Tolerances for vibration

K. Oide

Dec. 3, 2021 @ FCCIS WP2 Workshop 2021
Many thanks to M. Boscolo, F. Zimmermann

Vibration of quadrupoles

 CIRCULAR COLLIDERThe vertical displacement of a beam caused by a quadrupole vibrating with an amplitude Δy_{q} and an angular frequency ω_{q} at the vertical phase advance ϕ_{q} from the IP:

$$
\begin{align*}
\Delta y^{*} & =\sum_{n} \sqrt{\beta^{*} \beta_{q}} \exp \left(-n T_{0} / \tau_{y}+i \omega_{q} n T_{0}\right) \sin \left(\phi_{q}+n \mu_{y}\right) k_{q} \Delta y_{q} \\
& =\sum_{n} \sqrt{\beta^{*} \beta_{q}} \exp \left(-n \alpha_{y}+i n \mu_{q}\right) \sin \left(\phi_{q}+n \mu_{y}\right) k_{q} \Delta y_{q}, \tag{1}
\end{align*}
$$

where $\mu_{y}, T_{0} \& \tau_{y}$, are the vertical betatron angular tune, the revolution \& damping times, and $\alpha_{y} \equiv T_{0} / \tau_{y}, \mu_{q} \equiv \omega_{q} T_{0} . \beta^{*}, \beta_{q}, k_{q}$ are the beta functions at the IP and the quadrupole, and the focusing strength of the quadrupole.

1.1 Vibration due to seismic motion

The vibration amplitude Δy_{q} can be random to each quad, or coherent due to external seismic motion. First let us evaluate the coherent part by assuming that the quads are distributed over the ring uniformly with the betatron phase $\phi_{q}=m \Delta \phi_{q}$, and also physically located over a ring of the radius R with a constant separation azimuthal angle θ_{q}, i.e.,

$$
\begin{equation*}
X_{m}+i Y_{m}=R \exp \left(i m \theta_{q}\right) \tag{2}
\end{equation*}
$$

where m runs over 1 through N_{q}, the number of quads per ring.

Then if the quads follow the seismic wave in the ground, the displacement Δy_{m} of the m-th quadrupole is written as

FUTURE

CIRCULAR

$$
\begin{equation*}
\Delta y_{m}=u \exp \left(i\left(k_{X} X_{m}+k_{Y} Y_{m}-\omega_{q} t\right)\right), \tag{3}
\end{equation*}
$$

where $k_{X, Y}$ are the components of the seismic wave number vector, and u represents the amplitude. Here we just set $k_{X}=k$ and $k_{Y}=0$ for simplicity without losing generality if the ring is nearly a circle. So we may sum up the term $\sin \left(\phi_{q}+n \mu_{y}\right) \Delta y_{q}$ in Eq. (1) over quadrupoles as

$$
\begin{align*}
N_{q} d_{s} & =\sum_{m}^{N_{q}} \sin \left(\phi_{q}+n \mu_{y}\right) \Delta y_{m} \\
& =\sum_{m}^{N_{q}} \sin \left(m \Delta \phi_{q}+n \mu_{y}\right) u \exp \left(i\left(k R \cos m \theta_{q}-\omega_{q} t\right)\right) \tag{4}\\
& =u \sum_{\ell=-\infty}^{\infty} \sum_{m}^{N_{q}} \sin \left(m \Delta \phi_{q}+n \mu_{y}\right) J_{\ell}(k R) i^{\ell} \exp \left(i \ell m \theta_{q}-i \omega_{q} t\right),
\end{align*}
$$

where we have applied $\exp (i x \cos z)=\sum_{\ell} i^{l} J_{\ell}(x) \exp i \ell z$. Although there may be a resonance in Eq. (4) at $\ell \sim \pm \Delta \phi_{q} / \theta_{q}$, the index ℓ becomes too large in the case of FCC-ee Z, where $\Delta \phi_{q}=83.5 \mathrm{deg}, \theta_{q}=360 / 924 \sim 0.390 \mathrm{deg}$, and
 $\ell \sim 214$. As for N_{q}, we have taken only QD's into account. Thus the coefficient J_{ℓ} becomes infinitesimal for such a large ℓ, so the resonant effect is negligible.

