, division, etc.) and elementary 
functions (exp, log, sin, cos, etc.). By applying the chain rule repeatedly to these operations, derivatives 
of arbitrary order can be computed automatically, accurately to working precision, and using at 
most a small constant factor more arithmetic operations than the original program.

Symbolic differentiation can lead to inefficient code and faces the difficulty of converting a computer 
program into a single expression, while numerical differentiation can introduce round-off errors in the 
discretization process and cancellation. Both classical methods have problems with calculating 
higher derivatives, where complexity and errors increase.

from Wikipedia

Tn
f (x; a + h) =

n

∑
k=0

f (k)
a+h

k!
(x − a − h)k

Tn
f (x; a)

mailto:laurent.deniau@cern.ch
https://en.wikipedia.org/wiki/Chain_rule
https://en.wikipedia.org/wiki/Round-off_error
https://en.wikipedia.org/wiki/Discretization


BE Beams 
Department

La
ur

en
t D

en
ia

u,
 C

E
R

N
 B

E
/A

B
P,

 1
21

1 
G

en
ev

a 
23

, l
au

re
nt

.d
en

ia
u@

ce
rn

.c
h 

Accuracy of TPSA (myths and legends)

24

๏ GTPSA are exact to machine precision, no approximation for orders 0..n
➡ derivatives are computed using automatic differentiation (AD).

๏ MAD-NG includes a complete toolbox (i.e. module) to handle DA using AD…
➡ users have full access to GTPSA and DAmaps from the scripting language.
➡ users can manipulate DAmaps stored in the MTable or the MFlow returned by Track.

๏ So when DAmap/TPSA introduce errors?
➡ If they are used as functions (e.g. evaluated), instead of DA (e.g. track, twiss).
➡ High orders of             are used to interpolate at the new position by substitution.

AD exploits the fact that every computer program, no matter how complicated, executes a sequence of 
elementary arithmetic operations (addition, subtraction, multiplication, division, etc.) and elementary 
functions (exp, log, sin, cos, etc.). By applying the chain rule repeatedly to these operations, derivatives 
of arbitrary order can be computed automatically, accurately to working precision, and using at 
most a small constant factor more arithmetic operations than the original program.

Symbolic differentiation can lead to inefficient code and faces the difficulty of converting a computer 
program into a single expression, while numerical differentiation can introduce round-off errors in the 
discretization process and cancellation. Both classical methods have problems with calculating 
higher derivatives, where complexity and errors increase.
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๏ MAD-NG includes a complete toolbox (i.e. module) to handle DA using AD…
➡ users have full access to GTPSA and DAmaps from the scripting language.
➡ users can manipulate DAmaps stored in the MTable or the MFlow returned by Track.

๏ So when DAmap/TPSA introduce errors?
➡ If they are used as functions (e.g. evaluated), instead of DA (e.g. track, twiss).
➡ High orders of             are used to interpolate at the new position by substitution.

AD exploits the fact that every computer program, no matter how complicated, executes a sequence of 
elementary arithmetic operations (addition, subtraction, multiplication, division, etc.) and elementary 
functions (exp, log, sin, cos, etc.). By applying the chain rule repeatedly to these operations, derivatives 
of arbitrary order can be computed automatically, accurately to working precision, and using at 
most a small constant factor more arithmetic operations than the original program.

Symbolic differentiation can lead to inefficient code and faces the difficulty of converting a computer 
program into a single expression, while numerical differentiation can introduce round-off errors in the 
discretization process and cancellation. Both classical methods have problems with calculating 
higher derivatives, where complexity and errors increase.
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๏ GTPSA are exact to machine precision, no approximation for orders 0..n
➡ derivatives are computed using automatic differentiation (AD).

๏ MAD-NG includes a complete toolbox (i.e. module) to handle DA using AD…
➡ users have full access to GTPSA and DAmaps from the scripting language.
➡ users can manipulate DAmaps stored in the MTable or the MFlow returned by Track.

๏ So when DAmap/TPSA introduce errors?
➡ If they are used as functions (e.g. evaluated), instead of DA (e.g. track, twiss).
➡ High orders of             are used to interpolate at the new position by substitution.

AD exploits the fact that every computer program, no matter how complicated, executes a sequence of 
elementary arithmetic operations (addition, subtraction, multiplication, division, etc.) and elementary 
functions (exp, log, sin, cos, etc.). By applying the chain rule repeatedly to these operations, derivatives 
of arbitrary order can be computed automatically, accurately to working precision, and using at 
most a small constant factor more arithmetic operations than the original program.

Symbolic differentiation can lead to inefficient code and faces the difficulty of converting a computer 
program into a single expression, while numerical differentiation can introduce round-off errors in the 
discretization process and cancellation. Both classical methods have problems with calculating 
higher derivatives, where complexity and errors increase.
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๏ GTPSA are exact to machine precision, no approximation for orders 0..n
➡ derivatives are computed using automatic differentiation (AD).

๏ MAD-NG includes a complete toolbox (i.e. module) to handle DA using AD…
➡ users have full access to GTPSA and DAmaps from the scripting language.
➡ users can manipulate DAmaps stored in the MTable or the MFlow returned by Track.

๏ So when DAmap/TPSA introduce errors?
➡ If they are used as functions (e.g. evaluated), instead of DA (e.g. track, twiss).
➡ High orders of             are used to interpolate at the new position by substitution.

AD exploits the fact that every computer program, no matter how complicated, executes a sequence of 
elementary arithmetic operations (addition, subtraction, multiplication, division, etc.) and elementary 
functions (exp, log, sin, cos, etc.). By applying the chain rule repeatedly to these operations, derivatives 
of arbitrary order can be computed automatically, accurately to working precision, and using at 
most a small constant factor more arithmetic operations than the original program.

Symbolic differentiation can lead to inefficient code and faces the difficulty of converting a computer 
program into a single expression, while numerical differentiation can introduce round-off errors in the 
discretization process and cancellation. Both classical methods have problems with calculating 
higher derivatives, where complexity and errors increase.
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➡ derivatives are computed using automatic differentiation (AD).

๏ MAD-NG includes a complete toolbox (i.e. module) to handle DA using AD…
➡ users have full access to GTPSA and DAmaps from the scripting language.
➡ users can manipulate DAmaps stored in the MTable or the MFlow returned by Track.

๏ So when DAmap/TPSA introduce errors?
➡ If they are used as functions (e.g. evaluated), instead of DA (e.g. track, twiss).
➡ High orders of             are used to interpolate at the new position by substitution.

AD exploits the fact that every computer program, no matter how complicated, executes a sequence of 
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functions (exp, log, sin, cos, etc.). By applying the chain rule repeatedly to these operations, derivatives 
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๏ GTPSA are exact to machine precision, no approximation for orders 0..n
➡ derivatives are computed using automatic differentiation (AD).

๏ MAD-NG includes a complete toolbox (i.e. module) to handle DA using AD…
➡ users have full access to GTPSA and DAmaps from the scripting language.
➡ users can manipulate DAmaps stored in the MTable or the MFlow returned by Track.

๏ So when DAmap/TPSA introduce errors?
➡ If they are used as functions (e.g. evaluated), instead of DA (e.g. track, twiss).
➡ High orders of             are used to interpolate at the new position by substitution.

AD exploits the fact that every computer program, no matter how complicated, executes a sequence of 
elementary arithmetic operations (addition, subtraction, multiplication, division, etc.) and elementary 
functions (exp, log, sin, cos, etc.). By applying the chain rule repeatedly to these operations, derivatives 
of arbitrary order can be computed automatically, accurately to working precision, and using at 
most a small constant factor more arithmetic operations than the original program.

Symbolic differentiation can lead to inefficient code and faces the difficulty of converting a computer 
program into a single expression, while numerical differentiation can introduce round-off errors in the 
discretization process and cancellation. Both classical methods have problems with calculating 
higher derivatives, where complexity and errors increase.
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๏ GTPSA are exact to machine precision, no approximation for orders 0..n
➡ derivatives are computed using automatic differentiation (AD).

๏ MAD-NG includes a complete toolbox (i.e. module) to handle DA using AD…
➡ users have full access to GTPSA and DAmaps from the scripting language.
➡ users can manipulate DAmaps stored in the MTable or the MFlow returned by Track.

๏ So when DAmap/TPSA introduce errors?
➡ If they are used as functions (e.g. evaluated), instead of DA (e.g. track, twiss).
➡ High orders of             are used to interpolate at the new position by substitution.

AD exploits the fact that every computer program, no matter how complicated, executes a sequence of 
elementary arithmetic operations (addition, subtraction, multiplication, division, etc.) and elementary 
functions (exp, log, sin, cos, etc.). By applying the chain rule repeatedly to these operations, derivatives 
of arbitrary order can be computed automatically, accurately to working precision, and using at 
most a small constant factor more arithmetic operations than the original program.

Symbolic differentiation can lead to inefficient code and faces the difficulty of converting a computer 
program into a single expression, while numerical differentiation can introduce round-off errors in the 
discretization process and cancellation. Both classical methods have problems with calculating 
higher derivatives, where complexity and errors increase.

from Wikipedia

Tn
f (x; a + h) =

n

∑
k=0

f (k)
a+h

k!
(x − a − h)k ; f(a + h) ≈

n

∑
k=0

f (k)
a

k!
hk ; f (k)

a+h ≈
dkTn

f (x; a)
dxk

(a + h)

Tn
f (a + h; a)

Tn
f (x; a)

Matrix codes 

don’t do better! order n is constant 

order n-1 is linear in h
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๏ GTPSA are exact to machine precision, no approximation for orders 0..n
➡ derivatives are computed using automatic differentiation (AD).

๏ MAD-NG includes a complete toolbox (i.e. module) to handle DA using AD…
➡ users have full access to GTPSA and DAmaps from the scripting language.
➡ users can manipulate DAmaps stored in the MTable or the MFlow returned by Track.

๏ So when DAmap/TPSA introduce errors?
➡ If they are used as functions (e.g. evaluated), instead of DA (e.g. track, twiss).
➡ High orders of             are used to interpolate at the new position by substitution.

AD exploits the fact that every computer program, no matter how complicated, executes a sequence of 
elementary arithmetic operations (addition, subtraction, multiplication, division, etc.) and elementary 
functions (exp, log, sin, cos, etc.). By applying the chain rule repeatedly to these operations, derivatives 
of arbitrary order can be computed automatically, accurately to working precision, and using at 
most a small constant factor more arithmetic operations than the original program.

Symbolic differentiation can lead to inefficient code and faces the difficulty of converting a computer 
program into a single expression, while numerical differentiation can introduce round-off errors in the 
discretization process and cancellation. Both classical methods have problems with calculating 
higher derivatives, where complexity and errors increase.

from Wikipedia

Tn
f (x; a + h) =

n

∑
k=0

f (k)
a+h

k!
(x − a − h)k ; f(a + h) ≈

n

∑
k=0

f (k)
a

k!
hk ; f (k)

a+h ≈
dkTn

f (x; a)
dxk

(a + h)

Tn
f (a + h; a)

Tn
f (x; a)

Matrix codes 

don’t do better! order n is constant 

order n-1 is linear in h

sin x and its Taylor approximations nearby 0 by 
polynomials of degree 1, 3, 5, 7, 9, 11 and 13.
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๏ GTPSA are exact to machine precision, no approximation for orders 0..n
➡ derivatives are computed using automatic differentiation (AD).