The term $\ell=0$ in Eq. (4) gives

$$
\begin{equation*}
d_{s 0}=u J_{0}(k R) \frac{\sin \left(\mu_{y} / 2\right) \sin \left(n \mu_{y}+\left(\mu_{y}-\Delta \phi_{q}\right) / 2\right)}{\sin \left(\Delta \phi_{q} / 2\right)} . \tag{5}
\end{equation*}
$$

We know $J_{0}(x) \leq 1$, and the rests of the rhs of Eq. (5) are not far from 1 . Then magnitude of the coherent component looks smaller than the random component:

$$
\begin{equation*}
\left|d_{s}\right| \ll \sqrt{N_{q}} u . \tag{6}
\end{equation*}
$$

1.2 Resonance with the betatron frequency

$$
=\sum_{n} \sqrt{\beta^{*} \beta_{q}} \exp \left(-n \alpha_{y}+i n \mu_{q}\right) \sin \left(\phi_{q}+n \mu_{y}\right) k_{q} \Delta y_{q}
$$

Then the expectation value of the vibration of the beam at the $\left.\operatorname{IP},\left.\langle | \Delta y^{*}\right|^{2}\right\rangle$ is obtained by averaging Eq. (11) over ϕ_{q} as

$$
\begin{align*}
\left.\left.\langle | \Delta y^{*}\right|^{2}\right\rangle & =\frac{1}{2 \pi} \int\left|\Delta y^{*}\right|^{2} d \phi_{q} \\
& =\frac{\beta^{*} \beta_{q} k_{q}^{2}\left\langle\Delta y_{q}^{2}\right\rangle}{4} \frac{\exp (\alpha)\left(\cosh \alpha-\cos \mu_{q} \cos \mu_{y}\right)}{\left(\cosh \alpha-\cos \left(\mu_{q}-\mu_{y}\right)\right)\left(\cosh \alpha-\cos \left(\mu_{q}+\mu_{y}\right)\right)} . \tag{7}
\end{align*}
$$

Thus the vibration at the IP has resonances at $\mu_{q}= \pm \mu_{y}+2 m \pi$ with an integer m.

At each resonance, by assuming the spectrum of $\left\langle\Delta y_{q}^{2}\right\rangle$ is uniform, the vibration at the IP can be evaluated as:

$$
\begin{equation*}
\left.\left.\langle | \Delta y^{*}\right|^{2}\right\rangle=\frac{\beta^{*} \beta_{q} k_{q}^{2}}{8 \alpha T_{0}} \sum_{m} S\left(\left(\pm \mu_{y} \pm 2 m \pi\right) / T_{0}\right), \tag{8}
\end{equation*}
$$

where $S(\omega)$ is the power spectrum density of $\left\langle\Delta y_{q}^{2}(\omega)\right\rangle$, and we have assumed $\cos \mu_{q} \cos \mu_{y} \sim 1 / 2$ and $\alpha \ll 1$.

A measurement of ground vibration tells that $\mathbb{\square}$,

$$
\begin{equation*}
S(\omega)=\sigma \omega^{-4} \sim 10^{-15}\left(\frac{\omega}{2 \pi \mathrm{~Hz}}\right)^{-4} \mathrm{~m}^{2} / \mathrm{Hz} \tag{9}
\end{equation*}
$$

with a coefficient σ, then among the resonances only the lowest one $m \sim \mu_{y} / 2 \pi$ will matter. In the case of FCC-ee, it is at

$$
\begin{equation*}
\omega / 2 \pi=\omega_{r} / 2 \pi \sim(1.2,1.8) \mathrm{kHz} \tag{10}
\end{equation*}
$$

M. Serluca, et al.

FUTURE

CIRCULAR COLLIDER
corresponding to $\left[\mu_{y} / 2 \pi\right] \sim(0.4,0.6)$, resulting in

$$
\begin{equation*}
S\left(\omega_{r}\right) \sim(4.8,0.95) \times 10^{-28} \mathrm{~m}^{2} / \mathrm{Hz} \tag{11}
\end{equation*}
$$

[^0]If we plugin numbers at FCC-ee Z:

$$
\begin{align*}
\beta^{*}=0.8 \mathrm{~mm}, & \langle\beta\rangle=515 \mathrm{~m}, \\
\left\langle k_{q}^{2}\right\rangle^{1 / 2}=0.058 / \mathrm{m}, & \left\langle\beta k_{q}^{2}\right\rangle^{1 / 2}=16.6 / \mathrm{m}, \tag{12}\\
T_{0}=300 \mu \mathrm{~s}, & \alpha=4 \times 10^{-4} \mathrm{~s}
\end{align*}
$$

into $\mathrm{Eq},(8)$ and multiply the number of all defocusing quadrupoles $N_{q}=924$, we get

$$
\begin{equation*}
\sqrt{\Delta y^{* 2}} \sim 78 \mathrm{pm} \tag{13}
\end{equation*}
$$

which is well smaller than the IP vertical beam size, $\sim 37 \mathrm{~nm}$.