๏ MAD-NG includes a complete toolbox (i.e. module) to handle DA using AD…
➡ users have full access to GTPSA and DAmaps from the scripting language.
➡ users can manipulate DAmaps stored in the MTable or the MFlow returned by Track.

๏ So when DAmap/TPSA introduce errors?
➡ If they are used as functions (e.g. evaluated), instead of DA (e.g. track, twiss).
➡ High orders of             are used to interpolate at the new position by substitution.

AD exploits the fact that every computer program, no matter how complicated, executes a sequence of 
elementary arithmetic operations (addition, subtraction, multiplication, division, etc.) and elementary 
functions (exp, log, sin, cos, etc.). By applying the chain rule repeatedly to these operations, derivatives 
of arbitrary order can be computed automatically, accurately to working precision, and using at 
most a small constant factor more arithmetic operations than the original program.

Symbolic differentiation can lead to inefficient code and faces the difficulty of converting a computer 
program into a single expression, while numerical differentiation can introduce round-off errors in the 
discretization process and cancellation. Both classical methods have problems with calculating 
higher derivatives, where complexity and errors increase.

from Wikipedia

Tn
f (x; a + h) =

n

∑
k=0

f (k)
a+h

k!
(x − a − h)k ; f(a + h) ≈

n

∑
k=0

f (k)
a

k!
hk ; f (k)

a+h ≈
dkTn

f (x; a)
dxk

(a + h)

Tn
f (a + h; a)

Tn
f (x; a)

Matrix codes 

don’t do better! order n is constant 

order n-1 is linear in h

sin x and its Taylor approximations nearby 0 by 
polynomials of degree 1, 3, 5, 7, 9, 11 and 13.

Functions of TPSAs ≠ TPSAs as functions 

        exact           ≠       approximate
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๏ Differential Algebra maps
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๏ Differential Algebra maps
➡ Tuple of GTPSA, e.g. 6D phase space uses 6 GTPSA. 
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๏ Differential Algebra maps
➡ Tuple of GTPSA, e.g. 6D phase space uses 6 GTPSA. 
➡ Handles user defined parameters.
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๏ Differential Algebra maps
➡ Tuple of GTPSA, e.g. 6D phase space uses 6 GTPSA. 
➡ Handles user defined parameters.
➡ Behaves like particles for the scalar part (orbit).
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๏ Differential Algebra maps
➡ Tuple of GTPSA, e.g. 6D phase space uses 6 GTPSA. 
➡ Handles user defined parameters.
➡ Behaves like particles for the scalar part (orbit).

x 

px 
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py 
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pt

DA map of 6 variables at order 2 (e.g. MAD-X twiss)
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๏ Differential Algebra maps
➡ Tuple of GTPSA, e.g. 6D phase space uses 6 GTPSA. 
➡ Handles user defined parameters.
➡ Behaves like particles for the scalar part (orbit).
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py 
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pt

DA map of 6 variables at order 2 (e.g. MAD-X twiss)

GTPSA
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๏ Differential Algebra maps
➡ Tuple of GTPSA, e.g. 6D phase space uses 6 GTPSA. 
➡ Handles user defined parameters.
➡ Behaves like particles for the scalar part (orbit).
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px 

y 

py 

t 

pt

DA map of 6 variables at order 2 (e.g. MAD-X twiss)

GTPSA
f (0)
A : E (orbit)

mailto:laurent.deniau@cern.ch


BE Beams 
Department

La
ur

en
t D

en
ia

u,
 C

E
R

N
 B

E
/A

B
P,

 1
21

1 
G

en
ev

a 
23

, l
au

re
nt

.d
en

ia
u@

ce
rn

.c
h 

DA map

25

๏ Differential Algebra maps
➡ Tuple of GTPSA, e.g. 6D phase space uses 6 GTPSA. 
➡ Handles user defined parameters.
➡ Behaves like particles for the scalar part (orbit).
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DA map of 6 variables at order 2 (e.g. MAD-X twiss)
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f (0)
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๏ Differential Algebra maps
➡ Tuple of GTPSA, e.g. 6D phase space uses 6 GTPSA. 
➡ Handles user defined parameters.
➡ Behaves like particles for the scalar part (orbit).

x 

px 

y 

py 

t 

pt

DA map of 6 variables at order 2 (e.g. MAD-X twiss)

GTPSA
f (0)
A : E (orbit) f (1)

A : R (matrix)
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๏ Differential Algebra maps
➡ Tuple of GTPSA, e.g. 6D phase space uses 6 GTPSA. 
➡ Handles user defined parameters.
➡ Behaves like particles for the scalar part (orbit).
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py 
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pt

DA map of 6 variables at order 2 (e.g. MAD-X twiss)

GTPSA
f (0)
A : E (orbit) f (1)

A : R (matrix)
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๏ Differential Algebra maps
➡ Tuple of GTPSA, e.g. 6D phase space uses 6 GTPSA. 
➡ Handles user defined parameters.
➡ Behaves like particles for the scalar part (orbit).
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px 

y 

py 

t 

pt

DA map of 6 variables at order 2 (e.g. MAD-X twiss)

GTPSA
f (0)
A : E (orbit) f (1)

A : R (matrix) f (2)
A : T* (folded tensor)
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๏ Differential Algebra maps
➡ Tuple of GTPSA, e.g. 6D phase space uses 6 GTPSA. 
➡ Handles user defined parameters.
➡ Behaves like particles for the scalar part (orbit).
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pt

DA map of 6 variables at order 2 (e.g. MAD-X twiss)

GTPSA
f (0)
A : E (orbit) f (1)

A : R (matrix) f (2)
A : T* (folded tensor)

pa
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m
et
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s

∂px

∂k1
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๏ Differential Algebra maps
➡ Tuple of GTPSA, e.g. 6D phase space uses 6 GTPSA. 
➡ Handles user defined parameters.
➡ Behaves like particles for the scalar part (orbit).
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๏ Differential Algebra maps
➡ Tuple of GTPSA, e.g. 6D phase space uses 6 GTPSA. 
➡ Handles user defined parameters.
➡ Behaves like particles for the scalar part (orbit).
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DA map of 6 variables at order 2 (e.g. MAD-X twiss)

GTPSA
f (0)
A : E (orbit) f (1)

A : R (matrix) f (2)
A : T* (folded tensor)

pa
ra

m
et
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s

∂px

∂k1

∂2px

∂k2
1

∂2px

∂x∂k1

0   0   0   0   0   0    1 knob k1 in “user scope”k1
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๏ Differential Algebra maps
➡ Tuple of GTPSA, e.g. 6D phase space uses 6 GTPSA. 
➡ Handles user defined parameters.
➡ Behaves like particles for the scalar part (orbit).
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pt

DA map of 6 variables at order 2 (e.g. MAD-X twiss)

GTPSA
f (0)
A : E (orbit) f (1)

A : R (matrix) f (2)
A : T* (folded tensor)

pa
ra

m
et

er
s

∂px

∂k1

∂2px

∂k2
1

∂2px

∂x∂k1

0   0   0   0   0   0    1 knob k1 in “user scope”k1

   TPSA: homogeneous polynomials are dense (i.e. R is squared) 

GTPSA: homogeneous polynomials are NOT dense or include knobs
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TPSA: homogeneous polynomials are dense with                                 coefficients (n + v
v ) =

(n + v)!
n! v!
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TPSA: homogeneous polynomials are dense with                                 coefficients (n + v
v ) =

(n + v)!
n! v!

GTPSA: homogeneous polynomials are NOT dense (no direct formula, only upper bound)
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TPSA: homogeneous polynomials are dense with                                 coefficients (n + v
v ) =

(n + v)!
n! v!

GTPSA: homogeneous polynomials are NOT dense (no direct formula, only upper bound)

v \ n 1 2 3 4 5 6 7 8 9 10 11 12
1 2 3 4 5 6 7 8 9 10 11 12 13
2 6 12 20 30 42 56 72 90 110 132 156 182
3 12 30 60 105 168 252 360 495 660 858 1092 1365
4 20 60 140 280 504 840 1320 1980 2860 4004 5460 7280
5 30 105 280 630 1260 2310 3960 6435 10010 15015 21840 30940
6 42 168 504 1260 2772 5544 10296 18018 30030 48048 74256 111384
7 56 252 840 2310 5544 12012 24024 45045 80080 136136 222768 352716
8 72 360 1320 3960 10296 24024 51480 102960 194480 350064 604656 1007760
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TPSA: homogeneous polynomials are dense with                                 coefficients (n + v
v ) =

(n + v)!
n! v!

GTPSA: homogeneous polynomials are NOT dense (no direct formula, only upper bound)

v \ n 1 2 3 4 5 6 7 8 9 10 11 12
1 2 3 4 5 6 7 8 9 10 11 12 13
2 6 12 20 30 42 56 72 90 110 132 156 182
3 12 30 60 105 168 252 360 495 660 858 1092 1365
4 20 60 140 280 504 840 1320 1980 2860 4004 5460 7280
5 30 105 280 630 1260 2310 3960 6435 10010 15015 21840 30940
6 42 168 504 1260 2772 5544 10296 18018 30030 48048 74256 111384
7 56 252 840 2310 5544 12012 24024 45045 80080 136136 222768 352716
8 72 360 1320 3960 10296 24024 51480 102960 194480 350064 604656 1007760

DA map: v (n + v
v )
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TPSA: homogeneous polynomials are dense with                                 coefficients (n + v
v ) =

(n + v)!
n! v!

GTPSA: homogeneous polynomials are NOT dense (no direct formula, only upper bound)

v \ n 1 2 3 4 5 6 7 8 9 10 11 12
1 2 3 4 5 6 7 8 9 10 11 12 13
2 6 12 20 30 42 56 72 90 110 132 156 182
3 12 30 60 105 168 252 360 495 660 858 1092 1365
4 20 60 140 280 504 840 1320 1980 2860 4004 5460 7280
5 30 105 280 630 1260 2310 3960 6435 10010 15015 21840 30940
6 42 168 504 1260 2772 5544 10296 18018 30030 48048 74256 111384
7 56 252 840 2310 5544 12012 24024 45045 80080 136136 222768 352716
8 72 360 1320 3960 10296 24024 51480 102960 194480 350064 604656 1007760

DA map: v (n + v
v )

v \ n 1 2 3 4 5 6 7 8 9 10 11 12
1 2 3 4 5 6 7 8 9 10 11 12 13
2 6 14 30 62 126 254 510 1022 2046 4094 8190 16382
3 12 39 120 363 1092 3279 9840 29523 88572 265719 797160 2391483
4 20 84 340 1364 5460 21844 87380 349524 1398100 5592404 22369620 89478484
5 30 155 780 3905 19530 97655 488280 2441405 12207030 61035155 305175780 1525878905
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TPSA: homogeneous polynomials are dense with                                 coefficients (n + v
v ) =

(n + v)!
n! v!