FUTURE

CIRCULAR COLLIDER

1.3 Non-resonant vibration

Next let us look at the off-resonant contribution of Eq. (7), If we roughly approximtate the tune-dependent term by 1 , the integrated power spectrum in a range $\omega \geq \omega_{c}$ is given as

$$
\begin{align*}
\sqrt{\Delta y^{* 2}} & =\frac{N_{q} \beta^{*} \beta_{q} k_{q}^{2}}{4} \int_{\omega_{c}}^{\infty} S(\omega) \frac{d \omega}{2 \pi} \\
& =\frac{N_{q} \beta^{*} \beta_{q} k_{q}^{2} \sigma}{24 \pi \omega_{c}^{3}} \tag{14}
\end{align*}
$$

In the case for the previous measurement, we estimate $\sigma \sim 1.6 \times 10^{-12} \mathrm{~m}^{2} / \mathrm{Hz}$, then

$$
\begin{equation*}
\sqrt{\Delta y^{* 2}} \sim 32.3 \mathrm{~nm} \tag{15}
\end{equation*}
$$

for $\omega_{c}=2 \pi \times 1 \mathrm{~Hz}$. The assumption here is that below the critical frequency ω_{c}, an orbit feedback suppresses the beam oscillation perfectly. Thus the expected vibration reaches to the vertical beam size at the IP.

Among the vibration, the dominant contribution is from the defocusing final quads " $\mathrm{QC} 1 \% 1 / 2$ ", which reaches

$$
\begin{equation*}
\sqrt{\Delta y^{* 2}}{ }_{\mathrm{QC} 1 \% 1 / 2} \sim 31.9 \mathrm{~nm} . \tag{16}
\end{equation*}
$$

Thus suppressing the vibration of the final quads and a feedback system works beyond 1 Hz will be crucial.

Maintaining the collision

1.4 Beam-beam deflection (SLC, B-factories)

If two beams have relative vertical offset at the IP by Δy^{*}, each beam receive a beam-beam kick at the IP:

$$
\begin{equation*}
\Delta y^{*}= \pm \frac{2 \pi \xi_{y}}{\beta_{y}^{*}} \Delta y^{*} \tag{17}
\end{equation*}
$$

where ξ_{y} is the vertical beam-beam parameter. If we plugin the numbers for Z:

$$
\begin{equation*}
\xi_{y}=0.152, \quad \beta_{y}^{*}=0.8 \mathrm{~mm}, \quad \Delta y^{*}=\frac{1}{10} \sigma_{y}^{*}=3.4 \mathrm{~nm} \tag{18}
\end{equation*}
$$

the beam-beam kick becomes

$$
\begin{equation*}
\Delta p_{y}^{*}=4.08 \mu \mathrm{rad} \tag{19}
\end{equation*}
$$

If we have BPMs for both beams at $\pm 2 \mathrm{~m}$ from the IP, this kick is well larger than the resolution of the BPMs, at least for the average over the bunches.

Thus the beam-beam deflection has been the primary method to detect and correct the relative offset of two beams at the IP for a linear or double ring colliders.

FUTURE

 CIRCULAR

By combining the readings of four BPMs at the both sides of IP for both beams, it is possible to extract the beam-beam deflection.

1.5 Dithering

FUTURE

CIRCULAR COLLIDER

As the horizontal beam-beam parameter is very small in low energies $\left(\xi_{x}=\right.$ 0.004 at Z), the beam-beam deflection is not appropriate for the detection of horizon offset at the IP. In such a case, a method called dithering, developed at PEP-II, is applicable, It shakes one beam with a single frequency, then detect the modulation of luminosity at that frequency, then by nullifying that component, the optimum offset is obtained.

An example of vertical bump at IP

- A simplest vertical bump orbit to control the IP offset can be produced by the skew dipole corrector winding of QC\{12\}\{LR\}1.
- This example does not close the dispersion.
- However, the associated vertical emittance generated by the dispersion leak is only 2.6 am by the $10 \mu \mathrm{~m}$ vertical offset at the IP. So the dispersion leak is not a practical issue.
- If this corrector is used for the IP feedback, its frequency response can be an issue, due to reduction by the beam pipe.

FCCee_z_528_nosol.sad

Summary

Tolerances for the vibration of quadrupoles are evaluated for three cases:

- A seismic wave has smaller effects than random motion of each quadrupole for an equal amplitude.
- Resonance with the betatron frequency: weak, as the betatron frequency is in the range of kHz .
- Non-resonant, incoherent vibration of each quad produces 30 nm vertical motion at the IP for $\geqq 1 \mathrm{~Hz}$.
- Mostly by the final quads QC1.
- Assuming each quad follows the ground motion measured at LHC \& LAPP.
- No amplification of the mechanical motion of the girders has been assumed.
- Below a frequency $\lesssim 10 \mathrm{~Hz}$, a vertical orbit feedback is required.
- IP vertical offset can be detected by the beam-beam deflection.
- For horizontal except for tt , dithering method can be user to maximize the luminosity.
- A simple vertical bump orbit can correct the IP offset easily.
- Frequency response can be an issue.

[^0]: ${ }^{1}$ https://indico.cern.ch/event/694811/contributions/2863859/attachments/ 1595533/2526938/2018_02_06_FCCee_MDI_workshop_Serluca.pdf