GTPSA: homogeneous polynomials are NOT dense (no direct formula, only upper bound)
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Matrix: 
n
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TPSA are the only suitable 

solutions for high orders!
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Generalised Truncated Power Series Algebra
For Fast Particle Accelerator Transport Maps
Laurent Deniau, Ciprian Tomoiagă, CERN, Switzerland
Abstract
A new Generalised Truncated Power Series Alge-
bra (GTPSA) has been developed for extending,
simplifying and optimising the transport maps
used by particle accelerator simulation codes.
TPSA are intensively used in optics code to de-
scribe transport maps of the elements constitut-
ing the particle accelerator to any order. GTPSA
extend the degrees to inhomogeneous ones, where
separate degrees can be specified for each vari-
able and constrained by two total orders, one
for map variables and one for ordinary variables.
This allows tracking inhomogeneous planes of the
6D phase space with many extra variables.
A complete set of new formulas and data struc-
tures have been derived to address the problem of
memory consumption required for efficient com-
putation of high order TPSA, including gener-
alised indexing, multiplication and composition
of inhomogeneous multivariate polynomials. The
implementation has been benchmarked against
well established libraries for the common subset
with TPSA, and outperforms all of them for sup-
ported differential algebra operators on low and
high orders, and high number of variables.

Generalised TPSA
The GTPSA extends the TPSA by making a dis-
tinction between the map variables ~x and the
knob variables ~k, based on their physical mean-
ing, where the knobs can appear in the GTPSA,
but never in the map (fig. 1). It also allows to
specify a maximum order dj , 0 < j  n for each
variable in ~x or ~k and two total orders dx and dk.

Fig. 1: Representation of a 4D map with knobs.

Unification of studies
The GTPSA extensions are useful for unifying
different kinds of studies using the same equa-
tions of motion. The following maps specifica-
tions are of particular interest, assuming a 6D
phase space ~x = {x, px, y, py, s, ps}:

~x = {0, 0, 0, 0, 0, 0} corresponds to 6D zero
order particle tracking, i.e. particles orbits,
where the map is simply a vector of six
scalars. In this case, dx = 0, dk = 0 and
~k = ~0.
~x = {2, 2, 2, 2, 0, 0} corresponds to 6D with
second order transverse beam dynamics
and zero order longitudinal beam dynam-
ics, which emulates 4D beam dynamics. In
this case, dx = 2, dk = 0 and ~k = ~0.
~x = {1, 1, 1, 1, 4, 4} and ~k = {1, . . . , 1}
corresponds to 6D with first order trans-
verse beam dynamics and fourth order
longitudinal beam dynamics with n � v

(few hundreds) first order knobs in the
GTPSA (e.g. strength of orbit correctors).
In this case, dx = 4 so mixed high order
terms like @

4
ps/(@x@px@y@py) exist and

dk = 1, meaning that terms like @x/@kj

and @y/@kj also exist and can be used di-
rectly by orbit correction algorithms.

A fast indexing function

Fig. 2: Relative performance of indexing functions.

The monomials of a TPSA are sorted by two cri-
teria, depending on the application. For indexing,
the order by variables (Table 1a) is used along with
the H matrix (Fig. 3) to efficiently compute the
index of a correct monomial (Table 1b) or to dis-
card an incorrect one. The unique GTPSA index
ti of the i-th monomial can be calculated from the
monomial’s orders {↵ij} using the formula:

ti =
nX

j=1

H(j, sj)�H(j, sj+1), sj =
nX

k�j

↵ik

Fig. 3: An example of
the H matrix. The
dots represent for-
bidden monomials

H,x = {1, 1, 3, 1}
(j,i) 0 1 2 3 4
1 0 1 2 3 4
2 0 2 4 6 8
3 0 4 8 12 15
4 0 15 · · ·

Tbl. 1: Monomials ordered by variables and by orders.

index x y z order
0 0 0 0 0
1 1 0 0 1
2 2 0 0 2
3 3 0 0 3
4 0 1 0 1
5 1 1 0 2
6 2 1 0 3
7 0 2 0 2
8 1 2 0 3
9 0 3 0 3
10 0 0 1 1
11 1 0 1 2
12 2 0 1 3
13 0 1 1 2
14 1 1 1 3
15 0 2 1 3
16 0 0 2 2
17 1 0 2 3
18 0 1 2 3
19 0 0 3 3

Good for indexing
(a) Sorted by product of
univariate polynomials

index x y z order
0 0 0 0 0
1 1 0 0 1
2 0 1 0 1
3 0 0 1 1
4 2 0 0 2
5 1 1 0 2
6 0 2 0 2
7 1 0 1 2
8 0 1 1 2
9 0 0 2 2
10 3 0 0 3
11 2 1 0 3
12 1 2 0 3
13 0 3 0 3
14 2 0 1 3
15 1 1 1 3
16 0 2 1 3
17 1 0 2 3
18 0 1 2 3
19 0 0 3 3

Good for operations
(b) Sorted by sum of
homogeneous multivariate
polynomials

Multiplication and composition
Since brute force is still the fastest multiplication
algorithm for truncated multivariate polynomi-
als, with O(n2) complexity, only linear improve-
ments can be obtained. The choice of the data
structure is crucial, so the monomials are ordered
by homogeneous polynomials (Table 1b), which
gives the following advantages:

the good locality of the data ensures cache
friendly loops over the GTPSA;
the destination indexes can be precom-
puted for each pair of homogeneous poly-
nomials Pi ⇥Qj ;
the computation is symmetric in
terms of homogeneous polynomials,
i.e. Ri+j = Pi ⇥Qj = Pj ⇥Qi so memory
consumption is halved;
the resulting homogeneous polynomials
Ri+j are independent of each other, so par-
alellisation can be employed when the com-
putation load is big enough (i + j � 12).
The highest order is split into two tasks, as
it represents by itself about half the size of
the total calculation.

For composition, the monomials are computed
recursively in a tree-like manner which results in
only v⇥N multiplications for a full map of v vari-
ables with N coefficients each. This is optimal
and avoids the calculation and memory overhead
of additional data structures.

Fig. 4: Relative performance of multiplication at or-
der 2 when using GTPSA with 6 variables and
many knobs vs. homogeneous TPSA.

Fig. 5: Relative performance of the multiplications.

Fig. 6: Relative performance of the compositions.

Conclusions and future work
We have provided a Generalised TPSA package which

provides a common interface for different types of studies;
offers much more flexibility for computation of maps in beam dynamics and complex maps in
normal form analysis;
outperforms well-known high performance packages, despite apparent complexity.

Future work will focus on improving efficiency of sparse element maps through a mixed representation
of dense and sparse homogeneous polynomials.
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The monomials of a TPSA are sorted by two cri-
teria, depending on the application. For indexing,
the order by variables (Table 1a) is used along with
the H matrix (Fig. 3) to efficiently compute the
index of a correct monomial (Table 1b) or to dis-
card an incorrect one. The unique GTPSA index
ti of the i-th monomial can be calculated from the
monomial’s orders {↵ij} using the formula:

ti =
nX
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H(j, sj)�H(j, sj+1), sj =
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Fig. 3: An example of
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H,x = {1, 1, 3, 1}
(j,i) 0 1 2 3 4
1 0 1 2 3 4
2 0 2 4 6 8
3 0 4 8 12 15
4 0 15 · · ·

Tbl. 1: Monomials ordered by variables and by orders.

index x y z order
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1 1 0 0 1
2 2 0 0 2
3 3 0 0 3
4 0 1 0 1
5 1 1 0 2
6 2 1 0 3
7 0 2 0 2
8 1 2 0 3
9 0 3 0 3
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(a) Sorted by product of
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15 1 1 1 3
16 0 2 1 3
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19 0 0 3 3

Good for operations
(b) Sorted by sum of
homogeneous multivariate
polynomials

Multiplication and composition
Since brute force is still the fastest multiplication
algorithm for truncated multivariate polynomi-
als, with O(n2) complexity, only linear improve-
ments can be obtained. The choice of the data
structure is crucial, so the monomials are ordered
by homogeneous polynomials (Table 1b), which
gives the following advantages:

the good locality of the data ensures cache
friendly loops over the GTPSA;
the destination indexes can be precom-
puted for each pair of homogeneous poly-
nomials Pi ⇥Qj ;
the computation is symmetric in
terms of homogeneous polynomials,
i.e. Ri+j = Pi ⇥Qj = Pj ⇥Qi so memory
consumption is halved;
the resulting homogeneous polynomials
Ri+j are independent of each other, so par-
alellisation can be employed when the com-
putation load is big enough (i + j � 12).
The highest order is split into two tasks, as
it represents by itself about half the size of
the total calculation.

For composition, the monomials are computed
recursively in a tree-like manner which results in
only v⇥N multiplications for a full map of v vari-
ables with N coefficients each. This is optimal
and avoids the calculation and memory overhead
of additional data structures.

Fig. 4: Relative performance of multiplication at or-
der 2 when using GTPSA with 6 variables and
many knobs vs. homogeneous TPSA.

Fig. 5: Relative performance of the multiplications.

Fig. 6: Relative performance of the compositions.

Conclusions and future work
We have provided a Generalised TPSA package which

provides a common interface for different types of studies;
offers much more flexibility for computation of maps in beam dynamics and complex maps in
normal form analysis;
outperforms well-known high performance packages, despite apparent complexity.

Future work will focus on improving efficiency of sparse element maps through a mixed representation
of dense and sparse homogeneous polynomials.
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Conclusions and future work
We have provided a Generalised TPSA package which

provides a common interface for different types of studies;
offers much more flexibility for computation of maps in beam dynamics and complex maps in
normal form analysis;
outperforms well-known high performance packages, despite apparent complexity.

Future work will focus on improving efficiency of sparse element maps through a mixed representation
of dense and sparse homogeneous polynomials.
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separate degrees can be specified for each vari-
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for map variables and one for ordinary variables.
This allows tracking inhomogeneous planes of the
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tures have been derived to address the problem of
memory consumption required for efficient com-
putation of high order TPSA, including gener-
alised indexing, multiplication and composition
of inhomogeneous multivariate polynomials. The
implementation has been benchmarked against
well established libraries for the common subset
with TPSA, and outperforms all of them for sup-
ported differential algebra operators on low and
high orders, and high number of variables.
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The GTPSA extends the TPSA by making a dis-
tinction between the map variables ~x and the
knob variables ~k, based on their physical mean-
ing, where the knobs can appear in the GTPSA,
but never in the map (fig. 1). It also allows to
specify a maximum order dj , 0 < j  n for each
variable in ~x or ~k and two total orders dx and dk.

Fig. 1: Representation of a 4D map with knobs.

Unification of studies
The GTPSA extensions are useful for unifying
different kinds of studies using the same equa-
tions of motion. The following maps specifica-
tions are of particular interest, assuming a 6D
phase space ~x = {x, px, y, py, s, ps}:

~x = {0, 0, 0, 0, 0, 0} corresponds to 6D zero
order particle tracking, i.e. particles orbits,
where the map is simply a vector of six
scalars. In this case, dx = 0, dk = 0 and
~k = ~0.
~x = {2, 2, 2, 2, 0, 0} corresponds to 6D with
second order transverse beam dynamics
and zero order longitudinal beam dynam-
ics, which emulates 4D beam dynamics. In
this case, dx = 2, dk = 0 and ~k = ~0.
~x = {1, 1, 1, 1, 4, 4} and ~k = {1, . . . , 1}
corresponds to 6D with first order trans-
verse beam dynamics and fourth order
longitudinal beam dynamics with n � v

(few hundreds) first order knobs in the
GTPSA (e.g. strength of orbit correctors).
In this case, dx = 4 so mixed high order
terms like @
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ps/(@x@px@y@py) exist and

dk = 1, meaning that terms like @x/@kj

and @y/@kj also exist and can be used di-
rectly by orbit correction algorithms.
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The monomials of a TPSA are sorted by two cri-
teria, depending on the application. For indexing,
the order by variables (Table 1a) is used along with
the H matrix (Fig. 3) to efficiently compute the
index of a correct monomial (Table 1b) or to dis-
card an incorrect one. The unique GTPSA index
ti of the i-th monomial can be calculated from the
monomial’s orders {↵ij} using the formula:

ti =
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Fig. 3: An example of
the H matrix. The
dots represent for-
bidden monomials

H,x = {1, 1, 3, 1}
(j,i) 0 1 2 3 4
1 0 1 2 3 4
2 0 2 4 6 8
3 0 4 8 12 15
4 0 15 · · ·

Tbl. 1: Monomials ordered by variables and by orders.

index x y z order
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1 1 0 0 1
2 2 0 0 2
3 3 0 0 3
4 0 1 0 1
5 1 1 0 2
6 2 1 0 3
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18 0 1 2 3
19 0 0 3 3

Good for operations
(b) Sorted by sum of
homogeneous multivariate
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Multiplication and composition
Since brute force is still the fastest multiplication
algorithm for truncated multivariate polynomi-
als, with O(n2) complexity, only linear improve-
ments can be obtained. The choice of the data
structure is crucial, so the monomials are ordered
by homogeneous polynomials (Table 1b), which
gives the following advantages:

the good locality of the data ensures cache
friendly loops over the GTPSA;
the destination indexes can be precom-
puted for each pair of homogeneous poly-
nomials Pi ⇥Qj ;
the computation is symmetric in
terms of homogeneous polynomials,
i.e. Ri+j = Pi ⇥Qj = Pj ⇥Qi so memory
consumption is halved;
the resulting homogeneous polynomials
Ri+j are independent of each other, so par-
alellisation can be employed when the com-
putation load is big enough (i + j � 12).
The highest order is split into two tasks, as
it represents by itself about half the size of
the total calculation.

For composition, the monomials are computed
recursively in a tree-like manner which results in
only v⇥N multiplications for a full map of v vari-
ables with N coefficients each. This is optimal
and avoids the calculation and memory overhead
of additional data structures.

Fig. 4: Relative performance of multiplication at or-
der 2 when using GTPSA with 6 variables and
many knobs vs. homogeneous TPSA.

Fig. 5: Relative performance of the multiplications.

Fig. 6: Relative performance of the compositions.

Conclusions and future work
We have provided a Generalised TPSA package which

provides a common interface for different types of studies;
offers much more flexibility for computation of maps in beam dynamics and complex maps in
normal form analysis;
outperforms well-known high performance packages, despite apparent complexity.

Future work will focus on improving efficiency of sparse element maps through a mixed representation
of dense and sparse homogeneous polynomials.
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Multiplication and composition
Since brute force is still the fastest multiplication
algorithm for truncated multivariate polynomi-
als, with O(n2) complexity, only linear improve-
ments can be obtained. The choice of the data
structure is crucial, so the monomials are ordered
by homogeneous polynomials (Table 1b), which
gives the following advantages:

the good locality of the data ensures cache
friendly loops over the GTPSA;
the destination indexes can be precom-
puted for each pair of homogeneous poly-
nomials Pi ⇥Qj ;
the computation is symmetric in
terms of homogeneous polynomials,
i.e. Ri+j = Pi ⇥Qj = Pj ⇥Qi so memory
consumption is halved;
the resulting homogeneous polynomials
Ri+j are independent of each other, so par-
alellisation can be employed when the com-
putation load is big enough (i + j � 12).
The highest order is split into two tasks, as
it represents by itself about half the size of
the total calculation.

For composition, the monomials are computed
recursively in a tree-like manner which results in
only v⇥N multiplications for a full map of v vari-
ables with N coefficients each. This is optimal
and avoids the calculation and memory overhead
of additional data structures.

Fig. 4: Relative performance of multiplication at or-
der 2 when using GTPSA with 6 variables and
many knobs vs. homogeneous TPSA.

Fig. 5: Relative performance of the multiplications.

Fig. 6: Relative performance of the compositions.

Conclusions and future work
We have provided a Generalised TPSA package which

provides a common interface for different types of studies;
offers much more flexibility for computation of maps in beam dynamics and complex maps in
normal form analysis;
outperforms well-known high performance packages, despite apparent complexity.

Future work will focus on improving efficiency of sparse element maps through a mixed representation
of dense and sparse homogeneous polynomials.
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Abstract
A new Generalised Truncated Power Series Alge-
bra (GTPSA) has been developed for extending,
simplifying and optimising the transport maps
used by particle accelerator simulation codes.
TPSA are intensively used in optics code to de-
scribe transport maps of the elements constitut-
ing the particle accelerator to any order. GTPSA
extend the degrees to inhomogeneous ones, where
separate degrees can be specified for each vari-
able and constrained by two total orders, one
for map variables and one for ordinary variables.
This allows tracking inhomogeneous planes of the
6D phase space with many extra variables.
A complete set of new formulas and data struc-
tures have been derived to address the problem of
memory consumption required for efficient com-
putation of high order TPSA, including gener-
alised indexing, multiplication and composition
of inhomogeneous multivariate polynomials. The
implementation has been benchmarked against
well established libraries for the common subset
with TPSA, and outperforms all of them for sup-
ported differential algebra operators on low and
high orders, and high number of variables.

Generalised TPSA
The GTPSA extends the TPSA by making a dis-
tinction between the map variables ~x and the
knob variables ~k, based on their physical mean-
ing, where the knobs can appear in the GTPSA,
but never in the map (fig. 1). It also allows to
specify a maximum order dj , 0 < j  n for each
variable in ~x or ~k and two total orders dx and dk.

Fig. 1: Representation of a 4D map with knobs.

Unification of studies
The GTPSA extensions are useful for unifying
different kinds of studies using the same equa-
tions of motion. The following maps specifica-
tions are of particular interest, assuming a 6D
phase space ~x = {x, px, y, py, s, ps}:

~x = {0, 0, 0, 0, 0, 0} corresponds to 6D zero
order particle tracking, i.e. particles orbits,
where the map is simply a vector of six
scalars. In this case, dx = 0, dk = 0 and
~k = ~0.
~x = {2, 2, 2, 2, 0, 0} corresponds to 6D with
second order transverse beam dynamics
and zero order longitudinal beam dynam-
ics, which emulates 4D beam dynamics. In
this case, dx = 2, dk = 0 and ~k = ~0.
~x = {1, 1, 1, 1, 4, 4} and ~k = {1, . . . , 1}
corresponds to 6D with first order trans-
verse beam dynamics and fourth order
longitudinal beam dynamics with n � v

(few hundreds) first order knobs in the
GTPSA (e.g. strength of orbit correctors).
In this case, dx = 4 so mixed high order
terms like @

4
ps/(@x@px@y@py) exist and

dk = 1, meaning that terms like @x/@kj

and @y/@kj also exist and can be used di-
rectly by orbit correction algorithms.

A fast indexing function

Fig. 2: Relative performance of indexing functions.

The monomials of a TPSA are sorted by two cri-
teria, depending on the application. For indexing,
the order by variables (Table 1a) is used along with
the H matrix (Fig. 3) to efficiently compute the
index of a correct monomial (Table 1b) or to dis-
card an incorrect one. The unique GTPSA index
ti of the i-th monomial can be calculated from the
monomial’s orders {↵ij} using the formula:

ti =
nX

j=1

H(j, sj)�H(j, sj+1), sj =
nX

k�j

↵ik

Fig. 3: An example of
the H matrix. The
dots represent for-
bidden monomials

H,x = {1, 1, 3, 1}
(j,i) 0 1 2 3 4
1 0 1 2 3 4
2 0 2 4 6 8
3 0 4 8 12 15
4 0 15 · · ·

Tbl. 1: Monomials ordered by variables and by orders.

index x y z order
0 0 0 0 0
1 1 0 0 1
2 2 0 0 2
3 3 0 0 3
4 0 1 0 1
5 1 1 0 2
6 2 1 0 3
7 0 2 0 2
8 1 2 0 3
9 0 3 0 3
10 0 0 1 1
11 1 0 1 2
12 2 0 1 3
13 0 1 1 2
14 1 1 1 3
15 0 2 1 3
16 0 0 2 2
17 1 0 2 3
18 0 1 2 3
19 0 0 3 3

Good for indexing
(a) Sorted by product of
univariate polynomials
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Good for operations
(b) Sorted by sum of
homogeneous multivariate
polynomials
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Since brute force is still the fastest multiplication
algorithm for truncated multivariate polynomi-
als, with O(n2) complexity, only linear improve-
ments can be obtained. The choice of the data
structure is crucial, so the monomials are ordered
by homogeneous polynomials (Table 1b), which
gives the following advantages:

the good locality of the data ensures cache
friendly loops over the GTPSA;
the destination indexes can be precom-
puted for each pair of homogeneous poly-
nomials Pi ⇥Qj ;
the computation is symmetric in
terms of homogeneous polynomials,
i.e. Ri+j = Pi ⇥Qj = Pj ⇥Qi so memory
consumption is halved;
the resulting homogeneous polynomials
Ri+j are independent of each other, so par-
alellisation can be employed when the com-
putation load is big enough (i + j � 12).
The highest order is split into two tasks, as
it represents by itself about half the size of
the total calculation.

For composition, the monomials are computed
recursively in a tree-like manner which results in
only v⇥N multiplications for a full map of v vari-
ables with N coefficients each. This is optimal
and avoids the calculation and memory overhead
of additional data structures.

Fig. 4: Relative performance of multiplication at or-
der 2 when using GTPSA with 6 variables and
many knobs vs. homogeneous TPSA.

Fig. 5: Relative performance of the multiplications.

Fig. 6: Relative performance of the compositions.

Conclusions and future work
We have provided a Generalised TPSA package which

provides a common interface for different types of studies;
offers much more flexibility for computation of maps in beam dynamics and complex maps in
normal form analysis;
outperforms well-known high performance packages, despite apparent complexity.

Future work will focus on improving efficiency of sparse element maps through a mixed representation
of dense and sparse homogeneous polynomials.

The smaller the better!
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